首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mimesis is a relatively widespread phenomenon among reef fish, but the ontogenetic processes relevant for mimetic associations in fish are still poorly understood. In the present study, the allometric growth of two allopatric leaf-mimetic species of ephippid fishes, Chaetodipterus faber from the Atlantic and Platax orbicularis from the Indo-Pacific, was analyzed using ten morphological variables. The development of fins was considered owing to the importance of these structures for mimetic behaviors during early life stages. Despite the anatomical and behavioral similarities in both juvenile and adult stages, C. faber and P. orbicularis showed distinct patterns of growth. The overall shape of C. faber transforms from a rounded-shape in mimetic juveniles to a lengthened profile in adults, while in P. orbicularis, juveniles present an oblong profile including dorsal and anal fins, with relative fin size diminishing while the overall profile grows rounder in adults. Although the two species are closely-related, the present results suggest that growth patterns in C. faber and P. orbicularis are different, and are probably independent events in ephippids that have resulted from similar selective processes.  相似文献   

2.
Biomechanical models of feeding mechanisms elucidate how animals capture food in the wild, which, in turn, expands our understanding of their fundamental trophic niche. However, little attention has been given to modeling the protrusible upper jaw apparatus that characterizes many teleost species. We expanded existing biomechanical models to include upper jaw forces using a generalist butterflyfish, Chaetodon trichrous (Chaetodontidae) that produces substantial upper jaw protrusion when feeding on midwater and benthic prey. Laboratory feeding trials for C. trichrous were recorded using high-speed digital imaging; from these sequences we quantified feeding performance parameters to use as inputs for the biomechanical model. According to the model outputs, the upper jaw makes a substantial contribution to the overall forces produced during mouth closing in C. trichrous. Thus, biomechanical models that only consider lower jaw closing forces will underestimate total bite force for this and likely other teleost species. We also quantified and subsequently modeled feeding events for C. trichrous consuming prey from the water column versus picking attached prey from the substrate to investigate whether there is a functional trade-off between prey capture modes. We found that individuals of C. trichrous alter their feeding behavior when consuming different prey types by changing the timing and magnitude of upper and lower jaw movements and that this behavioral modification will affect the forces produced by the jaws during prey capture by dynamically altering the lever mechanics of the jaws. In fact, the slower, lower magnitude movements produced during picking-based prey capture should produce a more forceful bite, which will facilitate feeding on benthic attached prey items, such as corals. Similarities between butterflyfishes and other teleost lineages that also employ picking-based prey capture suggest that a suite of key behavioral and morphological innovations enhances feeding success for benthic attached prey items.  相似文献   

3.
《Animal behaviour》1986,34(4):1087-1098
By feeding male Drosophila subobscura with stained yeast before courtship it was shown that the males transfer regurgitated crop contents to females during courtship. The female takes the drop of food with her proboscis directly from the male's extended proboscis and the male then attempts to copulate. The food passes into the female crop or ventriculus and females that take the drop have higher fecundity on a low-nutrient medium than those females denied access to the drop. ‘Starved’ females take the drop of food from the male more frequently than well-fed females and a comparison of crop sizes revealed that flies collected from the wild resemble the starved laboratory groups. Similar courtship feeding behaviours are described for other members of the obscura species group. Within the willistoni species group, male D. nebulosa deposit an anal drop containing gut contents on the substrate in front of the female during courtship and females consume this drop. A review of the literature suggests that various forms of courtship feeding may be widespread within the genus but that the extent of feeding by males of different species may vary.  相似文献   

4.
In tropical rainforests, termites constitute an important part of the soil fauna biomass, and as for other soil arthropods, variations in soil composition create opportunities for niche partitioning. The aim of this study was twofold: first, we tested whether soil-feeding termite species differ in the foraging substrate; second, we investigated whether soil-feeding termites select their foraging sites to enhance nutrients intake. To do so, we collected termites and analysed the composition and structure of their feeding substrates. Although Anoplotermes-group members are all considered soil-feeders, our results show that some species specifically feed on abandoned termite nests and very rotten wood, and that this substrate selection is correlated with previous stable isotope analyses, suggesting that one component of niche differentiation among species is substrate selection. Our results show that the composition and structure of bare soils on which different termite species foraged do not differ, suggesting that there is no species specialization for a particular type of bare soil. Finally, the bare soil on which termites forage does not differ from random soil samples. Overall, our results suggest that few species of the Anoplotermes-group are specialized toward substrates rich in organic matter, but that the vast majority forage on soil independently of its structural and chemical composition, being ecologically equivalent for this factor.  相似文献   

