首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Synopsis We tested how algal turbidity and light conditions influence anti-predator behaviour of first-feeding pike. Results showed that pike larvae were able to detect the predator by both chemical and visual signals in turbid water. However, the anti-predator behaviour was reduced in turbid water compared with clear water. Larvae hid in the vegetation in the presence of predator cues more in clear water than in turbid water. The attack rate on zooplankton in clear water was lower in the presence of predator cues, whereas no such difference was detected in turbid water. Both of these results indicate that turbidity acted as a refuge for larvae. Light proved to be an important regulating factor for feeding pike in the absence of predators, demonstrated as lowered attack rates in 50 light level in both clear and turbid water. This indicates that long-term turbidity may be critical for small larvae, which need to feed continuously to survive.  相似文献   

2.
In this study, the combined influence of vegetation density and water turbidity on habitat utilization of a prey fish, 0+ year perch Perca fluviatilis , under predation risk (pike, Esox lucius ) was investigated. The vegetated habitat was overall preferred over the open habitat in the presence of a predator. The level of turbidity, and to a lesser extent vegetation density, however, influenced the response of 0+ year perch. The use of the vegetated habitat was lower in very turbid than in clear and turbid conditions, suggesting reduced antipredator behaviour in very turbid water. The effect of vegetation density on antipredator behaviour was only present in clear water, where the use of a structural refuge decreased with increasing vegetation density. No such effect was observed in turbid and very turbid water. The results showed that the structuring role of vegetation or habitat complexity may diminish with increased turbidity. The observed masking effect of turbidity suggests that predator‐prey interactions in vegetated habitats are more complex than what has generally been thought.  相似文献   

3.
Interference among predators decreases per capita foraging rates and has implications for both community dynamics and top-down trophic processes. Interference originates from behavioural interactions among foragers, and these behaviours could be affected by environmental conditions. In experiments on pike foraging alone or among conspecifics in different levels of water turbidity, we expected high turbidity to decrease the perceived risk of intraspecific interactions among pike, and thereby decrease the strength of interference, as turbidity would decrease the visual contact between individuals and act as a refuge from behavioural interactions. The results show that this is not the case, but suggest that interference is induced instead of reduced in high turbidity. Per capita foraging rates do not differ between pike foraging alone or in groups in our clear and moderately turbid treatments, indicating no effect of interference. As high turbidity enhances prey consumption for pike individuals foraging alone, but does not have this effect for pike in groups, high turbidity induces the relative interference effect. We suggest that future evaluations of the stabilizing effects of interference on community dynamics and its reduction of predation impact on top-down trophic cascades should consider potential unexpected effects of environmental conditions.  相似文献   

4.
Community structure may differ dramatically between clear-water and turbid lakes. These differences have been attributed to differences in the cascading effect of fish on prey populations, owing to the reduced efficiency of fish predation in the presence of macrophytes. However, recent theoretical ideas suggest that water turbidity may shape predator–prey interactions, and it is predicted that prey will relax its antipredation behaviour in turbid water (H1). As a result, the nature of predator–prey interactions is expected to shift from both direct and indirect in clear water to dominantly direct in turbid water (H2). We tested these ideas in a fish–damselfly predator–prey system. In a first behavioural experiment, we looked at antipredation behaviour of damselfly larvae isolated from habitats that differ in turbidity, in the presence of fish in clear and turbid water. As predicted in H1, the larvae were more active in turbid than in clear water. In a complementary enclosure experiment, we reared larvae in a clear-water pond and a turbid pond, respectively, and manipulated the origin of the larvae (clear-water, turbid pond), fish presence (absent, present), and vegetation density (sparse, abundant). In both ponds, fish had a direct negative effect on survival of the larvae, which was mitigated in the presence of vegetation. In the fish treatment, the change in average body mass tended to be higher in the turbid pond than in the clear-water pond, suggesting indirect effects of fish were mitigated in the turbid pond. This was supported by a negative effect of fish on the effective growth rate of larvae in the clear pond, but not in the turbid pond. These results are compatible with the idea that predator–prey relationships are mainly governed by direct effects in turbid water, and by direct and indirect effects in clear water.  相似文献   

