首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The primary complaints from patients with asthma pertain to function of airway smooth muscle (ASM) function including shortness of breath, wheezing, and coughing. Thus, it is imperative to better understand the mechanisms underlying excitation-contraction coupling in ASM. Here, we review the various signaling pathways underlying contraction in ASM, and then examine how these are altered in asthma and airway hyperresponsiveness (a hallmark feature of asthma). Throughout, we highlight how studies of vascular smooth muscle have helped or hindered progress in understanding ASM physiology and pathophysiology.  相似文献   

3.
In airway smooth muscle (ASM), ACh induces propagating intracellular Ca2+ concentration ([Ca2+]i) oscillations (5-30 Hz). We hypothesized that, in ASM, coupling of elevations and reductions in [Ca2+]i to force generation and relaxation (excitation-contraction coupling) is slower than ACh-induced [Ca2+]i oscillations, leading to stable force generation. When we used real-time confocal imaging, the delay between elevated [Ca2+]i and contraction in intact porcine ASM cells was found to be approximately 450 ms. In beta-escin-permeabilized ASM strips, photolytic release of caged Ca2+ resulted in force generation after approximately 800 ms. When calmodulin (CaM) was added, this delay was shortened to approximately 500 ms. In the presence of exogenous CaM and 100 microM Ca2+, photolytic release of caged ATP led to force generation after approximately 80 ms. These results indicated significant delays due to CaM mobilization and Ca2+-CaM activation of myosin light chain kinase but much shorter delays introduced by myosin light chain kinase-induced phosphorylation of the regulatory myosin light chain MLC20 and cross-bridge recruitment. This was confirmed by prior thiophosphorylation of MLC20, in which force generation occurred approximately 50 ms after photolytic release of caged ATP, approximating the delay introduced by cross-bridge recruitment alone. The time required to reach maximum steady-state force was >15 s. Rapid chelation of [Ca2+]i after photolytic release of caged diazo-2 resulted in relaxation after a delay of approximately 1.2 s and 50% reduction in force after approximately 57 s. We conclude that in ASM cells agonist-induced [Ca2+]i oscillations are temporally and spatially integrated during excitation-contraction coupling, resulting in stable force production.  相似文献   

4.
5.
The effects of Ca2+ free solutions (0 mM Ca2+/5mM EGTA) and low Ca2+ media (no added Ca2+) on the 100 mM K+ and 10(-5) M ACh contractions of the flounder intestine were examined. Ca2+-free solutions abolished the K+-contractions and reduced the normal ACh response to a smaller transient event. Low Ca2+ media blocked the prolonged tonic phase of the K+-contractions more readily than the initial phasic component. It was concluded that both ACh and K+ stimulate Ca2+ entry into the cell and that the phasic component of the K+-contraction relies on a more tightly bound extracellular Ca2+-fraction than that utilized during the tonic phase. ACh can also mobilize an intracellular Ca2+-store. Ultrastructural studies suggested that this ACh-releasable intracellular Ca2+-store may reside on the inner surface of the plasma membrane or within the peripheral S.R.  相似文献   

6.
The effect of extracellular Cl (Cl-o) removal on contractions evoked by a selective muscarinic agonist, cis-2-methyl-4-dimethylaminomethyl 1,3-dioxolane methiodide (CD), and high K+ depolarizations in the isolated guinea pig ileal longitudinal muscle was studied. The replacement of Cl-o with impermeant anions, such as isethionate (Ise-), was found to selectively inhibit a portion of the initial phasic response to K+ and CD, leaving the secondary and sustained tonic responses unchanged. In Ca2+-free solutions, the loss of contractile responses to high K+ was faster and more pronounced in Cl--free compared with Cl--containing solutions. Furthermore, the uptake of Ca2+, as represented by 45Ca2+, from the saline solution was delayed and reduced in Ise--containing Cl-o-free solutions. Replacement of Cl-o with other impermeant anions, such as gluconate and methylsulphate, had a similar action on contractile activity as for Ise-replacement. Cl-o replacement with permeant anions, such as nitrate, however, did not significantly inhibit the phasic response and sometimes increased the tonic response to K+. These results indicate that there is a Cl-o-dependent Ca2+ pool in the guinea pig ileal longitudinal muscle and we speculate that this Cl-o-dependent Ca2+ pool is associated with membrane structures, such as calveolae, which would thus offer a degree of protection to depletion by removal of extracellular Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Moderate cooling of smooth muscle can modulate force production and may contribute to pathophysiological conditions, but the mechanisms underlying its effects are poorly understood. Interestingly, cooling increases force in rat ureter, but decreases it in guinea pigs. Therefore, this study used ureteric smooth muscle as a model system to elucidate the mechanisms of the effects of cooling on excitation-contraction coupling. Simultaneous recordings of force, intracellular [Ca(2+)], and electrical activity were made in intact ureter and ionic currents measured in isolated cells. The increase in force amplitude in rat ureter with cooling was found to be due to a significant increase in the duration of the Ca(2+) transient. This in turn was due to a marked prolongation of the action potential. In guinea pigs, both these parameters were much less affected by cooling. Examination of membrane currents revealed that differences in ion channel contribution to the action potential underlie these differences. In particular, cooling potentiated Ca(2+)-activated Cl(-) currents, which are present in rat but not guinea pig ureteric smooth muscle, and prolonged the plateau of the action potential and Ca(2+) entry. The force-Ca(2+) relationship revealed that the increased duration of the Ca(2+) transient was sufficient in the rat, but not in the guinea pig, to overcome kinetic lags produced in both species by cooling and potentiate force. Ca(2+) entry and release processes were largely temperature-insensitive, but the rate of relaxation was very temperature-sensitive. Effects of cooling on myosin light chain phosphatase, confirmed in experiments using calyculin A, appear to be the predominant mechanisms affecting relaxation. Thus, smooth muscle is diverse in its response to temperature, even when experimental variables, such as the mode of stimulation, are removed. Although the biochemical and mechanical events accompanying contraction are likely to be affected in similar ways by temperature, differences in electrical events lead to subsequent differences in these processes between smooth muscles.  相似文献   