5.
Tentacles armed with stinging cells (cnidocytes) are a defining trait of the cnidarians, a phylum that includes sea anemones, corals, jellyfish, and hydras. While cnidarian tentacles are generally characterized as structures evolved for feeding and defense, significant variation exists between the tentacles of different species, and within the same species across different life stages and/or body regions. Such diversity suggests cryptic distinctions exist in tentacle function. In this paper, we use confocal and transmission electron microscopy to contrast the structure and development of tentacles in the moon jellyfish, Aurelia species 1. We show that polyp oral tentacles and medusa marginal tentacles display markedly different cellular and muscular architecture, as well as distinct patterns of cellular proliferation during growth. Many structural differences between these tentacle types may reflect biomechanical solutions to different feeding strategies, although further work would be required for a precise mechanistic understanding. However, differences in cell proliferation dynamics suggests that the two tentacle forms lack a conserved mechanism of development, challenging the textbook-notion that cnidarian tentacles can be homologized into a conserved bauplan.  相似文献   

6.
Limited information is available regarding habitat use and host species of the haematophagous feeding stage of the anadromous sea lamprey Petromyzon marinus Linnaeus, 1758, due to the difficulties in capturing feeding lampreys and wounded hosts. The aim of this study is to provide new records of P. marinus feeding on host species and to review the available information in this regard to better know the ecology and distribution of sea lamprey during this stage. Thus, new records of P. marinus individuals or wounds on 23 species of fishes and cetaceans are provided. Nineteen of these species were described for the first time as hosts of P. marinus. As a result, an updated list of 54 host species is provided. They belong to diverse taxonomic groups and exhibit different morphological, physiological and ecological patterns. The attacks were located from fresh and brackish waters to open sea. The results suggest that the marine distribution of P. marinus is mainly related to coastal areas with part of the population widely dispersed in offshore areas. This remarkable capacity of inhabiting a broad range of aquatic ecosystems and exploiting different host species could have favoured the dispersal ability and evolutionary success of sea lamprey.  相似文献   

7.
We investigated macroinvertebrate abundance and functional feeding groups colonising experimentally-positioned woody substrates of different species in streams with three different riparian vegetation types. Native Eucalyptus forest formed a dense closed canopy over our streams; introduced (exotic, alien) pine plantation forest did not fully shade the streams, and grassland streams were completely open, although with woody riparian vegetation well upstream of our sites. Macroinvertebrate assemblages varied taxonomically and functionally with both wood species and riparian vegetation composition. Two specialist feeding groups responded clearly to riparian vegetation: wood gougers were most common in forested streams, and algal grazers in more open streams. Gougers colonised native Eucalyptus wood in preference to alien species. Other feeding groups responses showed complex interactions between vegetation and wood type. Our results indicate the importance of sampling appropriate substrates when assessing questions of this type – if seeking shifts in functional organisation, the substrates on which the feeding groups of interest occur must be sampled. The composition of the riparian strip may influence xylophilous communities as much as the structure (i.e. whether closed or open).  相似文献   

8.

