首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Kinetic Characterization of Ca2+ Transport in Synaptic Membranes   总被引:2,自引:0,他引:2  
Lysed synaptosomal membranes were prepared from brain cortices of HA/ICR Swiss mice, and the ATP-stimulated Ca2+ uptake, Ca2+-stimulated Mg2+-dependent ATPase activity, and the Ca2+-stimulated acyl phosphorylation of these membranes were studied. The Km values for free calcium concentrations ([Ca2+]f) for these processes were 0.50 microM, 0.40 microM, and 0.31 microM, respectively. Two kinetically distinct binding sites for ATP were observed for the ATP-stimulated Ca2+ uptake and the Ca2+-stimulated Mg2+-ATPase activity. The high-affinity Km values for ATP for these two processes were 16.3 microM and 28 microM, respectively. These results indicate that the processes studied operate in similar physiological concentration ranges for the substrates [Ca2+]f and ATP under identical assay conditions and, further, that these processes may be functionally coupled in the membrane.  相似文献   

2.
Plasma membrane vesicles of Ehrlich ascites carcinoma cells have been isolated to a high degree of purity. In the presence of Mg2+, the plasma membrane preparation exhibits a Ca2+-dependent ATPase activity of 2 mumol Pi per h per mg protein. It is suggested that this (Ca2+ + Mg2+)-ATPase activity is related to the measured Ca2+ transport which was characterized by Km values for ATP and Ca2+ of 44 +/- 9 microM and 0.25 +/- 0.10 microM, respectively. Phosphorylation of plasma membranes with [gamma-32P]ATP and analysis of the radioactive species by polyacrylamide gel electrophoresis revealed a Ca2+-dependent hydroxylamine-sensitive phosphoprotein with a molecular mass of 135 kDa. Molecular mass and other data differentiate this phosphoprotein from the catalytic subunit of (Na+ + K+)-ATPase and from the catalytic subunit of (Ca2+ + Mg2+)-ATPase of endoplasmic reticulum. It is suggested that the 135 kDa phosphoprotein represents the phosphorylated catalytic subunit of the (Ca2+ + Mg2+)-ATPase of the plasma membrane of Ehrlich ascites carcinoma cells. This finding is discussed in relation to previous attempts to identify a Ca2+-pump in plasma membranes isolated from nucleated cells.  相似文献   

3.
In Paramecium, no Ca2(+)-ATPases with the properties of Ca2+ pumps have been identified. Here we report a pellicle associated Ca2(+)-ATPase activity and a corresponding phosphoprotein intermediate characteristic of a pump. The Ca2(+)-ATPase activity requires 3 mM Mg for optimal Ca2+ stimulation (KCa = 90 nM) and is specific for ATP as substrate (Km = 75 microM). Vanadate and calmidazolium inhibit Ca2(+)-stimulated activity with an EC50 of about 2 microM and 0.5 microM, respectively. Likewise, 10 microM trifluoperazine inhibits 80% of Ca2(+)-ATPase activity, but bovine calmodulin fails to stimulate. The Ca2(+)-ATPase is not inhibited by sodium azide (10 mM), oligomycin (10 micrograms/ml) or ouabain (0.2 mM). Incubation of pellicles with [gamma-32P]ATP specifically labels a 133 kDa protein in a Ca2(+)-dependent, hydroxylamine-sensitive manner, and the level of phosphorylation is increased by 100 microM La3+. Phosphorylation of an endoplasmic reticulum-enriched fraction labels a Ca2(+)-dependent protein different from the pellicle protein, being lower in molecular mass and unaffected by La3+. Ca2+ uptake by the alveolar sacs, integral components of the pellicle membrane complex, is poorly coupled to Ca2(+)-stimulated ATP hydrolysis (Ca2+ transported/ATP hydrolysed less than 0.2) and is much less sensitive to vanadate inhibition (EC50 approx. 20 microM) compared to the total Ca2(+)-ATPase activity. Therefore, the majority of the Ca2(+)-ATPase activity is likely to be plasma membrane associated.  相似文献   