8.
9.
Lowering the extracellular K+ content from 6 to 0.6 mM causes a rise, and elevation from 6 to 8.5 mM a fall of 45Ca++ efflux from the vascular smooth muscle cells of the arteria carotis communis of cattle. In contrast, a level of 17 mM K+ has no influence. Removal of extracellular calcium does not block these effects. 10(-4) M ouabain also induces a rise in Ca++ efflux, additional potassium reduction then being without effect; 10(-9) M ouabain is of no influence. The 45Ca++ efflux kinetics correlates with the activity of the isolated Na,K-ATPase. Tonus increases of the vascular strips by 10(-4) M ouabain and potassium deficiency cannot be blocked by 4 mM lanthanum or removal of extracellular calcium. Unlike sodium, potassium stimulates the active Ca++ binding and the activity of the Ca-ATPase of the microsomal fraction. The ative Ca++ binding of the mitochondria is stimulated by both ions. It is postulated that the activity of the plasma membrane Na,K-pump is able to regulate the tonus of big arteries through alteration of Ca++ storage processes.  相似文献   

10.
In this article the electrophysiological events which are believed to underly agonist-induced contraction and relaxation of airway smooth muscle are reviewed, with special emphasis on the indispensable role of the Ca ion. The contribution made by Na, K, Ca and Cl to, and the role that the electrogenic Na:K-dependent ATPase plays in, the maintenance of the resting membrane potential in both normal and sensitised airway smooth muscle cells is described together with the permeability changes that occur in the plasmalemma in response to excitatory and inhibitory agonists. In addition, the currently available evidence for the existence of potential-sensitive and receptor-operated Ca channels in respiratory smooth muscle, and how such channels may be involved in the regulation of airway calibre, is critically assessed.  相似文献   

11.
12.
Theory of excitation-contraction coupling in cardiac muscle.   总被引:41,自引:0,他引:41       下载免费PDF全文
The consequences of cardiac excitation-contraction coupling by calcium-induced calcium release were studied theoretically, using a series of idealized models solved by analytic and numerical methods. "Common-pool" models, those in which the trigger calcium and released calcium pass through a common cytosolic pool, gave nearly all-or-none regenerative calcium releases (in disagreement with experiment), unless their loop gain was made sufficiently low that it provided little amplification of the calcium entering through the sarcolemma. In the linear (small trigger) limit, it was proven rigorously that no common-pool model can give graded high amplification unless it is operated on the verge of spontaneous oscillation. To circumvent this problem, we considered two types of "local-control" models. In the first type, the local calcium from a sarcolemmal L-type calcium channel directly stimulates a single, immediately opposed SR calcium release channel. This permits high amplification without regeneration, but requires high conductance of the SR channel. This problem is avoided in the second type of local control model, in which one L-type channel triggers a regenerative cluster of several SR channels. Statistical recruitment of clusters results in graded response with high amplification. In either type of local-control model, the voltage dependence of SR calcium release is not exactly the same as that of the macroscopic sarcolemmal calcium current, even though calcium is the only trigger for SR release. This results from the existence of correlations between the stochastic openings of individual sarcolemmal and SR channels. Propagation of regenerative calcium-release waves (under conditions of calcium overload) was analyzed using analytically soluble models in which SR calcium release was treated phenomenalogically. The range of wave velocities observed experimentally is easily explained; however, the observed degree of refractoriness to wave propagation requires either a strong dependence of SR calcium release on the rate of rise of cytosolic calcium or localization of SR release sites to one point in the sarcomere. We conclude that the macroscopic behavior of calcium-induced calcium release depends critically on the spatial relationships among sarcolemmal and SR calcium channels, as well as on their kinetics.  相似文献   

