首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sex and recombination remain one of the biggest riddles of evolutionary biology. One of the most prominent hypotheses, the Red Queen Hypothesis, claims that sex has evolved as a means to efficiently create genotypes that are resistant against coevolving parasites. However, previous models of the Red Queen have assumed that all individuals are equally likely to engage in sexual reproduction, regardless of their infection status, an assumption that may not be true in reality. Here, we consider a population genetic model of a host population coevolving with a parasite population, where the parasites are haploid and the hosts either haploid or diploid. We assume that the probability to engage in sex may be different in infected and uninfected hosts and ascertain the success of different reproductive strategies with a modifier-gene approach. Our model shows that in the large majority of the parameter space, infection-dependent sex is more successful than infection-independent sex. We identify at least two reasons for this: (i) an immediate short-term advantage of breaking-down gene combinations of unfit individuals and (ii) a selfish spread of the condition-dependent modifiers, in analogy to the 'abandon-ship' effect in single species. In diploids, these effects are often powerful enough to overcome the detrimental effects of segregation. These results raise the intriguing question of why infection-induced sex is not more commonly observed in nature.  相似文献   

2.
Rapid parasite adaptation drives selection for high recombination rates   总被引:2,自引:0,他引:2  
The Red Queen hypothesis proposes that sex is maintained through selection pressure imposed by coevolving parasites: susceptible hosts are able to escape parasite pressure by recombining their genome to create resistant offspring. However, previous theoretical studies have shown that the Red Queen typically selects against sex unless selection is strong, arguing that high rates of recombination cannot evolve when parasites are of low virulence. Here we show that under the biologically plausible assumption of a severe fitness cost for parasites that fail to infect, the Red Queen can cause selection for high recombination rates, and that the strength of virulence is largely irrelevant to the direction of selection for increased recombination rates. Strong selection on parasites and short generation times make parasites usually better adapted to their hosts than vice versa and can thus favor higher recombination rates in hosts. By demonstrating the importance of host-imposed selection on parasites, our findings resolve previously reported conflicting results.  相似文献   

3.
The advantage of producing novel variation to keep apace of coevolving species has been invoked as a major explanation for the evolution and maintenance of sex (the Red Queen hypothesis). Recent theoretical investigations of the Red Queen hypothesis have focused on the effects of recombination in haploid species, finding that species interactions rarely favor the evolution of sex unless selection is strong. Yet by focusing on haploids, these studies have ignored a potential advantage of sex in diploids: generating novel combinations of alleles at a particular locus through segregation. Here we investigate models of host-parasite coevolution in diploid species to determine whether the advantages of segregation might rescue the Red Queen hypothesis as a more general explanation for the evolution of sex. We find that the effects of segregation can favor the evolution of sex but only under some models of infection and some parameter combinations, almost always requiring inbreeding. In all other cases, the effects of segregation on selected loci favor reductions in the frequency of sex. In cases where segregation and recombination act in opposite directions, we found that the effects of segregation dominate as an evolutionary force acting on sex in diploids.  相似文献   

4.
Antagonistic coevolution between hosts and parasites can involve rapid fluctuations of genotype frequencies that are known as Red Queen dynamics. Under such dynamics, recombination in the hosts may be advantageous because genetic shuffling can quickly produce disproportionately fit offspring (the Red Queen hypothesis). Previous models investigating these dynamics have assumed rather simple models of genetic interactions between hosts and parasites. Here, we assess the robustness of earlier theoretical predictions about the Red Queen with respect to the underlying host-parasite interactions. To this end, we created large numbers of random interaction matrices, analysed the resulting dynamics through simulation, and ascertained whether recombination was favoured or disfavoured. We observed Red Queen dynamics in many of our simulations provided the interaction matrices exhibited sufficient ‘antagonicity’. In agreement with previous studies, strong selection on either hosts or parasites favours selection for increased recombination. However, fast changes in the sign of linkage disequilibrium or epistasis were only infrequently observed and do not appear to be a necessary condition for the Red Queen hypothesis to work. Indeed, recombination was often favoured even though the linkage disequilibrium remained of constant sign throughout the simulations. We conclude that Red Queen-type dynamics involving persistent fluctuations in host and parasite genotype frequencies appear to not be an artefact of specific assumptions about host-parasite fitness interactions, but emerge readily with the general interactions studied here. Our results also indicate that although recombination is often favoured, some of the factors previously thought to be important in this process such as linkage disequilibrium fluctuations need to be reassessed when fitness interactions between hosts and parasites are complex.  相似文献   

