首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the efficacy of conjugated quercetin metabolites as attenuators for oxidative stress in the central nervous system, we measured the 13-hydroperoxyoctadecadienoic acid (13-HPODE)-dependent formation of reactive oxygen species (ROS) in pheochromocytoma PC-12 cells in the presence of quercetin 3-O-β-glucuronide (Q3GA) and related compounds. A 2′,7′-dichlorofluorescin (DCFH) assay showed that Q3GA significantly suppressed the formation of ROS, when it was coincubated with 13-HPODE (coincubation system). However, it was less effective than quercetin aglycon in the concentration range from 0.5 to 10 μM. In an experiment in which the cells were incubated with the test compounds for 24 h before being exposed to 13-HPODE, Q3GA was also effective in suppressing the formation of ROS in spite that little Q3GA was taken up into the cells. These results suggest that antioxidative metabolites of quercetin are capable of protecting nerve cells from attack of lipid hydroperoxides.  相似文献   

2.
To clarify the antioxidative role of quercetin metabolites in cellular oxidative stress, we measured the inhibitory effects of the quercetin aglycon and quercetin 3-O-beta-D-glucuronide (Q3GA), which is one of the quercetin metabolites in the blood after an intake of quercetin-rich food, on the production of hydrogen peroxide (H2O2)-induced intracellular reactive oxygen species in mouse fibroblast 3T3 cultured cells. When the cells were exposed to H2O2 in the presence of quercetin or Q3GA, Q3GA was found to be less effective than quercetin. In the case of a pretreatment with quercetin or Q3GA before the exposure, Q3GA, but not the quercetin aglycon, exerted an inhibitory effect, although its cellular uptake was unlikely. The quercetin aglycon appeared to fail in its antioxidative effect due to metabolic conversion into isorhamnetin conjugates, with substantial oxidative degradation resulting from the pretreatment. It is, therefore, suggested that quercetin metabolites take part in the protection of intracellular oxidative stress induced by the extraneous attack of H2O2.  相似文献   

3.
The potential beneficial effect of dietary quercetin (3,3',4',5,7-pentahydroxyflavone) has attracted much attention in relation to the prevention of cardiovascular disease. It is generally recognized that dietary quercetin is subject to metabolic conversion resulting in conjugated forms during absorption and circulation. However, no quercetin conjugates have yet been identified from biological fluids or tissues. In the present study, we isolated and characterized two quercetin conjugates from the plasma of quercetin-administered rats. The blood plasma was collected from 26 rats 30 min after oral administration of quercetin (250 mg/kg body weight), concentrated, dissolved in 2% acetic acid aqueous solution (pH 2.65), and extracted with ethyl acetate. Two compounds (P2, P3) were obtained from the extract by repeated reversed-phase HPLC. On the other hand, two quercetin glucuronides were synthesized chemically and identified as quercetin 3-O-beta-D-glucuronide (Q3GA) and quercetin 4'-O-beta-D-glucuronide (Q4'GA), as determined from FABMS, 1H- and 13C-NMR, and HMBC data. The retention times of P2 and P3 in the HPLC chromatogram corresponded to those of Q3GA and Q4'GA, respectively. FABMS data demonstrated that P2 and P3 are quercetin monoglucuronides. 1H-NMR data for P2 were completely in agreement with those for Q3GA. P2 was therefore identified as Q3GA. This is, to our knowledge, the first evidence that Q3GA accumulates in vivo after oral administration of quercetin. Q3GA is likely to act as an effective antioxidant in blood plasma low-density lipoprotein, because this conjugated metabolite was found to possess a substantial antioxidant effect on copper ion-induced oxidation of human plasma low-density lipoprotein as well as 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity.  相似文献   

4.

Background

Chronic oral quercetin reduces blood pressure and restores endothelial dysfunction in hypertensive animals. However, quercetin (aglycone) is usually not present in plasma, because it is rapidly metabolized into conjugated, mostly inactive, metabolites. The aim of the study is to analyze whether deconjugation of these metabolites is involved in the blood pressure lowering effect of quercetin.

