首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anatomical and functional studies support segregation of the hippocampus into ventral and dorsal components along its septotemporal axis. However, it is unknown whether the development of these two components of the hippocampus is influenced by common or separate genetic factors. In this study, we used recombinant inbred strains of mice to determine whether the same or different quantitative trait loci (QTL) influence ventral and dorsal hippocampal volume. Using two sets of strains of recombinant inbred mice (BXD and AXB/BXA), we identified separate QTLs for ventral and dorsal hippocampal volume. In BXD mice, suggestive QTLs for ventral hippocampus were identified on chromosomes 2, 8 and 13, and a significant QTL for dorsal hippocampal volume was identified on chromosome 15. There was also a suggestive QTL for dorsal hippocampal volume on chromosome 13. In AXB/BXA mice, there were no significant or suggestive QTLs for ventral hippocampal volume, but a significant QTL for dorsal hippocampus was identified on chromosome 5. These findings suggest that the development of the ventral and dorsal components of the hippocampus is influenced by separate genetic loci.  相似文献   

2.
3.
目的探讨组蛋白去乙酰化酶2(HDAC2)在成年C57BL/6小鼠海马内的分布及其与突触后致密区(PSD)蛋白成员的共定位,为揭示HDAC2与PSD蛋白复合物之间的内在联系及在海马相关的学习记忆过程中可能起到的调控作用提供形态学依据。方法应用免疫组化方法观察HDAC2在C57BL/6小鼠海马各区的表达分布。应用免疫荧光双标技术研究HDAC2与PSD蛋白成员N-甲基-D-天冬氨酸(NMDA)受体亚单位1(NR1)、PSD-95之间是否存在共定位。结果 HDAC2在小鼠海马CA1~CA3区锥体细胞和齿状回颗粒细胞均具有明显表达,而在各区的始层、辐射层、腔隙-分子层以及齿状回多形细胞层表达均较少。免疫荧光双标染色图片的重叠表明,HDAC2与NR1、PSD-95在小鼠海马CA1~CA3区锥体细胞层和齿状回颗粒细胞层内均可见显著共表达现象,其他区域偶见散在分布的双染神经元。结论 HDAC2在小鼠海马锥体细胞层和颗粒细胞层表达丰富,并与PSD蛋白成员间存在共定位现象。本实验结果为探讨HDAC2对谷氨酸能突触后神经元依赖的突触可塑性的调节机制提供了形态学依据。  相似文献   

4.
Natural variation in the absolute and relative size of different parts of the human brain is substantial, with a range that often exceeds a factor of 2. Much of this variation is generated by the cumulative effects of sets of unknown gene variants that modulate the proliferation, growth and death of neurons and glial cells. Discovering and testing the functions of these genes should contribute significantly to our understanding of differences in brain development, behavior and disease susceptibility. We have exploited a large population of genetically well-characterized strains of mice (BXD recombinant inbred strains) to map gene variants that influence the volume of the dorsal striatum (caudate–putamen without nucleus accumbens). We used unbiased methods to estimate volumes bilaterally in a sex - balanced sample taken from the Mouse Brain Library ( www.mbl.org ). We generated a matched microarray data set to efficiently evaluate candidate genes ( www.genenetwork.org ). As in humans, volume of the striatum is highly heritable, with greater than twofold differences among strains. We mapped a locus that modulates striatal volume on chromosome (Chr) 6 at 88   ±   5   Mb. We also uncovered an epistatic interaction between loci on Chr 6 and Chr 17 that modulates striatal volume. Using bioinformatic tools and the corresponding expression database, we have identified positional candidates in these quantitative trait locus intervals.  相似文献   

5.
Using the phage P1-derived Cre/loxP recombination system, we have created a line of cre-transgenic mice in which the Cre-mediated gene deletion is restricted to granule cells of cerebellum and dentate gyrus of hippocampus. Low levels of deletion were also present in pyramidal cells of hippocampal CA1 and CA3 fields. The Cre/loxP recombination occurred prenatally. The recombination efficiencies in the granular layer of the cerebellum, the granular layer of the dentate gyrus, and the CA1 and CA3 pyramidal cells of the hippocampus were 34.0%, 23.1%, 3.0%, and 9.8%, respectively. This line of cre-transgenic mice should be conducive to studies of the effect of a gene mutation upon brain development and plasticity.  相似文献   