5.
Antagonistic coevolution between hosts and parasites is known to affect selection on recombination in hosts. The Red Queen Hypothesis (RQH) posits that genetic shuffling is beneficial for hosts because it quickly creates resistant genotypes. Indeed, a large body of theoretical studies have shown that for many models of the genetic interaction between host and parasite, the coevolutionary dynamics of hosts and parasites generate selection for recombination or sexual reproduction. Here we investigate models in which the effect of the host on the parasite (and vice versa) depend approximately multiplicatively on the number of matched alleles. Contrary to expectation, these models generate a dynamical behavior that strongly selects against recombination/sex. We investigate this atypical behavior analytically and numerically. Specifically we show that two complementary equilibria are responsible for generating strong linkage disequilibria of opposite sign, which in turn causes strong selection against sex. The biological relevance of this finding stems from the fact that these phenomena can also be observed if hosts are attacked by two parasites that affect host fitness independently. Hence the role of the Red Queen Hypothesis in natural host parasite systems where infection by multiple parasites is the rule rather than the exception needs to be reevaluated.  相似文献   

6.
The Red Queen hypothesis posits a promising way to explain the widespread existence of sexual reproduction despite the cost of producing males. The essence of the hypothesis is that coevolutionary interactions between hosts and parasites select for the genetic diversification of offspring via cross‐fertilization. Here, I relax a common assumption of many Red Queen models that each host is exposed to one parasite. Instead, I assume that the number of propagules encountered by each host depends on the number of infected hosts in the previous generation, which leads to additional complexities. The results suggest that epidemiological feedbacks, combined with frequency‐dependent selection, could lead to the long‐term persistence of sex under biologically reasonable conditions.  相似文献   

7.
The widespread occurrence of sexual reproduction despite the two-fold disadvantage of producing males, is still an unsolved mystery in evolutionary biology. One explanatory theory, called the "Red Queen" hypothesis, states that sex is an adaptation to escape from parasites. A more recent hypothesis, the mate selection hypothesis, assumes that non-random mating, possible only with sex, accelerates the evolution of beneficial traits. This paper tests these two hypotheses, using an agent-based or "micro-analytic" evolutionary algorithm where host-parasite interaction is simulated adhering to biological reality. While previous simpler models testing the "Red Queen" hypothesis considered mainly haploid hosts, stable population density, random mating and simplified expression of fitness, our more realistic model allows diploidy, mate selection, live history constraints and variable population densities. Results suggest that the Red Queen hypothesis is not valid for more realistic evolutionary scenarios and that each of the two hypotheses tested seem to explain partially but not exhaustively the adaptive value of sex. Based on the results we suggest that sexual populations in nature should avoid both, maximizing outbreeding or maximizing inbreeding and should acquire mate selection strategies which favour optimal ranges of genetic mixing in accordance with environmental challenges.  相似文献   

8.
The theory that coevolving hosts and parasites create a fluctuating selective environment for one another (i.e., produce Red Queen dynamics) has deep roots in evolutionary biology; yet empirical evidence for Red Queen dynamics remains scarce. Fluctuating coevolutionary dynamics underpin the Red Queen hypothesis for the evolution of sex, as well as hypotheses explaining the persistence of genetic variation under sexual selection, local parasite adaptation, the evolution of mutation rate, and the evolution of nonrandom mating. Coevolutionary models that exhibit Red Queen dynamics typically assume that hosts and parasites encounter one another randomly. However, if related individuals aggregate into family groups or are clustered spatially, related hosts will be more likely to encounter parasites transmitted by genetically similar individuals. Using a model that incorporates familial parasite transmission, we show that a slight degree of familial parasite transmission is sufficient to halt coevolutionary fluctuations. Our results predict that evidence for Red Queen dynamics, and its evolutionary consequences, are most likely to be found in biological systems in which hosts and parasites mix mainly at random, and are less likely to be found in systems with familial aggregation. This presents a challenge to the Red Queen hypothesis and other hypotheses that depend on coevolutionary cycling.  相似文献   

