首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dienelactone hydrolases (EC 3.1.1.45) have been shown to play an indispensable role in the degradation of chloroaromatic compounds via ortho-cleavage of chlorocatechols. We report on the purification of dienelactone hydrolase of the chlorophenol-utilizing strain Rhodococcus erythropolis 1CP to apparent homogeneity. Dienelactone hydrolase differed fron the corresponding enzymes of other chloroaromatic compound-catabolizing strains in being restricted to substrates with a cis-dienelactone structure. From the cis-dienelactone-hydrolyzing enzyme of a 4-fluorobenzoate-utilizing Burkholderia (Pseudomonas) cepacia strain, it differed considerably in properties such as pH optimum of activity, inhibition by p-chloromercuribenzoate, and amino acid composition. Thus, there is not necessarily a close relationship between substrate specificity and other properties of dienelactone hydrolases.  相似文献   

2.
To develop a transposable element-based system for mutagenesis in Rhodococcus, we used the sacB gene from Bacillus subtilis to isolate a novel transposable element, IS1676, from R. erythropolis SQ1. This 1693 bp insertion sequence is bounded by imperfect (10 out of 13 bp) inverted repeats and it creates 4 bp direct repeats upon insertion. Comparison of multiple insertion sites reveals a preference for the sequence 5′-(C/T)TA(A/G)-3′ in the target site. IS1676 contains a single, large (1446 bp) open reading frame with coding potential for a protein of 482 amino acids. IS1676 may be similar to an ancestral transposable element that gave rise to repetitive sequences identified in clinical isolates of Mycobacteriumkansasii. Derivatives of IS1676 should be useful for analysis of Rhodococcus strains, for which few other genetic tools are currently available. Received: 1 April 1999 / Received revision: 6 July 1999 / Accepted: 1 August 1999  相似文献   

3.
Muconate cycloisomerase (EC 5.5.1.1) and chloromuconate cycloisomerase (EC 5.5.1.7) were purified from extracts of Rhodococcus erythropolis 1CP cells grown with benzoate or 4-chlorophenol, respectively. Both enzymes discriminated between the two possible directions of 2-chloro-cis, cis-muconate cycloisomerization and converted this substrate to 5-chloromuconolactone as the only product. In contrast to chloromuconate cycloisomerases of gram-negative bacteria, the corresponding R. erythropolis enzyme is unable to catalyze elimination of chloride from (+)-5-chloromuconolactone. Moreover, in being unable to convert (+)-2-chloromuconolactone, the two cycloisomerases of R. erythropolis 1CP differ significantly from the known muconate and chloromuconate cycloisomerases of gram-negative strains. The catalytic properties indicate that efficient cycloisomerization of 3-chloro- and 2,4-dichloro-cis,cis-muconate might have evolved independently among gram-positive and gram-negative bacteria.  相似文献   

4.
5.
Carbendazim (methyl 1H-benzimidazol-2-yl carbamate) is one of the most widely used fungicides in agriculture worldwide, but has been reported to have adverse effects on animal health and ecosystem function. A highly efficient carbendazim-degrading bacterium (strain dj1-11) was isolated from carbendazim-contaminated soil samples via enrichment culture. Strain dj1-11 was identified as Rhodococcus erythropolis based on morphological, physiological and biochemical characters, including sequence analysis of the 16S rRNA gene. In vitro degradation of carbendazim (1000 mg·L−1) by dj1-11 in minimal salts medium (MSM) was highly efficient, and with an average degradation rate of 333.33 mg·L−1·d−1 at 28°C. The optimal temperature range for carbendazim degradation by dj1-11 in MSM was 25–30°C. Whilst strain dj1-11 was capable of metabolizing cabendazim as the sole source of carbon and nitrogen, degradation was significantly (P<0.05) increased by addition of 12.5 mM NH4NO3. Changes in MSM pH (4–9), substitution of NH4NO3 with organic substrates as N and C sources or replacing Mg2+ with Mn2+, Zn2+ or Fe2+ did not significantly affect carbendazim degradation by dj1-11. During the degradation process, liquid chromatography-mass spectrometry (LC-MS) detected the metabolites 2-aminobenzimidazole and 2-hydroxybenzimidazole. A putative carbendazim-hydrolyzing esterase gene was cloned from chromosomal DNA of djl-11 and showed 99% sequence homology to the mheI carbendazim-hydrolyzing esterase gene from Nocardioides sp. SG-4G.  相似文献   

