首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A uracil-DNA glycosylase gene was cloned from Chlamydia pneumoniae AR39 and expressed in E. coli strains BL21 (DE3) and BL21 (DE3) pLysS. After purification by Ni-NTA His x Bind Resin and DEAE Sepharose Fast Flow column chromatography, recombinant CpUDG with a specific activity of 1,000,000 U/mg was obtained. The enzymatic activity of the purified CpUDG protein was further characterized using oligodeoxyribonucleotides carrying uracil bases as substrates. The base opposite to uracil in double strand DNAs affected uracil removal efficiencies in the order: U/- > U/T > U/C > U/G > U/A. Free uracil and abasic sites (AP site) could inhibit the reaction. The optimal temperature and pH for uracil removal by CpUDG were 37 degrees C and pH 8.0, respectively. Site-directed mutagenesis studies indicated that amino acids D77, H200, and A205 were important for the catalytic activity of CpUDG. Together, these data suggest that CpUDG is a member of the UDG family-I protein. This is the first report on cloning, expression, and characterization of Chlamydia uracil-DNA glycosylase.  相似文献   

4.
The endoribonuclease RNase E plays an important role in RNA processing and degradation in Escherichia coli. The construction of an E. coli strain in which the cellular concentration of RNase E can be precisely controlled has made it possible to examine and quantify the effect of RNase E scarcity on RNA decay, gene regulation and cell growth. These studies show that RNase E participates in a step in the degradation of its RNA substrates that is partially or fully rate-determining. Our data also indicate that E. coli growth requires a cellular RNase E concentration at least 10-20% of normal and that the feedback mechanism that limits overproduction of RNase E is also able to increase its synthesis when its concentration drops below normal. The magnitude of the in-crease in RNA longevity under conditions of RNase E scarcity may be limited by an alternative pathway for RNA degradation. Additional experiments show that RNase E is a stable protein in E. coli. No other E. coli gene product, when either mutated or cloned on a multicopy plasmid, seems to be capable of compensating for an inadequate supply of this essential protein.  相似文献   

5.
RNase H-defective mutants of Escherichia coli.   总被引:21,自引:13,他引:8       下载免费PDF全文
  相似文献   

6.
We have previously shown that the orfE gene of Escherichia coli encodes RNase PH. Here we show that the OrfE protein (purified as described in the accompanying paper) (Jensen, K. F., Andersen, J. T., and Poulsen, P. (1992) J. Biol. Chem. 267, 17147-17152) has both the degradative and synthetic activities of RNase PH. This highly purified protein was used to characterize the enzymatic and structural properties of RNase PH. The enzyme requires a divalent cation and phosphate for activity, the latter property indicating that RNase PH is exclusively a phosphorolytic enzyme. Among tRNA-type substrates, the enzyme is most active against synthetic tRNA precursors containing extra residues following the -CCA sequence, and it can act on these molecules to generate mature tRNA with amino acid acceptor activity; 3'-phosphoryl-terminated molecules are not active as substrates. The equilibrium constant for RNase PH is near unity, suggesting that at the phosphate concentration present in vivo, the enzyme would participate in RNA degradation. The synthetic reaction of RNase PH displays a nonlinear response to increasing enzyme concentrations, and this may be due to self-aggregation of the protein. Higher order multimers of RNase PH could be detected by gel filtration at higher protein concentrations and by protein cross-linking. The possible role of RNase PH in tRNA processing is discussed.  相似文献   

7.
8.
O Pines  H J Yoon    M Inouye 《Journal of bacteriology》1988,170(7):2989-2993
The gene for the double-stranded RNA (dsRNA)-specific RNase III of Escherichia coli was expressed in Saccharomyces cerevisiae to examine the effects of this RNase activity on the yeast. Induction of the RNase III gene was found to cause abnormal cell morphology and cell death. Whereas double-stranded killer RNA is degraded by RNase III in vitro, killer RNA, rRNA, and some mRNAs were found to be stable in vivo after induction of RNase III. Variants selected for resistance to RNase III induction were isolated at a frequency of 4 X 10(-5) to 5 X 10(-5). Ten percent of these resistant strains had concomitantly lost the capacity to produce killer toxin and M dsRNA while retaining L dsRNA. The genetic alteration leading to RNase resistance was localized within the RNase III-coding region but not in the yeast chromosome. These results indicate that S. cerevisiae contains some essential RNA which is susceptible to E. coli RNase III.  相似文献   

9.
Escherichia coli cells normally require RNase E activity to form colonies (colony-forming ability [CFA]). The CFA-defective phenotype of cells lacking RNase E is partly reversed by overexpression of the related endoribonuclease RNase G or by mutation of the gene encoding the RNA helicase DeaD. We found that the carbon source utilization by rne deaD doubly mutant bacteria differs from that of rne+ cells and from that of cells mutated in deaD alone and that the loss of rne function in these bacteria limits conversion of the glycolytic pathway product phosphoenolpyruvate to the tricarboxylic acid (TCA) cycle intermediate oxaloacetic acid. We show that the mechanism underlying this effect is reduced production of the enzyme phosphoenolpyruvate carboxylase (PPC) and that adventitious overexpression of PPC, which facilitates phosphoenolpyruvate utilization and connects the glycolytic pathway with the TCA cycle, restored CFA to rne deaD mutant bacteria cultured on carbon sources that otherwise were unable to sustain growth. We further show that bacteria producing full-length RNase E, which allows formation of degradosomes, have nutritional requirements different from those of cells supplied with only the N-terminal catalytic region of RNase E and that mitigation of RNase E deficiency by overexpression of a related RNase, RNase G, is also affected by carbon source. Our results reveal previously unsuspected effects of RNase E deficiency and degradosome formation on nutrient utilization by E. coli cells.  相似文献   