6.
Reelin is a positional signal for the lamination of dentate granule cells   总被引:7,自引:0,他引:7  
Reelin is required for the proper positioning of neurons in the cerebral cortex. In the reeler mutant lacking reelin, the granule cells of the dentate gyrus fail to form a regular, densely packed cell layer. Recent evidence suggests that this defect is due to the malformation of radial glial processes required for granule cell migration. Here, we show that recombinant reelin in the medium significantly increases the length of GFAP-positive radial glial fibers in slice cultures of reeler hippocampus, but does not rescue either radial glial fiber orientation or granule cell lamination. However, rescue of radial glial fiber orientation and granule cell lamination was achieved when reelin was present in the normotopic position provided by wild-type co-culture, an effect that is blocked by the CR-50 antibody against reelin. These results indicate a dual function of reelin in the dentate gyrus, as a differentiation factor for radial glial cells and as a positional cue for radial fiber orientation and granule cell migration.  相似文献   

7.
8.
CNKSR2 is a synaptic scaffolding molecule that is encoded by the CNKSR2 gene located on the X chromosome. Heterozygous mutations to CNKSR2 in humans are associated with intellectual disability and epileptic seizures, yet the cellular and molecular roles for CNKSR2 in nervous system development and disease remain poorly characterized. Here, we identify a molecular complex comprising CNKSR2 and the guanine nucleotide exchange factor (GEF) for ARF small GTPases, CYTH2, that is necessary for the proper development of granule neurons in the mouse hippocampus. Notably, we show that CYTH2 binding prevents proteasomal degradation of CNKSR2. Furthermore, to explore the functional significance of coexpression of CNKSR2 and CYTH2 in the soma of granule cells within the hippocampal dentate gyrus, we transduced mouse granule cell precursors in vivo with small hairpin RNAs (shRNAs) to silence CNKSR2 or CYTH2 expression. We found that such manipulations resulted in the abnormal localization of transduced cells at the boundary between the granule cell layer and the hilus. In both cases, CNKSR2-knockdown and CYTH2-knockdown cells exhibited characteristics of immature granule cells, consistent with their putative roles in neuron differentiation. Taken together, our results demonstrate that CNKSR2 and its molecular interaction partner CYTH2 are necessary for the proper development of dentate granule cells within the hippocampus through a mechanism that involves the stabilization of a complex comprising these proteins.  相似文献   

9.
Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models.  相似文献   

10.
目的研究生长休止蛋白7(Gas7)在大鼠海马和齿状回不同发育阶段的表达。方法采用免疫组织化学方法观察Gas7在SD大鼠胚胎第18d(E18)、新生(P0)、生后第7d(P7)、P14、P21和成年海马和齿状回中的表达和分布。结果在大鼠脑海马和齿状回部位的冠状切片上,Gas7免疫反应阳性产物主要表达在海马的锥体细胞、齿状回的颗粒细胞和门区的多形层细胞。随着发育的进程,在海马,Gas7较早表达在CA3区,其次是CA2和CA1区;在齿状回,Gas7在外臂的表达早于内臂,在颗粒细胞层的表达是按先外层后内层的顺序。在围生期,Gas7在海马和齿状回各区的表达逐渐增强,至P14达到高峰,后逐渐降低,至P21其表达强度和分布趋于恒定至成年水平。结论 Gas7在大鼠海马和齿状回发育过程中的动态表达具有时间和空间上的特异性,提示Gas7可能参与了海马和齿状回形态形成和功能成熟的调控。  相似文献   

11.
The continuous generation of new neurons from stem cells in the hippocampal dentate gyrus is considered an important contributor to hippocampal plasticity. A prerequisite for the life-long generation of new dentate granule neurons is the maintenance of the neural stem cell pool. A number of essential molecular regulators and signals for hippocampal neural stem cell maintenance have been identified, but how these pathways interact to prevent precocious differentiation or exhaustion of the stem cell pool is currently unknown. Here, we summarize the current knowledge on the molecular regulation of the hippocampal stem cell pool and discuss the possibility that signal integration through Notch signaling controls stem cell maintenance in the adult hippocampus.  相似文献   

12.
Computer simulations of external current stimulations of dentate gyrus granule cells of rats with Status Epilepticus induced by pilocarpine and control rats were used to evaluate whether morphological differences alone between these cells have an impact on their electrophysiological behavior. The cell models were constructed using morphological information from tridimensional reconstructions with Neurolucida software. To evaluate the effect of morphology differences alone, ion channel conductances, densities and distributions over the dendritic trees of dentate gyrus granule cells were the same for all models. External simulated currents were injected in randomly chosen dendrites belonging to one of three different areas of dentate gyrus granule cell molecular layer: inner molecular layer, medial molecular layer and outer molecular layer. Somatic membrane potentials were recorded to determine firing frequencies and inter-spike intervals. The results show that morphologically altered granule cells from pilocarpine-induced epileptic rats are less excitable than control cells, especially when they are stimulated in the inner molecular layer, which is the target area for mossy fibers that sprout after pilocarpine-induced cell degeneration. This suggests that morphological alterations may act as a protective mechanism to allow dentate gyrus granule cells to cope with the increase of stimulation caused by mossy fiber sprouting.  相似文献   

