首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bacterial artificial chromosome (BAC) library was constructed from high-molecular-weight DNA isolated from young leaves of papaya (Carica papaya L.). This BAC library consists of 39168 clones from two separate ligation reactions. The average insert size of the library is 132 kb; 96.5% of the 18700 clones from the first ligation contained inserts that averaged 86 kb in size, 95.7% of the 20468 clones from the second ligation contained inserts that averaged 174 kb in size. Two sorghum chloroplast probes hybridized separately to the library and revealed a total of 504 chloroplast clones or 1.4% of the library. The entire BAC library was estimated to provide 13.7× papaya-genome equivalents, excluding the false-positive and chloroplast clones. High-density filters were made containing 94% or 36864 clones of the library with 12.7× papaya-genome equivalents. Eleven papaya-cDNA and ten Arabidopsis-cDNA probes detected an average of 22.8 BACs per probe in the library. Because of its relatively small genome (372 Mbp/1 C) and its ability to produce ripe fruit 9 to 15 months after planting, papaya shows promise as a model plant for studying genes that affect fruiting characters. A rapid approach to locating fruit-controlling genes will be to assemble a physical map based on BAC contigs to which ESTs have hybridized. A physical map of the papaya genome will significantly enhance our capacity to clone and manipulate genes of economic importance. Received: 11 April 2000 / Accepted: 28 July 2000  相似文献   

2.
We have constructed a soybean bacterial artificial chromosome (BAC) library using the plant introduction (PI) 437654. The library contains 73728 clones stored in 192384-well microtiter plates. A random sampling of 230 BACs indicated an average insert size of 136 kb with a range of 20 to 325 kb, and less than 4% of the clones do not contain inserts. Ninety percent of BAC clones in the library have an average insert size greater than 100 kb. Based on a genome size of 1115 Mb, library coverage is 9 haploid genome equivalents. Screening the BAC library colony filters with cpDNA sequences showed that contamination of the genomic library with chloroplast clones was low (1.85%). Library screening with three genomic RFLP probes linked to soybean cyst nematode (SCN) resistance genes resulted in an average of 18 hits per probe (range 7 to 30). Two separate pools of forward and reverse suppression subtractive cDNAs obtained from SCN-infected and uninfected roots of PI 437654 were hybridized to the BAC library filters. The 488 BACs identified from positive signals were fingerprinted and analyzed using FPC software (version 4.0) resulting in 85 different contigs. Contigs were grouped and analyzed in three categories: (1) contigs of BAC clones which hybridized to forward subtracted cDNAs, (2) contigs of BAC clones which hybridized to reverse subtracted cDNAs, and (3) contigs of BAC clones which hybridized to both forward and reverse subtracted cDNAs. This protocol provides an estimate of the number of genomic regions involved in early resistance response to a pathogenic attack.  相似文献   

3.
A peach [Prunus persica (L.) Batch] bacterial artificial chromosome (BAC) library of var. Jingyu was constructed. Jingyu is a traditional variety, that displays many of the important agronomic characters of stone fruits. Since peach leaves are rich in polysaccharides, high-molecular-weight (HMW) DNA was extracted from leaf nuclei using a protocol adapted to peach. The HMW DNA embedded in agarose plugs was partially digested by HindIII. After size-selection by pulsed field gel electrophoresis, the selected DNA fragments were ligated to pBeloBAC11 and transformed into E. coli DH10B cells by electroporation. In total 20,736 recombinant clones were obtained. The BAC library has an average insert size of 95 kb and represents approximately 6.7 peach haploid genome equivalents. The BAC clones were stable in E. coli cell after 100 generations. The lack of hybridization to chloroplast and mitochondrial genes demonstrated that the library is predominantly composed of nuclear DNA. The library was screened with two molecular markers, W4 and P20, that are linked to white flesh and nectarine genes of peach, respectively. Ten positive clones were detected. Their fingerprints will be used to determine clone relationships and assemble contigs. This library should be well-suited for the map-based cloning of peach genes and genome physical mapping. Received: 18 January 2000 / Accepted: 29 May 2000  相似文献   

4.
Cloning using bacterial artificial chromosomes (BACs) can yield high quality genomic libraries, which are used for the physical mapping, identification and isolation of genes, and for gene sequencing. A BAC genomic library was constructed from high molecular weight DNA (HMW DNA) obtained from nuclei of the cucumber (Cucumis sativus L. cv. Borszczagowski; B10 line). The DNA was digested with the HindIII restriction enzyme and ligated into the pCC1BAC vector. The library consists of 34,560 BAC clones with an average insert size of 135 kb, and 12.7x genome coverage. Screening the library for chloroplast and mitochondrial DNA content indicated an exceptionally low 0.26% contamination with chloroplast DNA and 0.3% with mitochondrial DNA.  相似文献   