Background

Scavenger guilds are composed of a variety of species, co-existing in the same habitat and sharing the same niche in the food web. Niche partitioning among them can manifest in different feeding strategies, e.g. during carcass feeding. In the bentho-pelagic realm of the Southern Ocean, scavenging amphipods (Lysianassoidea) are ubiquitous and occupy a central role in decomposition processes. Here we address the question whether scavenging lysianassoid amphipods employ different feeding strategies during carcass feeding, and whether synergistic feeding activities may influence carcass decomposition. To this end, we compared the relatively large species Waldeckia obesa with the small species Cheirimedon femoratus, Hippomedon kergueleni, and Orchomenella rotundifrons during fish carcass feeding (Notothenia spp.). The experimental approach combined ex situ feeding experiments, behavioural observations, and scanning electron microscopic analyses of mandibles. Furthermore, we aimed to detect ecological drivers for distribution patterns of scavenging amphipods in the Antarctic coastal ecosystems of Potter Cove. In Potter Cove, the climate-driven rapid retreat of the Fourcade Glacier is causing various environmental changes including the provision of new marine habitats to colonise. While in the newly ice-free areas fish are rare, macroalgae have already colonised hard substrates. Assuming that a temporal dietary switch may increase the colonisation success of the most abundant lysianassoids C. femoratus and H. kergueleni, we aimed to determine their consumption rates (g food x g amphipods?1 x day?1) and preferences of macroalgae and fish.

Results

We detected two functional groups with different feeding strategies among scavenging amphipods during carcass feeding: carcass ‘opener’ and ‘squeezer’. Synergistic effects between these groups were not statistically verified under the conditions tested. C. femoratus switched its diet when fish was not available by consuming macroalgae (about 0.2 day?1) but preferred fish by feeding up to 80% of its own mass daily. Contrary, H. kergueleni rejected macroalgae entirely and consumed fish with a maximal rate of 0.8 day?1.

Conclusion

This study reveals functional groups in scavenging shallow-water amphipods and provides new information on coastal intraguild niche partitioning. We conclude that the dietary flexibility of C. femoratus is a potential ecological driver and central to its success in the colonisation of newly available ice-free Antarctic coastal habitats.
  相似文献   

9.
The Norwegian spring-spawning (NSS) herring (Clupea harengus), blue whiting (Micromesistius poutassou) and Northeast Atlantic (NEA) mackerel (Scomber scombrus) are extremely abundant pelagic planktivores that feed in the Norwegian Sea (NS) during spring and summer. This study investigated the feeding ecology and diet composition of these commercially important fish stocks on the basis of biological data, including an extensive set of stomach samples in combination with hydrographical data, zooplankton samples and acoustic abundance data from 12 stock monitoring surveys carried out in 2005–2010. Mackerel were absent during the spring, but had generally high feeding overlap with herring in the summer, with a diet mainly based on calanoid copepods, especially Calanus finmarchicus, as well as a similar diet width. Stomach fullness in herring diminished from spring to summer and feeding incidence was lower than that of mackerel in summer. However, stomach fullness did not differ between the two species, indicating that herring maintain an equally efficient pattern of feeding as mackerel in summer, but on a diet that is less dominated by copepods and is more reliant on larger prey. Blue whiting tended to have a low dietary overlap with mackerel and herring, with larger prey such as euphausiids and amphipods dominating, and stomach fullness and feeding incidence increasing with length. For all the species, feeding incidence increased with decreasing temperature, and for mackerel so did stomach fullness, indicating that feeding activity is highest in areas associated with colder water masses. Significant annual effects on diet composition and feeding-related variables suggested that the three species are able to adapt to different food and environmental conditions. These annual effects are likely to have an important impact on the predation pressure on different plankton groups and the carrying capacity of individual systems, and emphasise the importance of regular monitoring of pelagic fish diets.  相似文献   

10.
1. Adult feeding strongly increases longevity and fecundity in parasitic wasps. Searching for food resources involves costs; therefore, it is advantageous to be able to feed on the breeding substrate.
2. Cohorts of females of four drosophilid parasitoid species were assigned to different food treatments including starvation. Fat contents were measured and compared after 5 days. In this way the nutritional value of breeding substrates to females could be expressed in terms of energy reserves.
3. Three of the four species tested fed on natural breeding substrates. A fourth species did not produce evidence of such feeding. However, this species fed on honey when fat reserves were low.
4. Feeding is related to: (i) the species' natural breeding substrate, (ii) the energy allocation and lifetime expectancy of the female, and (iii) time of the season.
5. Because feeding strongly influences longevity and fecundity, it is argued that the different feeding strategies found may affect competitive relationships between these drosophilid parasitoid species.  相似文献   