5.
We studied the effect of cyanobacteria on foraging and refuge use in small fish. We measured pike larval feeding in the presence of cyanobacteria by counting leftover prey. Our results showed that feeding by pike larvae on zooplankton prey decreased significantly in the presence of non-toxic cyanobacteria. The behaviour can be due to lowered vision caused by turbidity or clogging of the gills. Further, we tested whether the three-spined stickleback use toxic cyanobacteria as a refuge against predators in a choice experiment. The choice experiment was performed in a Y-maze fluviarum, where the fish could select between two different environments. Our results support the refuge use hypothesis because the three-spined stickleback clearly preferred toxic cyanobacteria to the chemical predator signal. To conclude, cyanobacteria decrease feeding rates in fish larvae, but may function as important refuge for e.g. sticklebacks, during predation pressure in pelagic algal blooms.  相似文献   

6.
The predation impact of the larvae of pond smelt Hypomesus transpacificus nipponensis on a zooplankton community was studied using mesocosms. The fish significantly depressed the abundances of copepod nauplii and rotifers, especially Hexarthra mira. The vulnerabilities of these prey might be determined by their swimming behavior and population density, suggesting that larval fish selectively prey on zooplankton that have a high encounter rate with the predator. The larvae did not have a negative effect on the densities of cladocerans, but fish predation altered the cladoceran community structure from the dominance of B. longirostris to that of B. fatalis. This result suggests that larval fish predation is an important factor that shifts the species composition of Bosmina in some lakes, the shift occurring in the season when fish larvae are abundant. Our results have shown that predation by the larval fish would control not only the abundance, but also the community structure of the small-sized zooplankton prey.  相似文献   

7.
Turbidity has both positive and negative effects on prey detection, by increasing or diminishing the contrast between prey and background due to the scattering of light. The positive effect of turbidity on prey contrast depends on the optical properties, scattering properties of suspended particles and the visual sensitivity of the predator. The positive effect of turbidity is pronounced for larval fish, given that their visual field is short, leaving fewer particles between them and their prey to scatter light and interfere with detection. This relationship, together with a decreased risk of predation, makes turbid environments more optimal for some species and size groups of fish (planktivores and fish larvae) and less so for others (adult piscivore fish). Thus, turbidity might have a structuring effect on a fish community. Recently it has been demonstrated that UV light might have positive effects on prey detection and consumption. How UV light might interact with different kinds of particles producing turbidity is not well documented.  相似文献   

8.
Turbidity has both positive and negative effects on prey detection, by increasing or diminishing the contrast between prey and background due to the scattering of light. The positive effect of turbidity on prey contrast depends on the optical properties, scattering properties of suspended particles and the visual sensitivity of the predator.

The positive effect of turbidity is pronounced for larval fish, given that their visual field is short, leaving fewer particles between them and their prey to scatter light and interfere with detection. This relationship, together with a decreased risk of predation, makes turbid environments more optimal for some species and size groups of fish (planktivores and fish larvae) and less so for others (adult piscivore fish). Thus, turbidity might have a structuring effect on a fish community. Recently it has been demonstrated that UV light might have positive effects on prey detection and consumption. How UV light might interact with different kinds of particles producing turbidity is not well documented.  相似文献   

9.
Todd A. Crowl 《Hydrobiologia》1989,183(2):133-140
Laboratory experiments were performed in clear and turbid water to determine the effects of prey size, orientation, and movement on the reactive distance of largemouth bass (Micropterus salmoides) when feeding on crayfish (Procambarus acutus). In clear water, the reactive distance increased linearly with an increase in prey size, and prey movement resulted in a significant increase in the reactive distance. Prey orientation (head-on versus perpendicular) did not change the reactive distances. In moderately turbid water, the reactive distance did not increase with increased prey size, and prey movement did not result in any changes in the reactive distance. The absence of any effects of prey orientation in clear water or prey movement in turbid water is inconsistent with results from studies using different species (primarily planktivorous fish). I propose that largemouth bass change their foraging tactics as prey visibility changes. When prey are highly visible (low turbidity), predators attack (react) only after prey recognition, which is based on multiple cues such as prey size (length, width) and movement. When prey are less visible (high turbidity), predators attack immediately upon initial prey sighting, which does not depend on prey size or movement.  相似文献   