5.
A bacterial artificial chromosome (BAC) library of Phytophthora infestans was constructed in a derivative of pBELOBACII that had been modified by adding a npt selectable marker gene for transforming P. infestans. A total library of 8 genome equivalents was generated and 16,128 clones with inserts averaging 75 kb (4.9 genome equivalents) were individually picked and stored as an arrayed library in microtiter plates. This coverage was confirmed by screening the library for 11 DNA loci by colony hybridization and by polymerase chain reaction of DNA pools. Transformation of P. infestans with BAC clones containing inserts of 93 to 135 kb was demonstrated. The efficiency of transformation with most BACs was noticeably higher than that with smaller plasmids. Detailed analyses of transformants obtained with a 102-kb BAC indicated that entire inserts were present in about one-quarter of the transformants.  相似文献   

6.
 A soybean bacterial artificial chromosome (BAC) library, comprising approximately 45 000 clones, was constructed from high-molecular-weight nuclear DNA of cultivar Williams 82, which carries the Rps1-k gene for resistance against Phytophthora sojae. The library is stored in 130 pools with about 350 clones per pool. Completeness of the library was evaluated for 21 random sequences including four markers linked to the Rps1 locus and 16 cDNAs. We identified pools containing BACs for all sequences except for one cDNA. Additionally, when screened for possible contaminating BAC clones carrying chloroplast genes, no sequences homologous to two barley chloroplast genes were found. The estimated average insert size of the BAC clones was about 105 kb. The library comprises about four genome equivalents of soybean DNA. Therefore, this gives a probability of 0.98 of finding a specific sequence from this library. This library should be a useful resource for the positional cloning of Rps1-k, and other soybean genes. We have also evaluated the feasibility of an RFLP-based screening procedure for the isolation of BAC clones specific for markers that are members of repetitive sequence families, and are linked to the Rps1-k gene. We show that BAC clones isolated for two genetically linked marker loci, Tgmr and TC1-2, are physically linked. Application of this method in expediting the map-based cloning of a gene, especially from an organism, such as soybean, maize and wheat, with a complex genome is discussed. Received: 12 May 1998/Accepted: 24 August 1998  相似文献   

7.
A bacterial artificial chromosome (BAC) library of the genomic DNA of Coprinus cinereus strain MP#2 was constructed using the BAC vector pBACTZ, which carries the C. cinereus trp1 gene. The library consists of 1536 clones. Analysis of inserts in some of the clones suggested that the library covers five times the C. cinereus genome. Screening of the BAC clones using ten markers mapped on nine different chromosomes also indicated that the library is likely to cover the whole length of the genomic DNA. We show an example of transformation of C. cinereus with BACs containing inserts of longer than 170kb.  相似文献   

8.
 A bacterial artificial chromosome (BAC) library has been constructed from apple (Malus×domestica Borkh.) using the variety “Florina”, which is resistant to scab (Venturia inaequalis) by virtue of the Vf gene. Since apple leaves are rich in polyphenols, high-molecular-weight DNA was extracted from leaf nuclei with a protocol adapted to apple. The nuclei were then embedded in agarose microbeads and partially digested by varying ratios of EcoRI to EcoRI methylase. The resulting DNA fragments were size-selected by pulsed-field gel electrophoresis, ligated to the BAC cloning vector pECBAC1 and transformed into Escherichia coli cells by electroporation. A total of 36 864 recombinant clones (BACs) were obtained. The library has an average insert size of 120 kb and represents approximately 5×apple haploid-genome equivalents. It was screened with six cDNA probes using the chemiluminescent DIG system. An average of 4.4 clones was detected for each locus. The apple BAC library will be used to isolate the Vf scab resistance gene through map-based cloning. In this connection the library was screened with a marker closely linked to the Vf gene and six positive clones have been isolated. This library should thus be well suited for map-based gene cloning, in particular for the isolation of the Vf gene and for the construction of a physical map of the apple genome. Received: 19 February 1998 / Accepted: 30 April 1998  相似文献   