13.
The use of drugs in the study of excitation-contraction (E-C) coupling in skeletal muscle during the 25-30 years and the role of these studies in the development of the "trigger-calcium" hypothesis was reviewed. In early studies, caffeine was used as a tool to test the function of the intracellular contraction apparatus when the twitch or depolarization contracture was eliminated by a procedure that was thought to block the coupling part of the E-C coupling process. Later it was shown that caffeine produced contractures by releasing Ca2+ ions from intracellular binding sites and then that caffeine produced this effect by sensitizing the sarcoplasmic reticulum to Ca2+-induced Ca2+ release. More recently, organic calcium channel blocking drugs (verapamil, D-600, and nitrendipine) were used to confirm earlier results showing that depolarization contractures but not twitches require the entrance into the cells via the slow Ca2+ channels of extracellular calcium ions for E-C coupling. Most recently, we have investigated the effects of TMB-8 (8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate) on E-C coupling in frog skeletal muscle. This compound was shown by other workers to act in several tissues by stabilizing Ca2+ bound at intracellular sites. It was found that at the appropriate concentration TMB-8 blocked twitches but neither high K+ nor caffeine induced contractures. These results suggest that TMB-8 blocks twitches by preventing the release of Ca2+ ions bound to the intracellular surface of the t-tubular membrane, which is often called the store of "trigger-calcium" ions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
The role of inositol trisphosphate as a chemical messenger in excitation-contraction coupling is discussed, both in terms of positive and negative results. The evidence presented includes experiments on the effect of inositol trisphosphate in intact and skinned fibers, in calcium release from isolated sarcoplasmic reticulum vesicles, in activation of single calcium release channels incorporated in planar bilayers, and biochemical experiments that have established the presence of all the intermediate steps involved in the metabolism of phosphoinositides, both in intact muscle and in isolated membranes. From these results, it is clear that a role for inositol triphosphate in skeletal muscle function is highly likely; whether this molecule is the physiological messenger in excitation-contraction coupling remains to be established.  相似文献   

16.
17.
Much recent progress has been made in our understanding of the mechanism of sarcoplasmic reticulum Ca2+ release in skeletal muscle. Vertebrate skeletal muscle excitation-contraction (E-C) coupling is thought to occur by a mechanical coupling mechanism involving protein-protein interactions that lead to activation of the sarcoplasmic reticulum (SR) ryanodine receptor (RyR)/Ca2+ release channel by the voltage-sensing transverse (T–) tubule dihydropyridine receptor (DHPR)/Ca2+ channel. In a subsequent step, the released Ca2+ amplify SR Ca2+ release by activating release channels that are not linked to the DHPR. Experiments with mutant muscle cells have indicated that skeletal muscle specific DHPR and RyR isoforms are required for skeletal muscle E-C coupling. A direct functional and structural interaction between a DHPR-derived peptide and the RyR has been described. The interaction between the DHPR and RyR may be stabilized by other proteins such as triadin (a SR junctional protein) and modulated by phosphorylation of the DHPR.  相似文献   

18.
The beta1a subunit of the skeletal muscle voltage-gated Ca2+ channel plays a fundamental role in the targeting of the channel to the tubular system as well as in channel function. To determine whether this cytosolic auxiliary subunit is also a regulatory protein of Ca2+ release from the sarcoplasmic reticulum in vivo, we pressure-injected the beta1a subunit into intact adult mouse muscle fibers and recorded, with Fluo-3 AM, the intracellular Ca2+ signal induced by the action potential. We found that the beta1a subunit significantly increased, within minutes, the amplitude of Ca2+ release without major changes in its time course. beta1a subunits with the carboxy-terminus region deleted did not show an effect on Ca2+ release. The possibility that potentiation of Ca2+ release is due to a direct interaction between the beta1a subunit and the ryanodine receptor was ruled out by bilayer experiments of RyR1 single-channel currents and also by Ca2+ flux experiments. Our data suggest that the beta1a subunit is capable of regulating E-C coupling in the short term and that the integrity of the carboxy-terminus region is essential for its modulatory effect.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号