9.
Host recombination is dependent on the degree of parasitism   总被引:4,自引:0,他引:4  
Parasites and hosts are involved in a continuous coevolutionary process leading to genetic changes in both counterparts. To understand this process, it is necessary to track host responses, one of which could be an increase in sex and recombination, such as is proposed by the Red Queen hypothesis. In this theoretical framework, the inducible recombination hypothesis states that B-chromosomes (genome parasites that prosper in natural populations of many living beings) elicit an increase in host chiasma frequency that is favoured by natural selection because it increases the proportion of recombinant progeny, some of which could be resistant to both B-chromosome effects and B-accumulation in the germline. We have found a clear parallelism between host recombination and the evolutionary status of the B-chromosome polymorphism, which provides explicit evidence for inducible recombination and strong support for the Red Queen hypothesis.  相似文献   

10.
Gandon S  Otto SP 《Genetics》2007,175(4):1835-1853
Evolutionary biologists have identified several factors that could explain the widespread phenomena of sex and recombination. One hypothesis is that host-parasite interactions favor sex and recombination because they favor the production of rare genotypes. A problem with many of the early models of this so-called Red Queen hypothesis is that several factors are acting together: directional selection, fluctuating epistasis, and drift. It is thus difficult to identify what exactly is selecting for sex in these models. Is one factor more important than the others or is it the synergistic action of these different factors that really matters? Here we focus on the analysis of a simple model with a single mechanism that might select for sex: fluctuating epistasis. We first analyze the evolution of sex and recombination when the temporal fluctuations are driven by the abiotic environment. We then analyze the evolution of sex and recombination in a two-species coevolutionary model, where directional selection is absent (allele frequencies remain fixed) and temporal variation in epistasis is induced by coevolution with the antagonist species. In both cases we contrast situations with weak and strong selection and derive the evolutionarily stable (ES) recombination rate. The ES recombination rate is most sensitive to the period of the cycles, which in turn depends on the strength of epistasis. In particular, more virulent parasites cause more rapid cycles and consequently increase the ES recombination rate of the host. Although the ES strategy is maximized at an intermediate period, some recombination is favored even when fluctuations are very slow. By contrast, the amplitude of the cycles has no effect on the ES level of sex and recombination, unless sex and recombination are costly, in which case higher-amplitude cycles allow the evolution of higher rates of sex and recombination. In the coevolutionary model, the amount of recombination in the interacting species also has a large effect on the ES, with evolution favoring higher rates of sex and recombination than in the interacting species. In general, the ES recombination rate is less than or equal to the recombination rate that would maximize mean fitness. We also discuss the effect of migration when sex and recombination evolve in a metapopulation. We find that intermediate parasite migration rates maximize the degree of local adaptation of the parasite and lead to a higher ES recombination rate in the host.  相似文献   

11.
One of the main competing theories to describe the evolution of recombination is the Red Queen hypothesis (RQH). Presently, many theoretical analyses of the RQH typically examine fitness interactions in host-parasite frameworks. Less emphasis has been placed on understanding the impact of host ploidy in these systems. In this study, we look to investigate the high observed rates of recombination observed in two common haplodiploid species (Apis mellifera and Bombus terrestris). We compared haplodiploid to diploid host populations under infection with haploid asexual parasites, using a matching allele model. Results from a simulation analysis showed that the Red Queen does not run in haplodiploid hosts and is therefore, probably not responsible for the high recombination rates observed so far in haplodiploid hosts.  相似文献   

12.
Host–parasite coevolution has been studied extensively in the context of the evolution of sex. Although hosts typically coevolve with several parasites, most studies considered one‐host/one‐parasite interactions. Here, we study population‐genetic models in which hosts interact with two parasites. We find that host/multiple‐parasite models differ nontrivially from host/single‐parasite models. Selection for sex resulting from interactions with a single parasite is often outweighed by detrimental effects due to the interaction between parasites if coinfection affects the host more severely than expected based on single infections, and/or if double infections are more common than expected based on single infections. The resulting selection against sex is caused by strong linkage‐disequilibria of constant sign that arise between host loci interacting with different parasites. In contrast, if coinfection affects hosts less severely than expected and double infections are less common than expected, selection for sex due to interactions with individual parasites can now be reinforced by additional rapid linkage‐disequilibrium oscillations with changing sign. Thus, our findings indicate that the presence of an additional parasite can strongly affect the evolution of sex in ways that cannot be predicted from single‐parasite models, and that thus host/multiparasite models are an important extension of the Red Queen Hypothesis.  相似文献   