9.
Diaz-Perez, S. V., Crouch, V. W., and Orbach, M. J. 1996. Construction and characterization of aMagnaporthe griseabacterial artificial chromosome library.Fungal Genet. Biol.20,280–288. A bacterial artificial chromosome (BAC) library ofMagnaporthe griseacontaining 4128 clones with an average insert size of 66-kb has been constructed. This library represents seven genome equivalents ofM. griseaand has been demonstrated to be representative of the genome by screening for the presence of several single-copy genes and DNA markers. The utility of the library for use in map-based cloning projects was shown by the spanning of a nine-cosmid, 207-kb DNA contig with only 3 BAC clones. In addition, using alys1-3auxotroph, we have shown that BAC clones at least 113 kb can be transformed intoM. griseato screen for complementation of mutations. Thus, BACs isolated in chromosome walks can be rapidly screened for the presence of the sought after gene. The ease of construction of BAC libraries and of isolation and manipulation of BAC clones makes the BAC system an ideal one for physical analyses of fungal genomes.  相似文献   

10.
An insertion-sequence of prokaryotic origin was detected in a genomic clone obtained from a Phaseolus vulgaris bacterial artificial chromosome (BAC) library. This BAC clone, characterized as part of a contig constructed near a virus resistance gene, exhibited restriction fragment length polymorphism with an overlapping clone of the contig. Restriction analysis of DNA obtained from individual colonies of the stock culture indicated the presence of a mixed population of wild-type and insertional mutants. Sequence analysis of both members of the population revealed the presence of IS10R, an insertion-sequence from Escherichia coli. A BLAST search for IS10-like sequences detected unexpected homologies with a large number of eukaryotic sequences from Homo sapiens, Arabidopsis thaliana, Drosophila melanogaster and Caenorhabditis elegans. Southern analysis of a random sample of BAC clones failed to detect IS10 in the BAC DNA. However, prolonged sub-culturing of a set of 15 clones resulted in transposition into the BAC DNA. Eventually, all cultures acquired a 2.3-kb fragment that hybridized strongly with IS10. Sequence analysis revealed the presence of a preferred site for transposition in the BAC vector. These results indicate that a large number, if not all, of the BAC libraries from different organisms are contaminated with IS10R. The source of this element has been identified as the DH10B strain of E. coli used as the host for BAC libraries. Received: 5 December 2000 / Accepted: 25 April 2001  相似文献   

11.
12.
A plant-transformation-competent binary BAC library was constructed from the genomic DNA of the chromosome 9 monosomic addition line of Beta corolliflora Zoss. in sugar beet (B. vulgaris. L). This monosomic addition line (designated M14) is characterized by diplosporic reproduction caused by the alien chromosome carrying the gene(s) responsible for diplospory. The library consists of 49,920 clones with an average insert size of 127 kb, representing approximately 7.5 haploid genome equivalents and providing a greater than 99% probability of isolating a single-copy DNA sequence from the library. To develop the scaffold of a physical map for the alien chromosome, B. corolliflora genome-specific dispersed repetitive DNA sequences were used as probes to isolate BAC clones derived from the alien chromosome in the library. A total of 2,365 positive clones were obtained and arrayed into a sublibrary specific for B. corolliflora chromosome 9 (designated bcBAC-IX). The bcBAC-IX sublibrary was further screened with a subtractive cDNA pool generated from the ovules of M14 and the floral buds of B. vulgaris by the suppression subtractive hybridization method. One hundred and three positive binary BACs were obtained, which potentially contain the genes of the alien chromosome specifically expressed during the ovule and embryo development of M14, and may be associated with apomictic reproduction. Thus, these binary BAC clones will be useful for identification of the genes for apomixis by genetic transformation.Communicated by H. C. Becker  相似文献   

13.
Large-insert bacterial artificial chromosome (BAC) libraries, plant-transformation-competent binary BAC (BIBAC) libraries, and simple sequence repeat (SSR) markers are essential for many aspects of genomics research. We constructed a BAC library and a BIBAC library from the nuclear DNA of chickpea, Cicer arietinum L., cv. Hadas, partially digested with HindIII and BamHI, respectively. The BAC library has 14,976 clones, with an average insert size of 121 kb, and the BIBAC library consists of 23,040 clones, with an average insert size of 145 kb. The combined libraries collectively cover ca. 7.0× genomes of chickpea. We screened the BAC library with eight synthetic SSR oligos, (GA)10, (GAA)7, (AT)10, (TAA)7, (TGA)7, (CA)10, (CAA)7, and (CCA)7. Positive BACs were selected, subcloned, and sequenced for SSR marker development. Two hundred and thirty-three new chickpea SSR markers were developed and characterized by PCR, using chickpea DNA as template. These results have demonstrated that BACs are an excellent source for SSR marker development in chickpea. We also estimated the distribution of the SSR loci in the chickpea genome. The SSR motifs (TAA)n and (GA)n were much more abundant than the others, and the distribution of the SSR loci appeared non-random. The BAC and BIBAC libraries and new SSR markers will provide valuable resources for chickpea genomics research and breeding (the libraries and their filters are available to the public at ).J. Lichtenzveig and C. Scheuring contributed equally to this study.  相似文献   