11.
The Cape Fynbos region of South Africa, a global biodiversity hotspot, hosted a diverse large mammal fauna till shortly after permanent European settlement (1652). How these animals survived in this exceptionally nutrient-poor environment is puzzling and it is generally believed that they restricted their movements to the more fertile shale areas. We tested the hypothesis that large herbivores avoid nutrient-poor limestone and sandstone fynbos shrublands in favour of shale-derived renosterveld vegetation using strontium (Sr) isotope analysis. If this technique could reconstruct the preferred feeding habitats of the contemporary fauna, it might also be useful for reconstructing the preferred feeding grounds of an extinct fauna. Using the assumption that small rodents have spatially restricted foraging activities, we determined the 87Sr/86Sr isotope ratios of rodent teeth to establish the isotopic signal characteristic of the different geological substrates in the area. We then analysed 87Sr/86Sr isotope ratios in the bones of a number of different large herbivores found in De Hoop Nature Reserve using laser ablation multi-collector inductively coupled plasma mass spectrometry. These values were compared to the bioavailable (rodent) values on the respective geological substrates. The technique identified differences in feeding substrate selection between different species and groups of the same species. The results also showed that shale renosterveld shrubland is not the exclusive source of nutrition for the large herbivores. Strikingly different isotope ratios among individuals in some populations pointed to significant dispersal events from distant sources. However, we were unable to pinpoint the exact feeding areas using Sr isotope analysis probably because some animals use a combination of substrates for feeding and because the geology of the study area is complex with graded isotope signals. We suggest that this technique is a valuable additional tool for exploring large mammal foraging behaviour on habitats associated with contrasting and less complex geology.  相似文献   

12.
Photoperiod plays an important role in controlling the feeding rhythmicity of juvenile fishes. Studies on feeding and spatial distribution pattern were made on wild populations of different juvenile stages of Chitala chitala, a threatened species in India. Results indicated that the prey preference of the fish increased with advancement of developmental stages. Moreover, nocturnal feeding was found to be more significant in the juveniles. Thus, feeding pattern of the different juvenile stages of Chitala is characterized by voracious predatory activity at dark condition. The vector controlling potential of the juvenile stages of Chitala specifically on mosquito and chironomid larvae was also significant. Studies on the distribution pattern of juvenile fishes were made with various combinations, viz. with or without food, in open surface and structured environments and observed during day as well as in dark regime. The juvenile distribution was clumped in open and closed environment during day time to minimize the chances of predation and juvenile mortality irrespective of food availability. A random distribution of juvenile fishes seemed to be advantageous for increasing feeding activity as observed in the experiment. This study is a pointer to the survival strategy of the larvae of C. chitala in their natural habitat which may be important from the perspective of conservation.  相似文献   

13.
Foraminifera are ubiquitously distributed in marine habitats, playing a major role in marine sediment carbon sequestration and the nitrogen cycle. They exhibit a wide diversity of feeding and behavioural strategies (heterotrophy, autotrophy and mixotrophy), including species with the ability of sequestering intact functional chloroplasts from their microalgal food source (kleptoplastidy), resulting in a mixotrophic lifestyle. The mechanisms by which kleptoplasts are integrated and kept functional inside foraminiferal cytosol are poorly known. In our study, we investigated relationships between feeding strategies, kleptoplast spatial distribution and photosynthetic functionality in two shallow-water benthic foraminifera (Haynesina germanica and Elphidium williamsoni), both species feeding on benthic diatoms. We used a combination of observations of foraminiferal feeding behaviour, test morphology, cytological TEM-based observations and HPLC pigment analysis, with non-destructive, single-cell level imaging of kleptoplast spatial distribution and PSII quantum efficiency. The two species showed different feeding strategies, with H. germanica removing diatom content at the foraminifer’s apertural region and E. williamsoni on the dorsal site. All E. williamsoni parameters showed that this species has higher autotrophic capacity albeit both feeding on benthic diatoms. This might represent two different stages in the evolutionary process of establishing a permanent symbiotic relationship, or may reflect different trophic strategies.Subject terms: Microbial ecology, Microbial ecology, Microbiology  相似文献   