10.
SUMMARY 1. Larval fish are gape-limited predators that forage on prey of specific sizes, and thus may be expected to differentially affect members of a zooplankton community, possibly altering the size-structure or species composition.
2. I used an enclosure experiment to look at the effect of predation by larval bluegill on the dynamics of two zooplankton communities, one dominated by large-bodied individuals and the other by small-bodied individuals. Enclosures containing these zooplankton received a zero, low, medium, or high density of larval bluegill predators.
3. Increasing larval density had a negative effect on zooplankton abundance and abundance declined similarly in the large-bodied and small-bodied communities.
4. Zooplankton size-structure, as estimated by the length of the average zooplankton, increased and then decreased during the experiment, decreasing faster at higher larval fish densities. When zooplankton size-structure was estimated as the length of the average cladoceran, size-structure declined in the large-bodied but not in the small-bodied community and the greatest decline in size-structure was seen in the medium and high larval density treatments.
5. Ordination of each community using multidimensional scaling (MDS) indicated that the trajectory of change in species composition differed between the presence and absence of larval fish. In both communities, the degree of response by individual taxa depended on the density of bluegill larvae. This effect on zooplankton abundance, size-structure and community composition suggests that larval fish may make an important contribution to zooplankton dynamics in many lakes and ponds.  相似文献   

11.
Food web management is a frequently used lake restoration method, which aims to reduce phytoplankton biomass by strengthening herbivorous zooplankton through reduction of planktivorous fish. However, in clay‐turbid lakes several factors may reduce the effectivity of food web management. Increasing turbidity reduces the effectivity of fish predation and weakens the link between zooplankton and phytoplankton. Therefore, the effects of fish stock manipulations may not cascade to lower trophic levels as expected. Additionally, in clay‐turbid conditions invertebrate predators may coexist in high densities with planktivorous fish and negate the effects of fish reductions. For instance, in the stratifying regions of the clay‐turbid Lake Hiidenvesi, Chaoborus flavicans is the main regulator of cladocerans and occupies the water column throughout the day, although planktivorous Osmerus eperlanus is very abundant. The coexistence of chaoborids and fish is facilitated by a metalimnetic turbidity peak, which prevents efficient predation by fish. In the shallow parts of the lake, chaoborids are absent despite high water turbidity. We suggest that, generally, the importance of invertebrate predators in relation to vertebrate predators may change along turbidity and depth gradients. The importance of fish predation is highest in shallow waters with low turbidity. When water depth increases, the importance of fish in the top‐down regulation of zooplankton declines, whereas that of chaoborids increases, the change along the depth gradient being moderate in clear‐water lakes and steep in highly turbid lakes. Thus, especially deep clay‐turbid lakes may be problematic for implementing food web management as a restoration tool.  相似文献   

12.
Filamentous algae may create anoxic, i.e. oxygen free, conditions during night and fish larvae that commonly spend their first months in the littoral may therefore be subject to anoxia. We conducted two different experiments; firstly, we measured behaviour of pike larvae (Esox lucius L.), such as frequency of prey attacks and time in vegetation, in the presence of a chemical predator cue and oxygen deficiency. In the second experimental set-up, pike larval survival was monitored in water with added macro-algal exudates (excreted from Pilayella littoralis) and a low oxygen level (3 mg l− 1). Our results showed that oxygen concentration and the chemical predator signal, caused by three-spined sticklebacks, had strong significant effects on the larval prey attacks. The prey attacks were strongly reduced at 3 mg oxygen l− 1. However, survival of the larvae was not affected by low oxygen and macro-algal exudates. Pike larvae are very tolerant to hypoxia and exudates excreted by the littoral vegetation, whereas prey attacks are strongly decreased in hypoxia when a predator is around. This may have negative consequences for pike larval growth and recruitment in eutrophicated environments.  相似文献   