14.
Bacterial artificial chromosomes (BACs) are well-established cloning vehicles for functional genomics and for constructing targeting vectors and infectious viral DNA clones. Red-recombination-based mutagenesis techniques have enabled the manipulation of BACs in Escherichia coli without any remaining operational sequences. Here, we describe that the F-factor-derived vector sequences can be inserted into a novel position and seamlessly removed from the present location of the BAC-cloned DNA via synchronous Red-recombination in E. coli in an en passant mutagenesis-based procedure. Using this technique, the mini-F elements of a cloned infectious varicella zoster virus (VZV) genome were specifically transposed into novel positions distributed over the viral DNA to generate six different BAC variants. In comparison to the other constructs, a BAC variant with mini-F sequences directly inserted into the junction of the genomic termini resulted in highly efficient viral DNA replication-mediated spontaneous vector excision upon virus reconstitution in transfected VZV-permissive eukaryotic cells. Moreover, the derived vector-free recombinant progeny exhibited virtually indistinguishable genome properties and replication kinetics to the wild-type virus. Thus, a sequence-independent, efficient, and easy-to-apply mini-F vector transposition procedure eliminates the last hurdle to perform virtually any kind of imaginable targeted BAC modifications in E. coli. The herpesviral terminal genomic junction was identified as an optimal mini-F vector integration site for the construction of an infectious BAC, which allows the rapid generation of mutant virus without any unwanted secondary genome alterations. The novel mini-F transposition technique can be a valuable tool to optimize, repair or restructure other established BACs as well and may facilitate the development of gene therapy or vaccine vectors.  相似文献   

15.
Durum wheat (Triticum turgidum ssp. durum, 2n = 4x = 28, genomes AB) is an economically important cereal used as the raw material to make pasta and semolina. In this paper we present the construction and characterization of a bacterial artificial chromosome (BAC) library of tetraploid durum wheat cv. Langdon. This variety was selected because of the availability of substitution lines that facilitate the assignment of BACs to the A and B genome. The selected Langdon line has a 30-cM segment of chromosome 6BS from T. turgidum ssp. dicoccoides carrying a gene for high grain protein content, the target of a positional cloning effort in our laboratory. A total of 516,096 clones were organized in 1,344 384-well plates and blotted on 28 high-density filters. Ninety-eight percent of these clones had wheat DNA inserts (0.3% chloroplast DNA, 1.4% empty clones and 0.3% empty wells). The average insert size of 500 randomly selected BAC clones was 131 kb, resulting in a coverage of 5.1-fold genome equivalents for each of the two genomes, and a 99.4% probability of recovering any gene from each of the two genomes of durum wheat. Six known copy-number probes were used to validate this theoretical coverage and gave an estimated coverage of 5.8-fold genome equivalents. Screening of the library with 11 probes related to grain storage proteins and starch biosynthesis showed that the library contains several clones for each of these genes, confirming the value of the library in characterizing the organization of these important gene families. In addition, characterization of fingerprints from colinear BACs from the A and B genomes showed a large differentiation between the A and B genomes. This library will be a useful tool for evolutionary studies in one of the best characterized polyploid systems and a source of valuable genes for wheat. Clones and high-density filters can be requested at Communicated by P. LangridgeThe first two authors contributed equally to the investigation  相似文献   

16.
A bacterial artificial chromosome (BAC) library was constructed for watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus) with an average insert-size of 106 kb, providing 21 haploid genome equivalents. The library was used to identify BAC clones that are anchored to probes evenly distributed on the genomes of melon or Arabidopsis. Twenty eight probes (representing 66% of the tested probes) from melon and 30 probes (65%) from Arabidopsis identified positive BAC clones. Two methods were implemented to identify SSRs from the positively hybridizing BAC clones. First, analysis of BAC end sequences revealed 37 SSRs. For the second method, pooled DNA of BACs identified by the melon probes was used to develop a shotgun library. The library was then screened with synthetic SSR oligonucleotides by hybridization. Sequence analysis of positively hybridizing shotgun clones revealed 142 different SSRs. Thirty eight SSRs were characterized using three watermelon cultivars, five plant introduction (PI) accessions of C. lanatus var lanatus and four PIs of C. lanatus var citroides. Of these, 36 (95%) were found to be polymorphic with up to six alleles per marker. Polymorphism information content values for polymorphic markers varied between 0.22 and 0.79 with an average of 0.53. The methods described herein will be valuable for the construction of a watermelon linkage map with SSRs evenly distributed on its genome that is anchored to the genomes of melon and Arabidopsis.  相似文献   