4.
To probe the structure-function relationships of proteins present in the endoplasmic reticulum-like intracellular membranes of human blood platelets a panel of monoclonal antibodies have been raised, using as immunogen highly purified platelet intracellular membrane vesicles isolated by continuous flow electrophoresis [Menashi, Weintroub & Crawford (1981) J. Biol. Chem. 256, 4095-4101]. Four of these antibodies recognize a single 100 kDa polypeptide in the platelet membrane by immunoblotting. One antibody PL/IM 430 (of IgG1 subclass) inhibited (approximately 70%) the energy-dependent uptake of Ca2+ into the vesicles without affecting the Ca2+ +Mg2+-ATPase activity or the protein phosphorylation previously shown to proceed concomitantly with Ca2+ sequestration [Hack, Croset & Crawford (1986) Biochem. J. 233, 661-668]. The inhibition is independent of ATP concentration over a range 0-2 mM-ATP but shows dose-dependency for external [Ca2+] with maximum inhibition of Ca2+ translocation at concentrations of Ca2+ greater than 500 nM. This capacity of the antibody PL/IM 430 functionally to dislocate components of the intracellular membrane Ca2+ pump complex may have value in structural studies.  相似文献   

5.
The ATP production of human erythrocytes in the steady state (approximately 2 mmoles . 1 cells-1 . h-1, 37 degrees C, pHi 7.2) is maintained by glycolysis and the ATP consumption is essentially limited to the cell membrane. About 25% of the ATP consumption is used for ion transport ATPases. The bulk of the ATP consuming processes in intact erythrocytes remains poorly understood. "Isotonic" erythrocyte membranes prepared under approximate intracellular conditions after freeze-thaw hemolysis have high (Ca2+, Mg2+)-ATPase activities (80% of the total membrane ATPase activity). There is a great discrepancy between the high capacity of the (Ca2+, Mg2+)-ATPase in isotonic membranes and the actual activity in the intact cell. The (Ca2+, Mg2+)-ATPase of isotonic membranes has a "high" Ca2+-affinity (Ka less than 0.5 microM) and a "low" Mg-ATP affinity (Km approximately 760 microM). This state of (Ca2+, Mg2+)-ATPase is caused by the association of calmodulin and 30000 Dalton polypeptides (ATP affinity modulator protein). Hypotonic washings of isotonic membranes result in a loss of the 30 kD polypeptides. EGTA (0.5 mM) extracts derived from isotonic membranes contain the 30 kD modulator protein and restore the properties of the (Ca2+, Mg2+)-ATPase of hypotonic membrane preparations to the isotonic characteristics. The Mg-ATP affinity modulator protein is assumed to form a complex with calmodulin and (Ca2+, Mg2+)-ATPase.  相似文献   

6.
In Madin-Darby canine kidney (MDCK) cells, effect of NPC-15199 on intracellular Ca2+ concentration ([Ca2+]i) was investigated by using fura-2. NPC-15199 (100-1000 microM) caused a rapid and sustained increase of [Ca2+]i in a concentration-dependent manner (EC50=500 microM). NPC-15199-induced [Ca2+]i rise was prevented by 70% by removal of extracellular Ca2+, but was not changed by dihydropyridines, verapamil and diltiazem. In Ca2+-free medium, carbonylcyanide m-chlorophenylhydrazone (CCCP; 2 microM), a mitochondrial uncoupler, and thapsigargin (1 microM), an inhibitor of the endoplasmic reticulum (ER) Ca2(+)-ATPase, caused a monophasic [Ca2+]i rise, respectively, after which the increasing effect of NPC-15199 (1 mM) on [Ca2+]i was substantially attenuated; also, pretreatment with NPC-15199 abolished CCCP- and thapsigargin-induced [Ca2+]i rises. U73122, an inhibitor of phospholipase C, [corrected] abolished 10 microM ATP (but not 1 mM NPC-15199)-induced [Ca2+]i rise. These results suggest that NPC-15199 rapidly increases [Ca2+]i by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release via as yet unidentified mechanism(s).  相似文献   