Methodology/Principal Findings

We have analyzed the effects on blood pressure and vascular function in vitro of the conjugated metabolites of quercetin (quercetin-3-glucuronide, Q3GA; isorhamnetin-3-glucuronide, I3GA; and quercetin-3′-sulfate, Q3''S) in spontaneously hypertensive rats (SHR). Q3GA and I3GA (1 mg/kg i.v.), but not Q3''S, progressively reduced mean blood pressure (MBP), measured in conscious SHR. The hypotensive effect of Q3GA was abolished in SHR treated with the specific inhibitor of β-glucuronidase, saccharic acid 1,4-lactone (SAL, 10 mg/ml). In mesenteric arteries, unlike quercetin, Q3GA had no inhibitory effect in the contractile response to phenylephrine after 30 min of incubation. However, after 1 hour of incubation Q3GA strongly reduced this contractile response and this effect was prevented by SAL. Oral administration of quercetin (10 mg/Kg) induced a progressive decrease in MBP, which was also suppressed by SAL.

Conclusions

Conjugated metabolites are involved in the in vivo antihypertensive effect of quercetin, acting as molecules for the plasmatic transport of quercetin to the target tissues. Quercetin released from its glucuronidated metabolites could be responsible for its vasorelaxant and hypotensive effect.  相似文献   

5.
Quercetin is ubiquitously distributed in plant foods. This antioxidative polyphenol is mostly converted to conjugated metabolites in the body. Parkinson disease (PD) has been suggested to be related to oxidative stress derived from abnormal dopaminergic activity. We evaluated if dietary quercetin contributes to the antioxidant network in the central nervous system from the viewpoint of PD prevention. A neurotoxin, 6-hydroxydopamine (6-OHDA), was used as a model of PD. 6-OHDA-induced H?O? production and cell death in mouse neuroblastoma, Neuro-2a. Quercetin aglycone suppressed 6-OHDA-induced H?O? production and cell death, although aglycone itself reduced cell viability at higher concentration. Quercetin 3-O-β-D-glucuronide (Q3GA), which is an antioxidative metabolite of dietary quercetin, was little incorporated into the cell resulting in neither suppression of 6-OHDA-induced cell death nor reduction of cell viability. Q3GA was found to be deconjugated to quercetin by microglial MG-6 cells. These results indicate that quercetin metabolites should be converted to their aglycone to exert preventive effect on damage to neuronal cells.  相似文献   

6.
《Free radical research》2013,47(8):1019-1028
Abstract

Quercetin is ubiquitously distributed in plant foods. This antioxidative polyphenol is mostly converted to conjugated metabolites in the body. Parkinson disease (PD) has been suggested to be related to oxidative stress derived from abnormal dopaminergic activity. We evaluated if dietary quercetin contributes to the antioxidant network in the central nervous system from the viewpoint of PD prevention. A neurotoxin, 6-hydroxydopamine (6-OHDA), was used as a model of PD. 6-OHDA-induced H2O2 production and cell death in mouse neuroblastoma, Neuro-2a. Quercetin aglycone suppressed 6-OHDA-induced H2O2 production and cell death, although aglycone itself reduced cell viability at higher concentration. Quercetin 3-O-β-d-glucuronide (Q3GA), which is an antioxidative metabolite of dietary quercetin, was little incorporated into the cell resulting in neither suppression of 6-OHDA-induced cell death nor reduction of cell viability. Q3GA was found to be deconjugated to quercetin by microglial MG-6 cells. These results indicate that quercetin metabolites should be converted to their aglycone to exert preventive effect on damage to neuronal cells.  相似文献   

7.
Effect of quercetin and its conjugated metabolite quercetin 3-O-beta-D-glucuronide (Q3GA), on peroxynitrite-induced consumption of lipophilic antioxidants in human plasma low-density lipoprotein (LDL) was measured to estimate the role of dietary flavonoids in the defense system against oxidative modification of LDL based on the reaction of nitric oxide and superoxide anion. Synthesized peroxynitrite-induced consumption of endogenous lycopene beta-carotene and alpha-tocopherol was effectively suppressed by adding quercetin aglycone into LDL solution. Q3GA also inhibited the consumption of these antioxidants effectively. These results indicate that dietary quercetin is capable of inhibiting peroxynitrite-induced oxidative modification of LDL in association with lipophilic antioxidants present within this lipoprotein particle.  相似文献   