14.
Human activities modify environmental conditions, altering ecological interactions that can contribute to the increasing number of vector-borne pathogens affecting both human and wildlife populations. There is a dearth of knowledge about mosquitoes feeding preferences and their role as potential vectors of haemosporidian parasites, particularly in modified habitats. During 2013–2014 we sampled mosquitoes in five different land use types within a cloud forest matrix. From a total of 4107 adult mosquitoes, 90 were engorged. We extracted DNA from mosquito blood-meals, abdomens, and thoraxes, which belonged to seven different species. Seventeen specimens were positive for avian Plasmodium parasites. We were able to identify the blood-meal source of 10 mosquitoes, the identified vertebrate species were: Homo sapiens (Human), Sturnira hondurensis (Bat), and Bos taurus (Cow). Our results show that Culex restuans is positive for avian malaria and it is feeding on both humans and domestic animals at urban and peri-urban habitat types, where it is also an abundant species throughout the year. Furthermore, Aedes quadrivittatus, also positive for avian malaria, is feeding on humans in the well-preserved cloud forest, where this mosquito species is highly abundant. This study is the first in Mexico to provide reference data showing generalist mosquito feeding preferences and presence of avian Plasmodium at locations with different land use types.  相似文献   

15.
Mixed-species flocks of birds were observed between the end of July and late August, principally at Daksum, Kashmir, 2250 m. The species composition and the numbers of individuals in flocks changed during this period; these changes are attributed to resident territory holders and migrant birds joining the flocks. Within the flock different species showed some differences in foraging stations, but nevertheless often appeared to be taking the same type of food. Participant species had different roles in the flock organization. Behaviours involving the entire mixed-flock acting as a unit included path reversal after encounters with avian predators and a tendency to follow set routes. The mixed- species flock exerted an attractive influence on aggregations of species not normally participant.
Similarities between the flocks described in this study and those recorded by other workers are discussed. While different species may derive different benefits from joining these flocks, advantages that could benefit some or all participants include the receipt of information on good feeding areas in an unfamiliar locality, the avoidance of time wasted on feeding on substrates which have been very recently harvested, the beating effect to increase prey availability, and enhanced safety from predators, perhaps through differential alertness of different species and specialized anti-predator behaviour.  相似文献   

16.
The Magellan region is a unique peri-Antarctic ecosystem due to its geographical position. However, the knowledge about the distribution and feeding ecology of fish larvae is scarce. Since this area is characterized by low phytoplankton biomass, we hypothesize that marine fish larvae display different foraging tactics in order to reduce diet overlap. During austral spring 2009–2010, two oceanographic cruises were carried out along southern Patagonia (50–56°S). Larval fish distribution and feeding of the two most widely distributed species were studied, the smelt Bathylagichthys parini (Bathylagidae) and black southern cod Patagonotothen tessellata (Nototheniidae). Larvae of B. parini showed a lower increase in the mouth gape at size, primarily feeding during daytime (higher feeding incidence during the day) mostly on nonmotile prey (invertebrate and copepod eggs, appendicularian fecal pellets, diatoms). They showed no increase in feeding success (number, total volume of prey per gut and prey width) with increasing larval size, and the niche breadth was independent of larval size. Larvae of P. tessellata showed a large mouth gape at size, which may partially explain the predation on motile prey like large calanoid copepods (C. simillimus) and copepodites. They are nocturnal feeders (higher feeding incidence during night) and are exclusively carnivorous, feeding on larger prey as the larvae grow. Nonetheless, niche breadth was independent of larval size. Diet overlap was important only in individuals with smaller mouth gape (<890 μm) and diminished as larvae (and correspondingly their jaw) grow. In conclusion, in the peri-Antarctic Magellan region, fish larvae of two species display different foraging tactics, reducing their trophic overlap throughout their development.  相似文献   