6.
Lipophilic compounds of the culture suspension containing Rhodococcus erythropolis DSM43215 had surfactant properties when the bacteria were cultivated with n-alkanes as the sole carbon source. Thirteen main components from a dichloromethane-methanol extract of the R. erythropolis cultures were isolated and characterized to specify quantitatively their surfactant properties, e.g., minimum surface and interfacial tensions and critical micelle concentrations. The interfacial activity of the organic extract was dominated by α,α-trehalose-6,6′-dicorynomycolates which reduced interfacial tension from 44 to 18 mN/m. Phosphatidylethanolamines which were also present in the organic extract reduced the interfacial tension below 1 mN/m. The trehalose corynomycolates had extremely low critical micelle concentrations in high-salinity solutions, and the interfacial properties were stabile in solutions with a wide range of pH and ionic strength.  相似文献   

7.
The nocardioform actinomycete Rhodococcus erythropolis has a characteristic cell wall structure. The cell wall is composed of arabinogalactan and mycolic acid and is highly resistant to the cell wall-lytic activity of lysozyme (muramidase). In order to improve the isolation of recombinant proteins from R. erythropolis host cells (N. Nakashima and T. Tamura, Biotechnol. Bioeng. 86:136-148, 2004), we isolated two mutants, L-65 and L-88, which are susceptible to lysozyme treatment. The lysozyme sensitivity of the mutants was complemented by expression of Corynebacterium glutamicum ltsA, which codes for an enzyme with glutamine amidotransferase activity that results from coupling of two reactions (a glutaminase activity and a synthetase activity). The lysozyme sensitivity of the mutants was also complemented by ltsA homologues from Bacillus subtilis and Mycobacterium tuberculosis, but the homologues from Streptomyces coelicolor and Escherichia coli did not complement the sensitivity. This result suggests that only certain LtsA homologues can confer lysozyme resistance. Wild-type recombinant LtsA from R. erythropolis showed glutaminase activity, but the LtsA enzymes from the L-88 and L-65 mutants displayed drastically reduced activity. Interestingly, an ltsA disruptant mutant, which expressed the mutated LtsA, changed from lysozyme sensitive to lysozyme resistant when NH(4)Cl was added into the culture media. The glutaminase activity of the LtsA mutants inactivated by site-directed mutagenesis was also restored by addition of NH(4)Cl, indicating that NH(3) can be used as an amide donor molecule. Taken together, these results suggest that LtsA is critically involved in mediating lysozyme resistance in R. erythropolis cells.  相似文献   

8.
Summary A Rhodococcus erythropolis strain was isolated from soil on the basis of its ability to use acetaminophen as the sole source of both carbon and energy for growth. When grown in a complex medium containing an anilide inducer compound, the bacterium exhibited aryl acylamidase (EC 3.5.1.13) activity. This activity was not subject to carbon or nitrogen repression by the growth medium constituents as the enzyme was present throughout the exponential growth phase. The anilide was converted to the corresponding aniline, which was not further degraded. The enzyme was partially purified by a variety of methods including a batch ion exchange procedure, column ion exchange chromatography and hydrophobic interaction chromatography. The enzyme had a maximum activity at around pH 8.0 and had a Km for acetaminophen of 0.11 mM. Electrochemical assays of aryl acylamidase activity are described. The enzyme is suitable for use as a reagent in the clinical diagnostic measurement of acetaminophen. Offprint requests to: P. A. Vaughan  相似文献   