8.
Quercetin has strong antioxidant potency. Quercetin-3′-O-sulphate (Q3′S) and quercetin-3-O-glucuronide (Q3GA) are the main circulating metabolites after consumption of quercetin-O-glucoside-rich diets by humans. However, information about how these quercetin metabolites function in vivo is limited. Hence, this study evaluated the efficacy of Q3′S and Q3GA for the protection of oxidative injury using in vitro and in vivo experiments. Peroxynitrite-mediated hepatic injury in rats was induced by administration of galactosamine/lipopolysaccharide (GalN/LPS). Twenty-four hours after GalN/LPS treatment, plasma ALT and AST levels δ increased significantly. However, pretreatment with 4G-α-D-glucopyranosyl rutin, a quercetin glycoside (30 mg/kg body weight), prevented these increases and reduced nitrotyrosine formation, indicating that consumption of quercetin glycosides prevent oxidative hepatotoxicity. Moreover, physiological levels of Q3′S and Q3GA (1 µM) effectively prevented peroxynitrite-induced nitrotyrosine formation in human serum albumin in in vitro experiments. These findings indicate peroxynitrite-induced oxidative hepatotoxicity is protected by the in vivo metabolites of quercetin, Q3′S and Q3GA.  相似文献   

9.
Mitochondria-targeted polyphenols are being developed with the intent to intervene on the levels of reactive oxygen species (ROS) in mitochondria. Polyphenols being more than just anti-oxidants, the interaction of these derivatives with the organelles needs to be characterised. We have studied the effects of two quercetin derivatives, 3-(4-O-triphenylphosphoniumbutyl)quercetin iodide (Q3BTPI) and its tetracetylated analogue (QTA3BTPI), on the inner membrane aspecific permeability, transmembrane voltage difference and respiration of isolated rat liver mitochondria. While the effects of low concentrations were too small to be reliably defined, when used in the 5-20 μM range these compounds acted as inducers of the mitochondrial permeability transition (MPT), an effect due to pro-oxidant activity. Furthermore, Q3BTPI behaved as an uncoupler of isolated mitochondria, causing depolarisation and stimulating oxygen consumption. When applied to tetramethylrhodamine methyl ester (TMRM)-loaded HepG2 or Jurkat cells uptake of the compounds was predictably associated with a loss of TMRM fluorescence, but there was no indication of MPT induction. A production of superoxide could be detected in some cells upon prolonged incubation of MitoSOX®-loaded cells with QTA3BTPI. The overall effects of these model mitochondriotropic polyphenols may thus differ considerably depending on whether their hydroxyls are protected or not and on the experimental system. In vivo assays will be needed for a definitive assessment of their bioactivities.  相似文献   

10.
Epidemiological studies suggest that the consumption of flavonoid-rich diets decreases the risk of cardiovascular diseases. However, the target sites of flavonoids underlying the protective mechanism in vivo are not known. Quercetin represents antioxidative/anti-inflammatory flavonoids widely distributed in the human diet. In this study, we raised a novel monoclonal antibody 14A2 targeting the quercetin-3-glucuronide (Q3GA), a major antioxidative quercetin metabolite in human plasma, and found that the activated macrophage might be a potential target of dietary flavonoids in the aorta. Immunohistochemical studies with monoclonal antibody 14A2 demonstrated that the positive staining specifically accumulates in human atherosclerotic lesions, but not in the normal aorta, and that the intense staining was primarily associated with the macrophage-derived foam cells. In vitro experiments with murine macrophage cell lines showed that the Q3GA was significantly taken up and deconjugated into the much more active aglycone, a part of which was further converted to the methylated form, in the activated macrophages. In addition, the mRNA expression of the class A scavenger receptor and CD36, which play an important role for the formation of foam cells, was suppressed by the treatment of Q3GA. These results suggest that injured/inflamed arteries with activated macrophages are the potential targets of the metabolites of dietary quercetin. Our data provide a new insight into the bioavailability of dietary flavonoids and the mechanism for the prevention of cardiovascular diseases.  相似文献   