7.
Jan CR 《Life sciences》2005,77(5):589-599
In Madin-Darby canine kidney (MDCK) cells, the effect of p-chloroamphetamine, a neurotoxin that depletes intracellular serotonin, on intracellular Ca2+ concentration ([Ca2+]i) and viability was measured by using the Ca2+-sensitive fluorescent dye fura-2 and the viability detecting fluorescent dye tetrazolium. p-Chloroamphetamine (> or = 10 microM) caused a rapid rise of [Ca2+]i in a concentration-dependent manner. p-Chloroamphetamine-induced [Ca2+]i rise was partly reduced by removal of extracellular Ca2+. p-Chloroamphetamine-induced extracellular Ca2+ influx was also suggested by Mn2+ influx-induced fura-2 fluorescence quench. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which p-chloroamphetamine failed to increase [Ca2+]i; also, pretreatment with p-chloroamphetamine reduced 50% of thapsigargin-sensitive Ca2+ stores. U73122, an inhibitor of phospholipase C, abolished ATP (but not p-chloroamphetamine)-induced [Ca2+]i rise. Overnight incubation with 1-500 microM p-chloroamphetamine decreased cell viability. These findings suggest that p-chloroamphetamine evokes a rapid increase in [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release, and is cytotoxic.  相似文献   

8.
A rat liver plasma membrane fraction showed an ATP-dependent uptake of Ca2+ which was released by the ionophore A23187. This activity represents a plasma membrane component and is not due to microsomal contamination. The Ca2+ transport displayed several properties which were different from those of the high-affinity Ca2+-ATPase previously observed in these membranes (Lotersztajn et al. (1981) J. Biol. Chem. 256, 11209-11215; Birch-Machin, M.A. and Dawson, A.P. (1986) Biochim. Biophys. Acta 855, 277-285). These observations have shown that Ca2+-ATPase does not require added Mg2+ whereas we have demonstrated that, in the same membrane preparation, Ca2+ uptake required millimolar concentrations of added Mg2+. The Ca2+-ATPase has a broad specificity for the nucleotides ATP, GTP, UTP and ITP while Ca2+ uptake remains specific for ATP. Ca2+ uptake also displayed different affinities for free Ca2+ and MgATP compared to Ca2+-ATPase activity, with apparent Km values of 0.25 microM Ca2+, 0.15 mM MgATP and 1.0 microM Ca2+, 4 microM MgATP respectively. The apparent maximum rate of Ca2+ uptake was about 150-fold less than Ca2+-ATPase activity. These features suggest that the high-affinity Ca2+-ATPase is not the enzymic expression of the ATP-dependent Ca2+ transport mechanism.  相似文献   

9.
Elevation of intracellular cAMP is shown to increase the rate (V) and maximal extent of Ca2+ uptake by the dense tubules in intact human platelets. Elevation of [cAMP] was accomplished by preincubation with the adenylate cyclase activator forskolin or with dibutyryl-cAMP (Bt2-cAMP). The free concentration of Ca2+ in the dense tubular lumen ([Ca2+]dt) was monitored using the fluorescence of chlorotetracycline (CTC) according to protocols developed in this laboratory. The free cytoplasmic Ca2+ concentration ([Ca2+]cyt) was monitored in parallel experiments with quin2. Both [Ca2+]cyt and [Ca2+]dt were analyzed in terms of competition between pump and leak mechanisms in the plasma membrane (PM) and dense tubular membrane (DT). When platelets are incubated in media with approx. 1 microM external Ca2+, [Ca2+]cyt is approx. 50 nM and [Ca2+]dt is very low. When 2 mM external Ca2+ is added, [Ca2+]cyt rises to approx. 100 nM and the process of dense tubular Ca2+ uptake can be resolved. Forskolin (10 microM) and Bt2-cAMP increase the rate of dense tubular Ca2+ uptake (V) to 2.1 +/- 0.60 and 1.70 +/- 40 times control values (respectively). The agents also increase the final [Ca2+]dt to 1.70 +/- 0.21 and 1.72 +/- 0.60 times control values (respectively). Titrations with ionomycin (Iono) showed that the increase was due to an increase in the Vm of the dense tubular Ca2+ pump. With [Iono] = 500 nM, [Ca2+]cyt was raised to greater than or equal to 1.0 microM and Vm of the dense tubular pump was elicited. (At [Iono] = 1.0 microM, the final [Ca2+]dt values were degraded 15% due to shunting of Ca2+ uptake.) Analysis showed that forskolin (10 microM) and Bt2-cAMP (1 mM) increase the Vm by a factors of 1.56 +/- 40 and 1.56 +/- 40, respectively. Analysis showed that neither agent changed the Km of the pump significantly from its control value of 180 nM. Neither agent changed the rate constant for passive leakage of Ca2+ across the DT membrane (1.7 min-1).  相似文献   