9.
The bioflocculant produced by Rhodococcus erythropolis S-1 was found to exist as huge assemblies, the molecular mass of which is over one million daltons, composed of many polypeptides and lipids in aqueous solution. We have isolated and purified this lipid bioflocculant by ultracentrifugation, extracting with 90% acetone, and two successive silica gel chromatographies from the culture broth. It was homogeneous on silica gel thin-layer chromatography. 1H-NMR and HPLC studies showed that it was a kind of glycolipid that contained a C16 methylene chain on the average and glucose in its chemical structure. The flocculating activity against kaolin clay suspension was dependent on the Ca2+ concentration.  相似文献   

10.
The ability of propane-assimilating microorganisms of the genus Rhodococcusto utilize metabolites of the terminal and subterminal pathways of propane oxidation was studied. Propane monooxygenase of Rhodococcus erythropolis3/89 was shown to be an inducible enzyme catalyzing epoxidation and hydroxylation of organic compounds. The optimum conditions for the epoxidation of gaseous and liquid alkenes and the hydroxylation of aromatic carbohydrates were found.  相似文献   

11.
Gentisate 1,2-dioxygenase, which participates in salicylate and m-hydroxybenzoate metabolism, was purified from cell-free extracts of Rhodococcus erythropolis S-1, a Gram-positive bacterium. The purified enzyme gave a single band on native PAGE and SDS–PAGE. The molecular mass of the enzyme was estimated to be 328 kDa. The structure of the enzyme appears to be an octamer of identical subunits. The enzyme from this bacterium was similar in general enzymatic properties to a gentisate 1,2-dioxygenase from a Gram-negative bacterium except for molecular mass and structure.  相似文献   

12.
13.
14.
A dibenzothiophene (DBT)-degrading bacterium, Rhodococcus erythropolis D-1, which utilized DBT as a sole source of sulfur, was isolated from soil. DBT was metabolized to 2-hydroxybiphenyl (2-HBP) by the strain, and 2-HBP was almost stoichiometrically accumulated as the dead-end metabolite of DBT degradation. DBT degradation by this strain was shown to proceed as DBT → DBT sulfone → 2-HBP. DBT at an initial concentration of 0.125 mM was completely degraded within 2 days of cultivation. DBT at up to 2.2 mM was rapidly degraded by resting cells within only 150 min. It was thought this strain had a higher DBT-desulfurizing ability than other microorganisms reported previously.  相似文献   

15.
16.
Rhodococcus sp. strain IGTS8 possesses an enzymatic pathway that can remove covalently bound sulfur from dibenzothiophene (DBT) without breaking carbon-carbon bonds. The DNA sequence of a 4.0-kb BstBI-BsiWI fragment that carries the genes for this pathway was determined. Frameshift and deletion mutations established that three open reading frames were required for DBT desulfurization, and the genes were designated soxABC (for sulfur oxidation). Each sox gene was subcloned independently and expressed in Escherichia coli MZ1 under control of the inducible lambda pL promoter with a lambda cII ribosomal binding site. SoxC is an approximately 45-kDa protein that oxidizes DBT to DBT-5,5'-dioxide. SoxA is an approximately 50-kDa protein responsible for metabolizing DBT-5,5'-dioxide to an unidentified intermediate. SoxB is an approximately 40-kDa protein that, together with the SoxA protein, completes the desulfurization of DBT-5,5'-dioxide to 2-hydroxybiphenyl. Protein sequence comparisons revealed that the predicted SoxC protein is similar to members of the acyl coenzyme A dehydrogenase family but that the SoxA and SoxB proteins have no significant identities to other known proteins. The sox genes are plasmidborne and appear to be expressed as an operon in Rhodococcus sp. strain IGTS8 and in E. coli.  相似文献   