13.
A series of laboratory experiments was conducted at Inhaca Island Marine Biological Station, Mozambique, in order to assess the separate effects of turbidity, prey density, substrate type, pneumatophore density, and the combined effects of turbidity with the latter three, on rate of predation by the thorn fish Terapon jarbua (Forskål, 1775) on white shrimp Penaeus indicus and brown shrimp Metapenaeus monoceros.Significant interactions between turbidity and the other three factors on shrimp predation for both prey species were detected. Regardless of prey density, increasing turbidity decreased predation on P. indicus, but not on M. monoceros, for which increasing densities reduced the protective effect of turbidity. Increasing prey density increased predation on P. indicus in clear water, and increased predation on M. monoceros in low and high, but not in intermediate turbidity or clear water. The presence of a substrate suitable for burying decreased predation on M. monoceros in clear water, but not in the turbidity levels used. In clear water, solely sandy-shell substrate afforded protection to P. indicus, while in turbid water, no substrate offered significant protection and muddy substrate even increased prey vulnerability to fish probably as a result of increased preys' locomotor activity. Raising pneumatophores density seems to lower the protective value of turbidity for both species. In clear water, only low and high structure density provided a deterrent effect on predation on P. indicus; in turbid water, intermediate and higher structure density increased predation. Increasing structural complexity reduced predation on M. monoceros linearly in clear water; but in low turbid water it increased. In high turbid waters, the increase was only significant in intermediate pneumatophore density. High structural complexities impair the pursuing capacity of fish and thus decreased predation rates. The results indicate that the effective provision of shelter of different habitats depends not only on the various environmental parameters analysed, but also on the way they interact and on the behaviour of prey and predator as well.  相似文献   

14.
The present study tests two invertebrate diets for pike larvae reared in floating cages. One diet contained mainly copepods and cladocerans such as Eucyclops serrulatus and Bosmina longirostris , while the other diet contained Eucyclops serrulatus together with a small proportion of large Chydoridae and chironomid larvae. During the first days of the experiment, the amount of food distributed to the larvae was insufficient (9–17.1 prey per larva and per day) and led to an increase in the mortality. Triacylglycerol contents of fry were low and dietary fatty acids were either catabolised or, concerning PUFA such as 22:6(n-3), incorporated into phospholipids. From day 13 to the end of the study (day 22), the most abundant diets distributed were accompanied by an increase in triacylglycerol PUFA and in triacylglycerol contents of larvae. During the same period weight and length growth were better for larvae reared on the copepod plus Chydoridae and chironomid diet, than for larvae reared on the copepod and Bosmina diet. The use of a lipid condition index based on the triacylglycerol/sterol ratio suggested that Chydoridae and chironomids positively influenced the growth and nutritional condition of larvae. The effects of prey type in terms of PUFA composition on pike larvae are discussed.  相似文献   

15.
Large common carp (Cyprinus carpio >30 cm) wereexcluded from a turbid, eutrophic coastal marsh of Lake Ontario with theconstruction of a fishway at the outlet. The marsh was sampledintensively for 2 seasons prior to (1993, 1994) and following (1997,1998) carp exclusion to study changes in water quality and shifts incommunity structure of phytoplankton and zooplankton. Samples werecollected from May to September in three habitats: open water, vegetated(cattail beds) and sewage lagoon. In the first year after carpexclusion, mean seasonal water turbidity decreased at all sites by49–80%; this was accompanied by growth of submergentplants in shallow, sheltered areas including the vicinity of cattails atthe vegetated site. This drop in turbidity was not significant in thesecond year after exclusion at the open water and lagoon sites, withturbidity levels declining by only 26–54% of1993–1994 values; only the vegetated site showed a sustaineddecrease in turbidity and persistent growth of submergent plants. At thevegetated site, increased clarity was concurrent with a significantreduction in edible algal biomass and an increased representation oflarge zooplankton grazers and substrate-associated cladocerans. At theopen water site, a spring clear-water phase was evident during the firstyear of exclusion and this coincided with the unusual appearance of alarge population of Daphnia. Compared to the other sites, thelagoon remained relatively turbid throughout the study. Results of thisstudy indicate that the response of lower trophic levels tobiomanipulation was variable from site-to-site and contributed to theco-existence of two alternative states in the marsh. In vegetated areas,water clarity was maintained by a positive feedback system betweenzooplankton and submergent macrophytes in the first 2 years followingexclusion. We suggest that both benthivore removal (to reducebioturbation) and planktivore reductions (to produce top down effects)were required to produce clear water and allow submersed macrophytegrowth. Although carp removal likely contributed to a 45%reduction in turbidity, an unusual climactic event in 1997, resulting indelayed fish spawning in the marsh, temporarily reduced zooplanktivoryand favoured zooplankton grazing-induced water clarity improvements.  相似文献   