10.
ATP-dependent Ca2+ uptake was measured in vesicles of rat liver cell basolateral plasma membranes. Nucleotide-dependent uptake was specific for ATP and observed at pH 7.0 and 7.4/7.5 but not at pH 8.0. ATP-dependent Ca2+ transport was only observed in the presence of Mg2+. Kinetic analysis of ATP-dependent transport revealed an apparent Km in the submicromolar region. Addition of calmodulin and trifluoperazine had no effect on ATP-dependent uptake. A Ca2+-dependent, phosphorylated intermediate with the apparent molecular weight of 135,000 could be demonstrated in the basolateral plasma membranes. Phosphorylated intermediates with apparent molecular weights of 200,000 and 110,000 were demonstrated in microsomes and appeared to contaminate 'basolateral' membrane protein phosphorylation. The results suggest that a 135,000 molecular weight protein is a Ca2+-ATPase and the enzymatic expression of the liver cell basolateral membrane Ca2+ pump.  相似文献   

11.
The immunotoxic environmental pollutant tri-n-butyltin (TBT) kills thymocytes by apoptosis through a mechanism that requires an increase in intracellular Ca2+ concentration. The addition of TBT (EC50 = 2 microM) to fura-2-loaded rat thymocytes resulted in a rapid and sustained increase in the cytosolic free Ca2+ concentration ([Ca2+]i) to greater than 1 microM. In nominally Ca(2+)-free medium, TBT slightly but consistently increased thymocyte [Ca2+]i by about 0.11 microM. The subsequent restoration of CaCl2 to the medium resulted in a sustained overshoot in [Ca2+]i; similarly, the addition of MnCl2 produced a rapid decrease in the intracellular fura-2 fluorescence in thymocytes exposed to TBT. The rates of Ca2+ and Mn2+ entry stimulated by TBT were essentially identical to the rates stimulated by 2,5-di-(tert.-butyl)-1,4-benzohydroquinone (tBuBHQ), which has previously been shown to empty the agonist-sensitive endoplasmic reticular Ca2+ store and to stimulate subsequent Ca2+ influx by a capacitative mechanism. The addition of excess [ethylenebis(oxyethylenenitrilo)]tetraacetic acid to thymocytes produced a rapid return to basal [Ca2+]i after tBuBHQ treatment but a similar rapid return to basal [Ca2+]i was not observed after TBT treatment. In addition, TBT produced a marked inhibition of both Ca2+ efflux from the cells and the plasma membrane Ca(2+)-ATPase activity. Also, TBT treatment resulted in a rapid decrease in thymocyte ATP level. Taken together, our results show that TBT increases [Ca2+]i in thymocytes by the combination of intracellular Ca2+ mobilization, stimulation of Ca2+ entry, and inhibition of the Ca2+ efflux process. Furthermore, the ability of TBT to apparently mobilize the tBuBHQ-sensitive intracellular Ca2+ store followed by Ca2+ and Mn2+ entry suggests that the TBT-induced [Ca2+]i increase involves a capacitative type of Ca2+ entry.  相似文献   