11.
The aim of this study was to investigate the potential of quercetin and two of its "in vivo" metabolites, 3'-O-methyl quercetin and 4'-O-methyl quercetin, to protect H9c2 cardiomyoblasts against H(2)O(2)-induced oxidative stress. As limited data are available regarding the potential uptake and cellular effects of quercetin and its metabolites in cardiac cells, we have evaluated the cellular association/uptake of the three compounds and their involvement in the modulation of two pro-survival signalling pathways: ERK1/2 signalling cascade and PI3K/Akt pathway. The three flavonols associated with cells to differing extents. Quercetin and its two O-methylated metabolites were able to reduce intracellular ROS production but only quercetin was able to counteract H(2)O(2) cell damage, as measured by MTT reduction assay, caspase-3 activity and DNA fragmentation assays. Furthermore, only quercetin was observed to modulate pro-survival signalling through ERK1/2 and PI3K/Akt pathway. In conclusion we have demonstrated that quercetin, but not its O-methylated metabolites, exerts protective effects against H(2)O(2) cardiotoxicity and that the mechanism of its action involves the modulation of PI3K/Akt and ERK1/2 signalling pathways.  相似文献   

12.
The flavonol quercetin is one of the most well-known antioxidant flavonoids. Its antioxidant potential has been studied extensively during the last 10 years, but little is known about the metabolites formed in vivo that lead to the formation of depside and small molecules such as benzoic acids. In this study, gamma irradiation of a quercetin methanol solution was used as a model of certain oxidative reactions that occur in vivo. Qercetin at concentrations ranging from 5 x 10(-5) M to 5 x 10(-3) M, was irradiated with gamma rays at doses of 2-14 kGy. Quercetin degradation was evaluated by HPLC analysis. The major radiolytic metabolite was identified as a depside by NMR and LC-MS. Formation of 3,4-dihydroxybenzoic acid was also observed. The presence of CH3O. formed during methanol radiolysis is invoked to explain depside formation. Transformation of the 8-methoxy substituted depside (Q1) to the 8-hydroxyl substituted depside (Q2) is discussed. The antioxidant properties of quercetin metabolites are evaluated according to their capacity to decrease the EPR DPPH signal and to inhibit superoxide radical formed by the enzymatic reaction (xanthine + xanthine oxidase). For both assays, the IC50 of Q2 is twice as high as that of quercetin.  相似文献   

13.
Dietary antioxidants interact in a dynamic fashion, including recycling and sparing one another, to decrease oxidative stress. Limited information is available regarding the interrelationships in vivo between quercetin and vitamin E. We investigated the antioxidant activity and metabolism of quercetin (Q) in 65 F-344 rats (n=13 per group) randomly assigned to the following vitamin E (VE)-replete and -deficient diets: (a) VE replete (30 mg alpha-tocopherol acetate/kg diet) control ad libitum (C-AL), (b) VE replete pair fed (C-PF), (c) VE replete+5.0 g Q/kg diet (R-VE+5Q), (d) VE deplete (<1 mg/kg total tocopherols)+5.0 g Q/kg diet (D-VE+5Q) and (e) D-VE. After 12 weeks, blood and tissue were collected for measurement of plasma vitamin E, quercetin and its metabolites, serum pyruvate kinase (PK), plasma protein carbonyls, malondialdehyde (MDA) and oxygen radical absorbance capacity. D-VE diets decreased serum alpha-tocopherol and increased PK activity in a time-dependent manner. The D-VE diet increased plasma protein carbonyls but did not affect MDA. Dietary quercetin supplementation increased quercetin and its metabolites in plasma and liver but did not affect D-VE-induced changes in plasma alpha-tocopherol, PK or protein carbonyls. Plasma isorhamnetin and its disposition in muscle were enhanced by the D-VE diet, as compared to the R-VE diet. Conversely, tamarixetin disposition in muscle was decreased by the D-VE diet. Thus, quercetin did not slow vitamin E decline in vivo; neither did it provide antioxidant activity in vitamin-E-depleted rats. However, vitamin E status appears to enhance the distribution of isorhamnetin into the circulation and its disposition in muscle.  相似文献   