13.
In the hippocampus, neurons and fiber projections are strictly organized in layers and supplied with oxygen via a vascular network that also develops layer-specific characteristics in wild-type mice, as shown in the present study for the first time in a quantitative manner. By contrast, in the reeler mutant, well known for its neuronal migration defects due to the lack of the extracellular matrix protein reelin, emerging layer-specific characteristics of the vascular pattern were found to be remodeled during development of the dentate gyrus. Remarkably, in the first postnatal week, when a granule cell layer was still discernable in the reeler dentate gyrus, also the reeler vascular pattern resembled wild type. Thus, at postnatal day 6, unbranched microvessels traversed the granule cell layer and bifurcated when reaching the subgranular zone. Only after the first postnatal week vascular network remodeling in the reeler dentate gyrus became apparent, when the proportion of dispersed granule cells increased. Hence, vessel bifurcation frequency decreased in the maturing reeler dentate gyrus, but increased in wild type, resulting in significant differences (approx. 100%; p < 0.01) between adult wild type and reeler. Moreover, layer-specific vessel bifurcation frequencies disappeared in the maturing reeler dentate gyrus. Finally, a wild type-like vascular pattern was also found in the dentate gyrus of mice deficient for the reelin receptor very low density lipoprotein receptor (VLDLR), precluding a requirement of VLDLR for normal vascular pattern formation in the dentate gyrus. In sum, our findings show that vascular network remodeling in the reeler dentate gyrus is closely linked to the progression of granule cell dispersion.  相似文献   

14.
本文利用放射自显影方法结合神经毒对海马神经元的选择性损毁观察AVP(4-8)结合点在大鼠海马内的分布和定位;利用外源性AVP(4-8)对新生大鼠的处理,观察海马AVP(4-8)结合点的发育调节。在成年大鼠海马内,AVP(4-8)结合点集中分布在整个海马的锥体细胞层和齿回的颗粒细胞层。秋水仙碱处理后,齿回颗粒细胞层消失,齿回区的AVP(4-8)结合点也消失。红藻氨酸(Kainicacid)处理后海马CA3-CA4的锥体细胞层消失,该区的AVP(4-8)结合点也消失。新生大鼠海马锥体细胞层的AVP(4-8)结合点在出生后第6天开始出现,齿回颗粒细胞层的AVP(4-8)结合点在出生后第7天开始出现。然而,新生大鼠每天经外源性AVP(4-8)处理,海马锥体细胞层和齿回颗粒细胞层的结合点均在出生后第5天已变得十分稠密。本文就大鼠海马AVP(4-8)结合点的特异性分布和AVP(4-8)处理促进海马AVP(4-8)结合点的发育与成年后大鼠学习能力的提高的相互关系作了讨论。  相似文献   

15.
Sousa  N  Madeira  M. D  Paula-Barbosa  M. M 《Brain Cell Biology》1997,26(6):423-438
Previous studies have demonstrated that adrenalectomy rapidly induces cell death in hippocampal formation. However, these previous studies have involved only qualitative observations or biased estimates. Therefore, the selectivity of the effects of adrenalectomy and the magnitude of changes occurring, remain controversial. The present work employed unbiased stereological tools to examine the effects of adrenalectomy on the number of neurons in, and the volume of, the hippocampal formation. Male rats were adrenalectomized 15,30 or 120 days before sacrifice at 180 days of age. The total number of neurons in the somal layers and hilus of the hippocampal formation was estimated using the optical fractionator. The volume of the different layers of each subdivision in the hippocampal formation was determined according to the Cavalieri principle. A progressive reduction, reaching 43%, was found in the total number of granule cells. Adrenalectomized animals exhibited a reduction in the volume of all layers of the dentate gyrus. No other region of the hippocampal formation displayed significant cell loss or a reduction in volume. In addition, the main neuronal subpopulations of the dentate gyrus were also evaluated, and a reduction in the total number of GABA- and neuropeptide Y-immunoreactive neurons in the molecular and granule cell layers of adrenalectomized rats was found. No quantitative changes were observed in the hilus. To characterize the glial response to the neuronal degeneration, we estimated the total number of cells immunoreactive for glial fibrillary acidic protein in the dentate gyrus. Although no variation in the total number of glial cells was found, signs of astroglial activation were observed in the adrenalectomized group. The present data strengthen the evidence pointing to the critical role of corticosteroids in maintaining the structural integrity of the dentate gyrus.  相似文献   