13.
Kayla C. King  Curtis M. Lively 《Oikos》2009,118(9):1416-1420
The Red Queen hypothesis predicts that sexual reproduction should be favoured in locations where the risk of infection by virulent parasites is consistently high. When hosts are exposed to multiple parasites over their geographic range, the coevolving parasite species may vary among host populations. We surveyed 26 streams on the South Island of New Zealand to determine whether the frequency of snails ( Potamopyrgus antipodarum ) infected by various sterilizing trematode parasite species was correlated with the frequency of sexual individuals. We compared the results with a survey conducted over 20 years ago to determine whether the associations were consistent. We also evaluated different measures of parasite-mediated selection among populations, including prevalence of the most common local parasite (MCLP) species and parasite diversity to assess the best predictor of sexual reproduction among stream populations. The results showed that the relationship between male frequency and parasite infection is more geographically widespread than previously recorded. Additionally, we found that the prevalence of the MCLP was the best predictor of sex in habitats where hosts populations are infected with multiple parasites (approximately 15 trematode species). This study provides evidence that sexual snails occur more often in environments with high infection levels, and that the pattern of parasite-imposed selection is geographically variable. Support for the Red Queen may be strengthened by focussing on the MCLP, which may vary among host populations.  相似文献   

14.
Almost all eukaryotic organisms undergo sexual recombination at some stage of their life history. However, strictly asexual organisms should have higher per capita rate of reproduction compared with those that have sex, so the latter must convey some advantage which overrides the reproductive benefit of asexuality. For example, sexual reproduction and recombination may play an important role in allowing organisms to evolutionarily ‘keep up’ with parasites. Host–parasite coevolution can operate via negative frequency‐dependent selection whereby parasite genotypes adapt to infect host genotypes as they become locally common. By producing more genetically diverse offspring with unique genotypes, sexual organisms have an advantage over asexual counterparts. Essentially, sexual hosts are more difficult for coevolving parasites to ‘track’ over time. This scenario has been named the “Red Queen hypothesis”. It refers to a passage in Lewis Carroll's ‘Through the Looking Glass’ in which the Red Queen tells Alice: ‘it takes all the running you can do, to keep in the same place’; this statement resembles the negative frequency‐dependent dynamics of host–parasite coevolution.  相似文献   

15.
One of the leading hypotheses for the maintenance of sexual reproduction is the Red Queen hypothesis. The underlying premise of the Red Queen hypothesis is that parasites rapidly evolve to infect common host genotypes. This response by parasites could result in the long-term maintenance of genetic variation and may favor sexual reproduction over asexual reproduction. The underlying ideas present a wonderful microcosm for teaching evolution. Here I present the reasons for why sex is anomalous for evolutionary theory, the rationale underlying the Red Queen hypothesis, and some empirical studies of the Red Queen hypothesis using a freshwater snail. The empirical results are consistent with the Red Queen hypothesis. In addition, the distribution of sexual and asexual reproduction in the snail leads naturally to thinking about coevolution in a geographic mosaic of parasite-mediated natural selection.  相似文献   

16.
The RQH (Red Queen hypothesis), which argues that hosts need to be continuously finding new ways to avoid parasites that are able to infect common host genotypes, has been at the center of discussions on the maintenance of sex. This is because diversity is favored under the host–parasite coevolution based on negative frequency‐dependent selection, and sexual reproduction is a mechanism that generates genetic diversity in the host population. Together with parasite infections, sexual organisms are usually under sexual selection, which leads to mating skew or mating success biased toward males with a particular phenotype. Thus, strong mating skew would affect genetic variance in a population and should affect the benefit of the RQH. However, most models have investigated the RQH under a random mating system and not under mating skew. In this study, I show that sexual selection and the resultant mating skew may increase parasite load in the hosts. An IBM (individual‐based model), which included host–parasite interactions and sexual selection among hosts, demonstrates that mating skew influenced parasite infection in the hosts under various conditions. Moreover, the IBM showed that the mating skew evolves easily in cases of male–male competition and female mate choice, even though it imposes an increased risk of parasite infection on the hosts. These findings indicated that whether the RQH favored sexual reproduction depended on the condition of mating skew. That is, consideration of the host mating system would provide further understanding of conditions in which the RQH favors sexual reproduction in real organisms.  相似文献   