12.
A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control.  相似文献   

13.
Subcellular fractionation studies were performed to delineate plasma membrane and intracellular membrane populations which might be involved in intracellular Ca2+-homeostasis of rat small intestinal epithelial cells. After a low-speed supernatant fraction had been suspended in 5% sorbitol and subjected to equilibrium centrifugation in a zonal rotor, the Golgi and endoplasmic reticulum markers, galactosyltransferase and NADPH-cytochrome -c reductase, were concentrated in a density region designated Window II. The basal-lateral membrane marker (Na+-K+)-ATPase was concentrated in a higher-density region designated Window III. ATP-dependent Ca2+ transport was equally distributed between the two windows. Several membrane populations could be resolved from each window with good recovery of Ca2+-transport activity by a second density gradient centrifugation step. Second density gradient fractions were subjected to counter-current partitioning in an aqueous polymer two-phase system. Basal-lateral membranes, characterized by an 11-fold enrichment of (Na+-K+)-ATPase, contained ATP-dependent Ca2+-transport activity with Vmax = 3.7 nmol/mg per min and Km = 0.5 microM. A major Golgi-derived population exhibited Ca2+-transport activity with Vmax and Km values similar to those of the basal-lateral membranes. One membrane population, presumed to have been derived from the endoplasmic reticulum, contained Ca2+-transport activity with Vmax = 4 nmol/mg per min and Km = 0.5 microM. In addition to demonstrating that ATP-dependent Ca2+-transport activity has a complex distribution within enterocytes, this study raises the possibility that the basolateral plasma membranes might account for a relatively minor portion of the cell's Ca2+-pumping ability.  相似文献   

14.
Glucose depolarizes the pancreatic beta-cell and induces membrane potential oscillations, but the nature of the underlying oscillatory conductance remains unknown. We have now investigated the effects of the Ca2+ ionophore ionomycin and high external Ca2+ concentration ([Ca2+]o) on glucose-induced electrical activity and whole islet intracellular free Ca2+ concentration ([Ca2+]i), under conditions where the K(ATP) channel was blocked (100 microM tolbutamide or 4 microM glibenclamide). Raising [Ca2+]o to 10.2 or 12.8 mM, but not to 5.1 or 7.7 mM, turned continuous electrical activity into bursting activity. High [Ca2+]o (12.8 mM) regenerated a pattern of fast [Ca2+]i oscillations overshooting the levels recorded in tolbutamide. Ionomycin (10 microM) raised the [Ca2+]i and synergized with 5.1 mM Ca2+ to hyperpolarize the beta-cell membrane. The data indicate that a [Ca2+]i-sensitive and sulphonylurea-insensitive oscillatory conductance underlies the beta-cell bursting activity.  相似文献   

15.
We have studied the mechanisms involved in calcium (Ca2+) transport through the basal plasma membranes (BPM) of the syncytiotrophoblast cells from full-term human placenta. These purified membranes were enriched 25-fold in Na+/K(+)-adenosine triphosphate (ATPase), 37-fold in [3H] dihydroalprenolol binding sites, and fivefold in alkaline phosphatase activity compared with the placenta homogenates. In the absence of ATP and Mg2+, a basal Ca2+ uptake was observed, which followed Michaelis-Menten kinetics, with a Km Ca2+ of 0.18 +/- 0.05 microM and Vmax of 0.93 +/- 0.11 nmol/mg/min. The addition of Mg2+ to the incubation medium significantly decreased this uptake in a concentration-dependent manner, with a maximal inhibition at 3 mM Mg2+ and above. The Lineweaver-Burk plots of Ca2+ uptake in the absence and in the presence of 1 mM Mg2+ suggest a noncompetitive type of inhibition. Preloading the BPM vesicles with 5 mM Mg2+ had no significant effect on Ca2+ uptake, eliminating the hypothesis of a Ca2+/Mg2+ exchange mechanism. This ATP-independent Ca2+ uptake was not sensitive to 10(-6) M nitrendipine nor to 10(-4) M verapamil. An ATP-dependent Ca2+ transport was also detected in these BPM, whose Km Ca2+ was 0.09 +/- 0.02 microM and Vmax 3.4 +/- 0.2 nmoles/mg/3 min. This Ca2+ transport requires Mg2+, the optimal concentration of Mg2+ being approximately 1 mM. Preincubation of the membrane with 10(-6) M calmodulin strongly enhanced the initial ATP-dependent Ca2+ uptake. Finally, no Na+/Ca2+ exchange process could be demonstrated.  相似文献   