16.
1. Visually foraging fish typically exclude large zooplankton from clear‐water lakes and reservoirs. Do fish have the same effect in turbid waters, or does turbidity provide a refuge from visual predation? 2. To test the hypothesis that fish exclude large zooplankton species from turbid sites, I searched for populations of medium or large Daphnia species in turbid, fish‐containing reservoirs of south‐central Oklahoma and north‐central Texas, U.S.A., and surveyed the literature for accounts of Daphnia species in turbid habitats worldwide. 3. Only small Daphnia species and the exuberantly spined Daphnia lumholtzi were detected in the turbid reservoirs. The Daphnia species in the reservoirs are smaller than other Daphnia species that occur in the area but were not detected. An extensive survey of the literature suggests that large Daphnia may be found in the lakes of extreme turbidity [Secchi disk depth (SD) < 0.2 m] but that only small and spiny Daphnia are likely to occur in more typical turbid locations (1.0 m > SD > 0.2 m) unless some additional factor reduces the influence of fish predation in such sites. 4. The field samples from Texas and Oklahoma together with the literature review suggest that the effect of visually foraging planktivorous fish on the size structure of turbid‐water zooplankton communities may often be as strong or even stronger than the effect of fish on clear‐water zooplankton communities.  相似文献   

17.
Adult fish may affect the growth and survival of conspecific larvae through a variety of pathways, including negative interactions via competition for shared limiting resources or via predation (i.e., cannibalism), and positive interactions due to the consumption of larval predators and via resource enhancement (i.e., presence of adults increases availability of larval prey). To examine the overall effect of adult bluegill sunfish (Lepomis macrochirus) on larval bluegill, we conducted a field experiment in which we manipulated adult densities and quantified larval growth and survival, prey abundance, invertebrate predator abundance, and cannibalism. The presence of adult bluegill had a negative effect on final larval mass. This response was consistent with competition for zooplankton prey. Adult bluegill reduced the abundance of large zooplankton (e.g., Chaoborus and Daphnia), which were the dominant prey of bluegill larvae in the absence of adults. Larvae in the no-adult treatment also had significantly more prey in their stomachs compared to larvae in the presence of adults. Larval survival was maximized at intermediate adult densities and the overall production of larvae peaked at intermediate adult densities. The higher larval survival at intermediate adult densities is attributed to a reduction in invertebrate predators in treatments with adult bluegill; invertebrate predators experienced an 80% reduction in the presence of adult fish. Decreased larval survival at the highest adult density was not due to resource limitation and may be due to cannibalism, which was not directly observed in our study, but has been observed in other studies.  相似文献   

18.
The prey selection of larvae of three common littoral fish species (pike, Esox lucius; roach,Rutilus rutilus; and three-spined stickleback, Gasterosteus aculeatus) was studied experimentally in the laboratory by using natural zooplankton assemblages. Zooplankton prey was offered at four different concentrations to study the functional responses of the planktivores. The diets of pike and sticklebacks were formed mainly of copepod juveniles and adults, which dominated the prey communities, although sticklebacks ate also cladocerans. The diet of roach larvae consisted of rotifers, cladocerans and copepods, without prey selection, in equal proportions indicating a more omnivorous diet. All fish larvae were able to feed selectively although in sticklebacks prey selection was less pronounced. Pike and roach larvae preferred large prey to smaller prey types. Patterns of prey selection are discussed in the context of size-selection theory and apparent vs. true selection.  相似文献   

19.
20.
Survival of 0+ year pike Esox lucius (20–31 mm L T) was evaluated over the first week following stocking in ponds (16 m2) depending on water transparencies (low and high), habitat complexity (low and high) and food availability (zooplankton). A multiple regression analysis showed that survival, essentially as a result of cannibalism, decreased with increasing size heterogeneity of pike, and the decrease was steeper when no food was available. Survival was equal in clear water and water containing copper chlorophyllin (chlorophyll), and slightly higher in complex than in simple habitats, but only when alternative prey availability was low. Conversely, growth in water containing chlorophyll was slightly faster than in clear water. This suggests that initial size heterogeneity is the prevailing factor controlling mortality when stocking 0+ year pike almost irrespective of the stocking environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号