17.
A molecular screening approach was developed in order to amplify the genomic region that codes for the alpha- and beta-subunits of the nitrile hydratase (NHase) enzyme in rhodococci. Specific PCR primers were designed for the NHase genes from a collection of nitrile-degrading actinomycetes, but amplification was successful only with strains identified as Rhodococcus erythropolis. A hydratase PCR product was also obtained from R. erythropolis DSM 43066(T), which did not grow on nitriles. Southern hybridization of other members of the nitrile-degrading bacterial collection resulted in no positive signals other than those for the R. erythropolis strains used as positive controls. PCR-restriction fragment length polymorphism-single-strand conformational polymorphism (PRS) analysis of the hydratases in the R. erythropolis strains revealed unique patterns that mostly correlated with distinct geographical sites of origin. Representative NHases were sequenced, and they exhibited more than 92.4% similarity to previously described NHases. The phylogenetic analysis and deduced amino acid sequences suggested that the novel R. erythropolis enzymes belonged to the iron-type NHase family. Some different residues in the translated sequences were located near the residues involved in the stabilization of the NHase active site, suggesting that the substitutions could be responsible for the different enzyme activities and substrate specificities observed previously in this group of actinomycetes. A similar molecular screening analysis of the amidase gene was performed, and a correlation between the PRS patterns and the geographical origins identical to the correlation found for the NHase gene was obtained, suggesting that there was coevolution of the two enzymes in R. erythropolis. Our findings indicate that the NHase and amidase genes present in geographically distinct R. erythropolis strains are not globally mixed.  相似文献   

18.
Rhodococcus sp. strain RHA1, a potent polychlorinated-biphenyl (PCB)-degrading strain, contains three linear plasmids ranging in size from 330 to 1,100 kb. As part of a genome sequencing project, we report here the complete sequence and characterization of the smallest and least-well-characterized of the RHA1 plasmids, pRHL3. The plasmid is an actinomycete invertron, containing large terminal inverted repeats with a tightly associated protein and a predicted open reading frame (ORF) that is similar to that of a mycobacterial rep gene. The pRHL3 plasmid has 300 putative genes, almost 21% of which are predicted to have a catabolic function. Most of these are organized into three clusters. One of the catabolic clusters was predicted to include limonene degradation genes. Consistent with this prediction, RHA1 grew on limonene, carveol, or carvone as the sole carbon source. The plasmid carries three cytochrome P450-encoding (CYP) genes, a finding consistent with the high number of CYP genes found in other actinomycetes. Two of the CYP genes appear to belong to novel families; the third belongs to CYP family 116 but appears to belong to a novel class based on the predicted domain structure of its reductase. Analyses indicate that pRHL3 also contains four putative "genomic islands" (likely to have been acquired by horizontal transfer), insertion sequence elements, 19 transposase genes, and a duplication that spans two ORFs. One of the genomic islands appears to encode resistance to heavy metals. The plasmid does not appear to contain any housekeeping genes. However, each of the three catabolic clusters contains related genes that appear to be involved in glucose metabolism.  相似文献   

19.
Three types of monohydroxybenzoate oxygenase, salicylate 5-oxygenase (SAL5O) forming gentisate from salicylate, m-hydroxybenzoate 6-oxygenase (MHB6O) forming gentisate from m-hydroxybenzoate, and p-hydroxybenzoate 3-oxygenase (PHB3O) forming protocatechuate from p-hydroxybenzoate, were purified from a cell-free extract of Rhodococcus erythropolis S-1, a Gram-positive bacterium. Each purified enzyme was homogenous on native PAGE. Each enzyme was a tetramer having identical subunits, a flavoporotein containing FAD, and a NADH-dependent monooxygenase. The three enzymes were much alike in general enzymatic properties, but very different in substrate specificity.  相似文献   

20.
The inducible steroid-1-dehydrogenase from the bacterium Rhodococcus erythropolis IMET 7030 was purified to homogeneity using affinity chromatographic, electrophoretic, and ion exchange techniques. The spectrum of the pure enzyme is characterized by the associated FAD. The M(r) of the enzyme is 56,000. The amino acid composition and the sequence of the 13 N-terminal amino acids are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号