10.
Purification and characterization of Escherichia coli RNase T   总被引:7,自引:0,他引:7  
RNase T, a nuclease thought to be involved in end-turnover of tRNA, has been purified about 4,000-fold from extracts of Escherichia coli. At this stage of purification, the enzyme was judged to be at least 95% pure based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native molecular weight of RNase T determined from gel filtration and sedimentation analyses is about 50,000, whereas the monomer molecular weight determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 25,000, suggesting that the protein is an alpha 2 dimer. Purified RNase T is extremely sensitive to inactivation by oxidation, sulfhydryl group reagents, and temperature. The ribonuclease activity against tRNA-C-C-[14C]A is optimal at pH 8-9 in the presence of 2-5 mM MgCl2 and ionic strengths of less than 50mM. Although RNase T is highly specific for intact tRNA-C-C-A as a substrate and can hydrolyze all species in a mixed population of tRNA, it is inhibited by other RNAs, such as poly(A), rRNA, 5 S RNA, and tRNA-C-C. RNase T is an exoribonuclease which initiates attack at a free 3' terminus of tRNA and releases AMP; aminoacyl-tRNA is not a substrate. The role of RNase T in the end-turnover of tRNA and its possible involvement in other aspects of RNA metabolism are discussed.  相似文献   

11.
In this study, we have cloned the Chlamydia trachomatis genes incB and incC into the expression plasmid vectors from pET series for the subsequent isolation of recombinant proteins. As a result, we have obtained the first full-length recombinant C. trachomatis proteins IncB and IncC, which can be used for following antibody production and for study of their protein-protein interaction.  相似文献   

12.
13.
RNase M, an enzyme previously purified to homogeneity from Escherichia coli, was suggested to be the RNase responsible for mRNA degradation in this bacterium. Although related to the endoribonuclease, RNase I, its distinct properties led to the conclusion that RNase M was a second, low molecular mass, broad specificity endoribonuclease present in E. coli. However, based on sequence analysis, southern hybridization, and enzyme activity, we show that RNase M is, in fact, a multiply altered form of RNase I. In addition to three amino acid substitutions that confer the properties of RNase M on the mutated RNase I, the protein is synthesized from an rna gene that contains a UGA nonsense codon at position 5, apparently as a result of a low level of readthrough. We also suggest that RNase M is just one of several previously described endoribonuclease activities that are actually manifestations of RNase I.  相似文献   

14.
15.
16.
RNase G is the endoribonuclease responsible for forming the mature 5' end of 16S rRNA. This enzyme shares 35% identity with and 50% similarity to the N-terminal 470 amino acids encompassing the catalytic domain of RNase E, the major endonuclease in Escherichia coli. In this study, we developed non-denaturing purifications for overexpressed RNase G. Using mass spectrometry and N-terminal sequencing, we unambiguously identified the N-terminal sequence of the protein and found that translation is initiated at the second of two potential start sites. Using velocity sedimentation and oxidative cross-linking, we determined that RNase G exists largely as a dimer in equilibrium with monomers and higher multimers. Moreover, dimerization is required for activity. Four of the six cysteine residues of RNase G were mutated to serine. No single cysteine to serine mutation resulted in a complete loss of cross-linking, dimerization or activity. However, multiple mutations in a highly conserved cluster of cysteines, including C405 and C408, resulted in a partial loss of activity and a shift in the distribution of RNase G multimers towards monomers. We propose that many of the cysteines in RNase G lie on its surface and define, in part, the subunit-subunit interface.  相似文献   

17.
18.
19.
In eukaryotes, archaea, and in some eubacteria, removal of 3' precursor sequences during maturation of tRNA is catalyzed by an endoribonuclease, termed RNase Z. In contrast, in Escherichia coli, a variety of exoribonucleases carry out final 3' maturation. Yet, E. coli retains an RNase Z homologue, ElaC, whose function is under active study. We have overexpressed and purified to homogeneity His-tagged ElaC and show here that it is, in fact, the previously described enzyme, RNase BN. Thus, purified ElaC displays structural and catalytic properties identical to those ascribed to RNase BN. In addition, an elaC mutant strain behaves identically to a known RNase BN- strain, CAN. Finally, we show that wild type elaC can complement the mutation in strain CAN and that the elaC gene in strain CAN carries a nonsense mutation that results in loss of RNase BN activity. These data correct a previous misassignment for the gene encoding RNase BN. Based on the fact that the original RNase BN mutation has now been identified, we propose that the elaC gene be renamed rbn.  相似文献   

20.
Protein-RNA interactions in the RNase P holoenzyme from Escherichia coli   总被引:27,自引:0,他引:27  
The genes for the protein (C5 protein) and RNA (M1 RNA) subunits of Escherichia coli RNase P have been subcloned and their products prepared in milligram quantities by rapid procedures. The interactions between the two subunits of the enzyme have been studied in vitro by a filter-binding technique. The stoichiometry of the subunits in the holoenzyme is 1:1. The dissociation constant for the specific interactions of the subunits in the holoenzyme complex is approximately 4 x 10(-10) M. C5 protein also interacts with various RNA molecules in a non-specific manner with a dissociation constant of 2 x 10(-8) to 6 x 10(-8) M. Regions of M1 RNA required for interaction with C5 protein have been defined by deletion analysis and footprinting techniques. These interactions are localized primarily between nucleotides 82 to 96 and 170 to 270 of M1 RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号