14.
This study aimed to investigate the protective effect of quercetin against the toxicity induced by chronic exposure to low levels of cadmium in rats by an ultra performance liquid chromatography mass spectrometer. Rats were randomly divided into six groups as follows: control group (C), low dose of quercetin group (Q1: 10 mg/kg·bw), high dose of quercetin group (Q2: 50 mg/kg·bw), cadmium chloride group (D), low dose of quercetin plus cadmium chloride group (DQ1), and high dose of quercetin plus cadmium chloride group (DQ2). Cadmium chloride (CdCl2) was administered to rats by drinking water ad libitum in a concentration of 40 mg/L. The final amount of CdCl2 ingested was estimated from the water consumption data to be 4.85, 4.91, and 4.89 mg/kg·bw/day, for D, DQ1, and DQ2 groups, respectively. After a 12‐week treatment, the serum samples of rats were collected for metabonomics analysis. Ten potential biomarkers were identified for which intensities were significantly increased or reduced as a result of the treatment. These metabolites included isorhamnetin 4′‐O‐glucuronide, 3‐indolepropionic acid, tetracosahexaenoic acid, lysophosphatidylcholine (LysoPC) (20:5), lysoPC (18:3), lysophosphatidylethanolamine (LysoPE) (20:5/0:0), bicyclo‐prostaglandin E2, sulpholithocholylglycine, lithocholyltaurine, and glycocholic acid. Results indicated that quercetin exerted a protective effect against cadmium‐induced toxicity by regulating lipid and amino acid metabolism, enhancing the antioxidant defense system and protecting liver and kidney function.  相似文献   

15.
This study investigates the pro-oxidant activity of 3′- and 4′-O-methylquercetin, two relevant phase II metabolites of quercetin without a functional catechol moiety, which is generally thought to be important for the pro-oxidant activity of quercetin. Oxidation of 3′- and 4′-O-methylquercetin with horseradish peroxidase in the presence of glutathione yielded two major metabolites for each compound, identified as the 6- and 8-glutathionyl conjugates of 3′- and 4′-O-methylquercetin. Thus, catechol-O-methylation of quercetin does not eliminate its pro-oxidant chemistry. Furthermore, the formation of these A-ring glutathione conjugates of 3′- and 4′-O-methylquercetin indicates that quercetin o-quinone may not be an intermediate in the formation of covalent quercetin adducts with glutathione, protein and/or DNA. In additional studies, it was demonstrated that covalent DNA adduct formation by a mixture of [4-14C]-3′- and 4′-O-methylquercetin in HepG2 cells amounted to only 42% of the level of covalent adducts formed by a similar amount of [4-14C]-quercetin. Altogether, these results reveal the effect of methylation of the catechol moiety of quercetin on its pro-oxidant behavior. Methylation of quercetin does not eliminate but considerably attenuates the cellular implications of the pro-oxidant activity of quercetin, which might add to the mechanisms underlying the apparent lack of in vivo carcinogenicity of this genotoxic compound. The paper also presents a new mechanism for the pro-oxidant chemistry of quercetin, eliminating the requirement for formation of an o-quinone, and explaining why methylation of the catechol moiety does not fully abolish formation of reactive DNA binding metabolites.  相似文献   