17.
A bovine large-insert DNA library has been constructed in a Bacterial Artificial Chromosome (BAC) vector. The source DNA was derived from lymphocytes of a Jersey male. High-molecular-weight DNA fragments were produced by treatment with EcoRI/EcoRI methylase and cloned into the EcoRI site of pBACe3.6. In total, 157,240 individual BACs have been picked into 384-well plates. Approximately 190 randomly chosen clones have been characterized by Pulsed Field Gel Electrophoresis (PFGE) and have an average insert size of 105 kb, suggesting library coverage representing 5–6 genome equivalents. The frequency of clones without inserts is 4%. The chromosomal location of 51 BACs was studied by FISH; 3 showed more than one signal, indicating a chimerism frequency of roughly 6%. Approximately 50% of the clones in the library contain Simple Repeat Sequences (microsatellites), and 4% of the clones contain centromeric repeats. Insert stability was assessed by restriction digestion of DNA prepared from 20 clones after serial culture for one and three nights. Only one clone showed any evidence of an altered restriction pattern. Clones from 360 × 384-well plates (138,240 colonies) were gridded onto high-density membranes, and PCR superpools were produced from the same set of clones. Both membranes and superpools are available from the RZPD, Berlin (http://www.rzpd.de). PCR 4-D superpools have been prepared from an additional 23,000 clones. The library has been screened for a total of 24 single-copy sequences; positive clones have been obtained in all cases. Received: 14 October 1998 / Accepted: 9 March 1999  相似文献   

18.
Sixteen simple sequence repeats (SSRs) of apricot (Prunus armeniaca L.) were isolated from a bacterial artificial chromosome (BAC) library. Twelve restriction fragment length polymorphism (RFLP) probes mapped on LG1 of the Prunus general map were hybridized to the BAC library in order to select clones belonging to G1 linkage group of apricot. Selected BACs were digested, subcloned and hybridized with probes containing repeat motifs (GA)10 and (TA)10. Sequencing of the positive subclones revealed 18 unique SSR sequences of which 16 allowed the design of primers flanking the SSR. From the 16 primer pairs, 10 amplified polymorphic markers with an average of observed and expected heterozygosities of 0.44 and 0.68, respectively. The procedure described here proves to be a useful technique for obtaining markers in target areas of a genome.  相似文献   

19.
  • Sesame (Sesamum indicum L.; Pedaliaceae) is a commercially valuable oilseed crop with high oil content. Its small genome size favours the genomic analysis of key biological processes, such as oil synthesis and metabolism. However, the 13 chromosome pairs of sesame have not been characterised because of technological limitations and their small size.
  • We constructed a BAC library comprising 57,600 BAC clones for sesame. The estimated genome coverage of the sesame BAC library was 13.8×. The successive double colour fluorescence in situ hybridisation (FISH) with bacterial artificial chromosomes (BACs) for sesame was established in this study.
  • Subsequently, the 13 sesame chromosome pairs were individually differentiated using 17 specific BACs for the first time. The schematic of the sesame chromosome set was drawn according to the chromosome relative length and relative position of the BAC signal. The cytogenetic characteristics of sesame chromosomes were also explored.
  • The results provide the technical background required for further cytogenetic map construction, genome assembly and localisation of the DNA sequence in sesame.
  相似文献   

20.
We have constructed a human chromosome 2-specific bacterial artificial chromosome (BAC) library using DNA from the somatic cell hybrid GM10826. The average size of the clones is about 63 kb. The coverage and distribution of the library were estimated by screening with known polymorphic genetic markers and fluorescence in situ hybridization (FISH). Twentyone markers tested positive when DNA pools prepared from approximately one-sixth of the library were screened with 33 known markers. This is consistent with the theoretical calculation of 63% coverage at one genomic equivalent. This suggested that the coverage of the library is approximately 5-6×. FISH analysis with 54 BACs revealed single site hybridization to chromosome 2, and the clones were distributed randomly on the chromosome. We have also performed direct sequencing of the BAC insert ends to generate sequence-tagged sites suitable for mapping and chromosome walking. This is the first reported human chromosome 2-specific BAC library and should provide a resource for physical mapping and disease searching for this chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号