16.
Low concentrations of free Ca2+ stimulated the hydrolysis of ATP by plasma membrane vesicles purified from guinea pig neutrophils and incubated in 100 mM HEPES/triethanolamine, pH 7.25. In the absence of exogenous magnesium, apparent values obtained were 320 nM (EC50 for free Ca2+), 17.7 nmol of Pi/mg X min (Vmax), and 26 microM (Km for total ATP). Studies using trans- 1,2-diaminocyclohexane- N,N,N',N',-tetraacetic acid as a chelator showed this activity was dependent on 13 microM magnesium, endogenous to the medium plus membranes. Without added Mg2+, Ca2+ stimulated the hydrolysis of several other nucleotides: ATP congruent to GTP congruent to CTP congruent to ITP greater than UTP, but Ca2+-stimulated ATPase was not coupled to uptake of Ca2+, even in the presence of 5 mM oxalate. When 1 mM MgCl2 was added, the vesicles demonstrated oxalate and ATP-dependent calcium uptake at approximately 8 nmol of Ca2+/mg X min (based on total membrane protein). Ca2+ uptake increased to a maximum of approximately 17-20 nmol of Ca2+/mg X min when KCl replaced HEPES/triethanolamine in the buffer. In the presence of both KCl and MgCl2, Ca2+ stimulated the hydrolysis of ATP selectively over other nucleotides. Apparent values obtained for the Ca2+-stimulated ATPase were 440 nM (EC50 for free Ca2+), 17.5 nmol Pi/mg X min (Vmax) and 100 microM (Km for total ATP). Similar values were found for Ca2+ uptake which was coupled efficiently to Ca2+-stimulated ATPase with a molar ratio of 2.1 +/- 0.1. Exogenous calmodulin had no effect on the Vmax or EC50 for free Ca2+ of the Ca2+-stimulated ATPase, either in the presence or absence of added Mg2+, with or without an ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid pretreatment of the vesicles. The data demonstrate that calcium stimulates ATP hydrolysis by neutrophil plasma membranes that is coupled optimally to transport of Ca2+ in the presence of concentrations of K+ and Mg2+ that appear to mimic intracellular levels.  相似文献   

17.
The precise regulation of the Ca2+ concentration in the endoplasmic reticulum ([Ca2+]er) is important for protein processing and signal transduction. In the pancreatic beta-cell, dysregulation of [Ca2+]er may cause impaired insulin secretion. The Ca2+-sensitive photoprotein aequorin mutated to lower its Ca2+ affinity was stably expressed in the endoplasmic reticulum (ER) of rat insulinoma INS-1 cells. The steady state [Ca2+]er was 267 +/- 9 microM. Both the Ca2+-ATPase inhibitor cyclopiazonic acid and 4-chloro-m-cresol, an activator of ryanodine receptors, caused an almost complete emptying of ER Ca2+. The inositol 1,4,5-trisphosphate generating agonists, carbachol, and ATP, reduced [Ca2+]er by 20-25%. Insulin secretagogues that raise cytosolic [Ca2+] by membrane depolarization increased [Ca2+]er in the potency order K+ > glucose > leucine, paralleling their actions in the cytosolic compartment. Glucose, which augmented [Ca2+]er by about 25%, potentiated the Ca2+-mobilizing effect of carbachol, explaining the corresponding observation in cytosolic [Ca2+]. The filling of ER Ca2+ by glucose is not directly mediated by ATP production as shown by the continuous monitoring of cytosolic ATP in luciferase expressing cells. Both glucose and K+ increase [Ca2+]er, but only the former generated whereas the latter consumed ATP. Nonetheless, drastic lowering of cellular ATP with a mitochondrial uncoupler resulted in a marked decrease in [Ca2+]er, emphasizing the requirement for mitochondrially derived ATP above a critical threshold concentration. Using alpha-toxin permeabilized cells in the presence of ATP, glucose 6-phosphate did not change [Ca2+]er, invalidating the hypothesis that glucose acts through this metabolite. Therefore, insulin secretagogues that primarily stimulate Ca2+ influx, elevate [Ca2+]er to ensure beta-cell homeostasis.  相似文献   