17.
Two alternative (but not mutually exclusive) hypotheses were contrasted for their abilities to explain the distribution of parthenogenesis in the freshwater snail Potamopyrgus antipodarum: the reproductive assurance hypothesis, which predicts that parthenogenesis will be favored in sparse populations where mates are difficult to find, and the Red Queen hypothesis, which predicts that parthenogenesis will be favored in populations that have a low risk of parasitism. The results were inconsistent with the prediction of the reproductive assurance hypothesis; male frequency was not significantly or positively correlated with snail density. Thus, there was no support for any of the hypotheses for the maintenance of sex that rely on selection for reproductive assurance to explain the distribution of parthenogenesis (e.g., recombinational repair). The results, however, were consistent with the Red Queen hypothesis; male frequency was positively and significantly correlated with the frequency of individuals infected by trematodes. This correlation suggests that parthenogenetic females have replaced sexual females in populations where parasites are rare, and that sexual females have persisted in populations where parasites are common.  相似文献   

18.
The Red Queen hypothesis proposes that coevolving parasites select for outcrossing in the host. Outcrossing relies on males, which often show lower immune investment due to, for example, sexual selection. Here, we demonstrate that such sex differences in immunity interfere with parasite‐mediated selection for outcrossing. Two independent coevolution experiments with Caenorhabditis elegans and its microparasite Bacillus thuringiensis produced decreased yet stable frequencies of outcrossing male hosts. A subsequent systematic analysis verified that male C. elegans suffered from a direct selective disadvantage under parasite pressure (i.e. lower resistance, decreased sexual activity, increased escape behaviour), which can reduce outcrossing and thus male frequencies. At the same time, males offered an indirect selective benefit, because male‐mediated outcrossing increased offspring resistance, thus favouring male persistence in the evolving populations. As sex differences in immunity are widespread, such interference of opposing selective constraints is likely of central importance during host adaptation to a coevolving parasite.  相似文献   

19.
The Red Queen coevolutionary hypothesis predicts that parasites drive oscillations in host genotype frequencies due to frequency-dependent selection where common hosts are at disadvantage. However, examples of this phenomenon in natural populations are scarce. To examine if the Red Queen theory operates in the wild, we studied the genetic structure of populations of the crustacean waterflea ( Daphnia ), in relation to their infection levels, for which we collected multiple samples from a variety of lakes. The most common clone in a given population was often underinfected. This advantage, however, did not remain stable over time. Instead, the most common clone decreased in frequency over subsequent generations, indicating that parasites can track common clones. Such decreases were not observed in uninfected populations. Moreover, host clonal evenness was higher across the set of infected lakes compared to uninfected lakes; suggesting that any common clone is selected against when parasites are present. These results strongly suggest that Red Queen dynamics do operate in the wild.  相似文献   

20.
Although it is well established theoretically that selective interference among mutations (Hill–Robertson interference) favours meiotic recombination, genomewide mean rates of mutation and strengths of selection appear too low to support this as the mechanism favouring recombination in nature. A possible solution to this discrepancy between theory and observation is that selection is at least intermittently very strong due to the antagonistic coevolution between a host and its parasites. The Red Queen theory posits that such coevolution generates fitness epistasis among loci, which generates negative linkage disequilibrium among beneficial mutations, which in turn favours recombination. This theory has received only limited support. However, Red Queen dynamics without epistasis may provide the ecological conditions that maintain strong and frequent selective interference in finite populations that indirectly selects for recombination. This hypothesis is developed here through the simulation of Red Queen dynamics. This approach required the development of a method to calculate the exact frequencies of multilocus haplotypes after recombination. Simulations show that recombination is favoured by the moderately weak selection of many loci involved in the interaction between a host and its parasites, which results in substitution rates that are compatible with empirical estimates. The model also reproduces the previously reported rapid increase in the rate of outcrossing in Caenorhabditis elegans coevolving with a bacterial pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号