17.
This study examines the kinematics and morphology of the feeding apparatus of two geoemydid chelonians, the Malayan (Amboina) box turtle (Cuora amboinensis) and the yellow-margined box turtle (Cuora flavomarginata). Both species are able to feed on land as well as in water. Feeding patterns were analysed by high-speed cinematography. The main focus of the present study is on the terrestrial feeding strategies in both Asian box turtles, because feeding on land has probably evolved de novo within the ancestrally aquatic genus Cuora. During terrestrial feeding (analysed for both species), the initial food prehension is always done by the jaws, whereas intraoral food transport and pharyngeal packing actions are tongue-based. The food uptake modes in Cuoras differ considerably from those described for purely terrestrial turtles. Lingual food prehension is typical of all tortoises (Testudinidae), but is absent in C. amboinensis and C. flavomarginata. A previous study on Terrapene carolina shows that this emydid turtle protrudes the tongue during ingestion on land, but that the first contact with the food item occurs by the jaws. Both Asian box turtles investigated here have highly movable, fleshy tongues; nonetheless, the hyolingual complex remains permanently retracted during initial prey capture. In aquatic feeding (analysed for C. amboinensis only), the prey is captured by a fast forward strike of the head (ram feeding). As opposed to ingestion on land, in the underwater grasp the hyoid protracts prior to jaw opening. The head morphology of the investigated species differs. In contrast to the Malayan box turtle, C. flavomarginata exhibits a more complexly structured dorsal lingual epithelium, a considerable palatal vault, weaker jaw adductor muscles and a simplified trochlear complex. The differences in the hyolingual morphology reflect the kinematic patterns of the terrestrial feeding transport.  相似文献   

18.
The African lesser bushbaby, Galago moholi, is described as a food specialist, feeding exclusively on small arthropods and gum primarily from Acacia karroo trees. We studied a population of G. moholi in a highly fragmented habitat in the southernmost part of its natural distributional range in South Africa. In this habitat, we opportunistically observed bushbabies feeding on fruits of the winter fruiting tree, Pappea capensis. Plot counts of tree composition revealed that although the dominant tree species in the area belonged to the genus Acacia, A. karroo trees were widely absent and gum could only be found in small quantities on other Acacia species. The analysis of P. capensis fruits showed high levels of protein, fat, and energy content, making the fruits a potentially important food source for G. moholi during winter when insect availability is low. Our observation is the first documented case of fruit feeding in G. moholi, suggesting that the species is not a food specialist as previously reported but can supplement its diet with fruit when available.  相似文献   

19.
20.
We measured changes in the feeding rate and food absorption efficiency of two suspension feeding bivalves, cross-trasplanted between habitats with special emphasis on their capacity for differential absorption of biochemical components from their food supply. Mulinia edulis were moved from the intertidal zone to the subtidal zone, and Mytilus chilensis from the subtidal to the intertidal zone for a period of 7 days, and then compared with animal that had not been transplanted. Experimentally prepared diets similar to those available in the two different environments were offered to the bivalves, and their rates of feeding and differential uptake of biochemical components were determined and statistically compared. The two species did not achieve complete acclimation of their feeding behaviour during the transplant period since the highest ingestion rates for biochemical components occurred under dietary conditions that reflected their habitats of origin. Absorption efficiency showed greater acclimation than the other physiological parameters measured, indicating the capacity of these species to modulate their enzymatic-digestive activity depending on food composition. We conclude that both Mytilus and Mulinia have a certain degree of physiological plasticity in their feeding behaviour and assimilatory balance of biochemical components, being greater in Mytilus. When both species encounter ambient food conditions characteristic of their normal habitats, they show maximum values of food absorption, while under conditions where their typical diets are exchanged (Mytilus in intertidal and Mulinia in subtidal), the energy absorbed declines in each, but in ways very different between the two species. Thus, Mytilus exposed to high concentrations of low quality seston reduced the energy absorbed by 31.7% compared to its normal habitat, while Mulinia exposed to low concentrations of high-quality food reduced their energy absorption by 64%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号