16.
Antioxidative activity of dietary flavonoids is suggested to be, at least partly, responsible for a wide variety of their biological effects relating to anti-atherosclerosis. However, it is not known whether dietary flavonoids reach to the target site and act as antioxidants. In this study, we tried to evaluate the antioxidative effect of quercetin 3-O-beta-D-glucoside (Q3G), a typical flavonoid present in vegetables, in rabbit aorta. New Zealand White rabbits were fed a control diet (control group), 2.0% cholesterol diet (HC group) and 2.0% cholesterol plus 0.1% Q3G (HC + Q3G group) for one month. The amounts of total cholesterol, triacylglycerol and total fatty acids in both the plasma and aorta were significantly lower in the HC + Q3G group as compared with the HC group. Quercetin was detected in the aorta of the HC + Q3G group after enzymatic deconjugation, indicating that quercetin accumulated as conjugated metabolites in the aorta. The contents of TBA-reacting substances (TBARS) and cholesteryl ester hydroperoxides (CEOOH) in the aorta of the HC + Q3G group were significantly lower than those in the HC group. The aorta of HC + Q3G group was more resistant than that of HC group in copper ion-induced lipid peroxidation ex vivo. HC + Q3G group accumulated a higher amount of vitamin E per total cholesterol than HC group in the aorta. These results strongly suggest that quercetin glucosides accumulate in the aorta as their metabolites and attenuate lipid peroxidation occurring in the aorta, along with the attenuation of hyperlipidemia.  相似文献   

17.
18.
19.
To determine the antioxidant activity of dietary quercetin (3,3',4', 5,7-pentahydroxyflavone) in the blood circulation, we measured the inhibitory effect of quercetin metabolites and their related derivatives on copper ion-induced lipid peroxidation of human low-density lipoprotein (LDL). Conjugated quercetin metabolites were prepared from the plasma of rat 1 h after oral administration of quercetin aglycone (40 micromol/rat). The rate of cholesteryl ester hydroperoxide (CE-OOH) accumulation and the rate of alpha-tocopherol consumption in mixtures of LDL solution (0.4 mg/ml) with equal volumes of this preparation were slower than the rates in mixtures of LDL with preparations from control rats. The concentrations of CE-OOH after 2 h oxidation in the mixtures of LDL with preparations of conjugated quercetin metabolites were significantly lower than those in the control preparation. It is therefore confirmed that conjugated quercetin metabolites have an inhibitory effect on copper ion-induced lipid peroxidation in human LDL. Quercetin 7-O-beta-glucopyranoside (Q7G) and rhamnetin (3,3',4', 5-tetrahydroxy-7-methoxyflavone) exerted strong inhibition and their effect continued even after complete consumption, similarly to quercetin aglycone. The effect of quercetin 3-O-beta-glucopyranoside (Q3G) did not continue after its complete consumption, indicating that the antioxidant mechanism of quercetin conjugates lacking a free hydroxyl group at the 3-position is different from that of the other quercetin conjugates. The result that 4'-O-beta-glucopyranoside (Q4'G) and isorhamnetin (3,4',5, 7-tetrahydroxy-3'-methoxyflavone) showed little inhibition implies that introduction of a conjugate group to the position of the dihydroxyl group in the B ring markedly decreases the inhibitory effect. The results of azo radical-induced lipid peroxidation of LDL and the measurement of free radical scavenging capacity using stable free radical, 1,1,-diphenyl-2-picrylhydrazyl, demonstrated that the o-dihydroxyl structure in the B ring is required to exert maximum free radical scavenging activity. It is therefore likely that conjugation occurs at least partly in positions other than the B ring during the process of metabolic conversion so that the inhibitory effect of dietary quercetin is retained in blood plasma after absorption.  相似文献   

20.
Formation of quercetin quinone/quinone methide metabolites, reflected by formation of the glutathionyl quercetin adducts as authentic metabolites, was investigated in an in vitro cell model (B16F-10 melanoma cells). Results of the present study clearly indicate the formation of glutathionyl quercetin adducts in a tyrosinase-containing melanoma cell line, expected to be representative also for peroxidase-containing mammalian cells and tissues. The data obtained also support that the adducts are formed intracellular and subsequently excreted into the incubation medium and reveal for the first time evidence for the pro-oxidative metabolism of quercetin in a cellular in vitro model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号