16.
17.
In this study, we investigated age-related changes in glucagon-like peptide-1 receptor (GLP-1R) immunoreactivity and its protein levels in the gerbil hippocampus during normal aging. In the postnatal month 3 (PM 3) group, GLP-1R immunoreaction was well observed in neurons, especially pyramidal and non-pyramidal cells in the hippocampus proper, and granule and polymorphic cells in the dentate gyrus. In the hippocampus proper, GLP-1R immunoreactivity in neurons was maintained until PM 24. In the dentate gyrus, however, GLP-1R immunoreactivity in granule cells, not polymorphic cells, was hardly detected from PM 6. Western blot analysis also showed that age-dependent change patterns in GLP-1R protein levels in the gerbil hippocampus were similar to the immunohistochemical changes. These results indicate that GLP-1R immunoreactivity was markedly decreased in dentate granule cells from PM 6, showing that GLP-1R immunoreactivity and its protein levels were decreased in the adult and aged gerbil hippocampus.  相似文献   

18.
New neurons are continuously added to hippocampal circuitry involved with spatial learning and memory throughout life. These new neurons originate from neural stem/progenitor cells (NSPCs) in the subgranular zone (SGZ) of the dentate gyrus (DG). Recent studies indicate that vascular reconstruction is closely connected with neurogenesis, but little is known about its mechanism. We have examined vascular reconstruction in the hippocampus of adult mouse brain after the administration of the antidepressant fluoxetine, a potent inducer of hippocampal neurogenesis. The immunohistochemistry of laminin and CD31 showed that filopodia of endothelial cells sprouted from existing thick microvessels and often formed a bridge between two thick microvessels. These filopodia were frequently seen at the molecular layer and dentate hilus of the DG, the stratum lacunosum-moleculare of the CA1, and the stratum oriens of the CA3. The filopodia were exclusively localized along cellular processes of astrocytes, but such intimate association was not seen with cell bodies and processes of NSPCs. The administration of fluoxetine significantly increased vascular density by enlarging the luminal size of microvessels and eliminating the filopodia of endothelial cells in the molecular layer and dentate hilus. Treatment with fluoxetine increased the number of proliferating NSPCs in the granule cell layer and dentate hilus, and that of endothelial cells in the granule cell layer. Thus, antidepressant-induced vascular dynamics in the DG are possibly attributable to the alteration of the luminal size of microvessels rather than to proliferation of endothelial cells.  相似文献   

19.
Mice mutant for the presynaptic protein Bassoon develop epileptic seizures and an altered pattern of neuronal activity that is accompanied by abnormal enlargement of several brain structures, with the strongest size increase in hippocampus and cortex. Using manganese-enhanced magnetic resonance imaging, an abnormal brain enlargement was found, which is first detected in the hippocampus 1 month after birth and amounts to an almost 40% size increase of this structure after 3 months. Stereological quantification of cell numbers revealed that enlargement of the dentate gyrus and the hippocampus proper is associated with larger numbers of principal neurons and of astrocytes. In search for the underlying mechanisms, an approximately 3-fold higher proportion of proliferation and survival of new-born cells in the dentate gyrus was found to go hand in hand with similarly larger numbers of doublecortin-positive cells and reduced numbers of apoptotic cells in the dentate gyrus and the hippocampus proper. Enlargement of the hippocampus and of other forebrain structures was accompanied by increased levels of brain-derived neurotrophic factor (BDNF). These data show that hippocampal overgrowth in Bassoon-mutant mice arises from a dysregulation of neurogenesis and apoptosis that might be associated with unbalanced BDNF levels.  相似文献   

20.
Abstract: Animals trained in a passive avoidance task exhibit a transient time-dependent increase in hippocampal neural cell adhesion molecule (NCAM) polysialylation at 12–24 h following the initial learning trial. Using immunocytochemical techniques with a monoclonal antibody that specifically recognises NCAM-polysialic acid homopolymers, a distinct population of granule-like cells, at the border of the granule cell layer and the hilus in the dentate gyrus of the adult rat hippocampus, has been demonstrated to exhibit time-dependent change in frequency at 10–12 h following the initial learning of a one-trial, step-through, passive avoidance response. These changes were paradigm specific as they failed to occur in those animals rendered amnesic with scopolamine. These polysialylated dentate neurons are not de novo granule cell precursors as administration of 5-bromo-2'-deoxyuridine every 2 h from the point of learning to the 12-h posttraining time showed no significant difference between trained and passive animals in the small number of heterogeneously distributed, labelled cells. These findings directly identify a morphological substrate of memory, implied by previous correlative and interventive studies on NCAM function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号