18.
The purified (Ca2+-Mg2+)-ATPase from rat liver plasma membranes (Lotersztajn, S., Hanoune, J., and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215) was incorporated into soybean phospholipid vesicles, together with its activator. In the presence of millimolar concentrations of Mg2+, the reconstituted proteoliposomes displayed a rapid, saturable, ATP-dependent Ca2+ uptake. Half-maximal Ca2+ uptake activity was observed at 13 +/- 3 nM free Ca2+, and the apparent Km for ATP was 16 +/- 6 microM. Ca2+ accumulated into proteoliposomes (2.8 +/- 0.2 nmol of Ca2+/mg of protein/90 s) was totally released upon addition of the Ca2+ ionophore A-23187. Ca2+ uptake into vesicles reconstituted with enzyme alone was stimulated 2-2.5-fold by the (Ca2+-Mg2+)-ATPase activator, added exogenously. The (Ca2+-Mg2+)-ATPase activity of the reconstituted vesicles, measured using the same assay conditions as for ATP-dependent Ca2+ uptake activity (e.g. in the presence of millimolar concentrations of Mg2+), was maximally activated by 20 nM free Ca2+, half-maximal activation occurring at 13 nM free Ca2+. The stoichiometry of Ca2+ transport versus ATP hydrolysis approximated 0.3. These results provide a direct demonstration that the high affinity (Ca2+-Mg2+)-ATPase identified in liver plasma membranes is responsible for Ca2+ transport.  相似文献   

19.
Fiekers JF 《Life sciences》2001,70(6):681-698
Single cell calcium microfluorimetry was used to examine the regulation of [Ca2+]i homeostasis in a clonal cell line of corticotropes (AtT-20 cells). Single cells, loaded with fura-2/AM, were exposed briefly to elevated potassium chloride (KCI, 40 mM, 5 sec). The time constant of decay of the [Ca2+]i signal was used as an index of [Ca2+]i extrusion and/or sequestration. Substitution of extracellular sodium with lithium, N-methyl-D-glucamine (NMDG), or Tris, increased resting levels of [Ca2+]i and significantly increased the time constant of [Ca2+]i decay by 40% compared to control indicating the participation of Na+-Ca2+-exchange. Prior exposure of single cells to thapsigargin (1 microM) or BuBHQ (10 microM). inhibitors of the SERCA Ca2+-ATPases, and/or the mitochondrial uncoupler FCCP (1 microM) did not significantly change the time constant of [Ca2+]i decay following KCl. Lanthanum ions (La3+), applied during the decay of the KCI-induced increase in [Ca2+]i, significantly increased the time constant of the return of [Ca2+]i to resting levels by 70% compared to control. Brief exposure of cells to sodium orthovanadate, an inhibitor of ATP-dependent pump activity, slowed and longer exposures prevented, the return of [Ca2+]i to resting levels. We conclude that neither intracellular SERCA pumps nor mitochondrial uptake contribute significantly to [Ca2+]i sequestration following a [Ca2+]i load and that the plasma membrane Ca2+-ATPase contributes to a greater extent than the Na+-Ca2+-exchanger to the return of [Ca2+]i to resting levels following a [Ca2+]i load under these experimental conditions.  相似文献   

20.
Calcium transport by bull spermatozoa plasma membranes   总被引:1,自引:0,他引:1  
Plasma membrane isolated from frozen ejaculated bull spermatozoa were found to contain calcium transport activity. Thin-section electronmicrography of these membranes revealed relatively homogeneous vesicular membranes with sizes ranging from 2000 to 6000 A in diameter. Membrane vesicles that were exposed to oxalate as a calcium-trapping agent accumulated Ca2+ in the presence of Mg2+ and ATP. One microM of the calcium-ionophore A23187, added initially, completely inhibited net Ca2+ uptake and, if added later, caused the release of Ca2+ accumulated previously. An Arrhenius plot for the rate of Ca2+ uptake revealed a break at 32--33 degrees C, and Ea of 4.4 kcal/mol above the break and 32.2 kcal/mol below. The Ca+ uptake was inhibited by low concentrations of quercetin, which is known to be an inhibitor of (Ca2+ + Mg2+)-ATPase in many systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号