首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increased risk for fracture with age is associated not only with reduced bone mass but also with impaired bone quality. At the microscale, bone quality is related to porosity, microstructural organization, accumulated microdamage and intrinsic material properties. However, the link between these characteristics and fracture behavior is still missing. Bone tissue has a complex structure and as age-related compositional and structural changes occur at all hierarchical length scales it is difficult to experimentally identify and discriminate the effect of each mechanism. The aim of this study was therefore to use computational models to analyze how microscale characteristics in terms of porosity, intrinsic toughness properties and microstructural organization affect the mechanical behavior of cortical bone. Tensile tests were simulated using realistic microstructural geometries based on microscopy images of human cortical bone. Crack propagation was modelled using the extended finite element method where cement lines surrounding osteons were modelled with an interface damage law to capture crack deflections along osteon boundaries. Both increased porosity and impaired material integrity resulted in straighter crack paths with cracks penetrating osteons, similar to what is seen experimentally for old cortical bone. However, only the latter predicted a more brittle failure behavior. Furthermore, the local porosity influenced the crack path more than the macroscopic porosity. In conclusion, age-related changes in cortical bone affect the crack path and the mechanical response. However, increased porosity alone was not driving damage in old bone, but instead impaired tissue integrity was required to capture brittle failure in aging bone.  相似文献   

2.

Bulk properties of cortical bone have been well characterized experimentally, and potent toughening mechanisms, e.g., crack deflections, have been identified at the microscale. However, it is currently difficult to experimentally measure local damage properties and isolate their effect on the tissue fracture resistance. Instead, computer models can be used to analyze the impact of local characteristics and structures, but material parameters required in computer models are not well established. The aim of this study was therefore to identify the material parameters that are important for crack propagation in cortical bone and to elucidate what parameters need to be better defined experimentally. A comprehensive material parameter study was performed using an XFEM interface damage model in 2D to simulate crack propagation around an osteon at the microscale. The importance of 14 factors (material parameters) on four different outcome criteria (maximum force, fracture energy, crack length and crack trajectory) was evaluated using ANOVA for three different osteon orientations. The results identified factors related to the cement line to influence the crack propagation, where the interface strength was important for the ability to deflect cracks. Crack deflection was also favored by low interface stiffness. However, the cement line properties are not well determined experimentally and need to be better characterized. The matrix and osteon stiffness had no or low impact on the crack pattern. Furthermore, the results illustrated how reduced matrix toughness promoted crack penetration of the cement line. This effect is highly relevant for the understanding of the influence of aging on crack propagation and fracture resistance in cortical bone.

  相似文献   

3.
The Theory of Critical Distances (TCD) is a method used to study the failure of material in situations where stress concentrations, such as holes and notches, are present. This method uses two material constants: a critical length and a critical stress. The elastic stress field close to the stress concentration is examined, applying a fracture criterion. The TCD has been applied to predict brittle fracture in various different materials and various types of notches but it has not previously been applied to bone. Since bone fails by brittle fracture with limited plasticity, it is expected that the TCD will be applicable. Experimental data were obtained from the literature on the effects of sharp notches and holes loaded in various ways (tension, torsion and bending). These tests were modelled using finite element analysis. It was found that the TCD could be successfully applied to predict the load required for brittle fracture as a function of the type and size of the stress concentration feature. The critical distance was found to be almost constant, about 0.3-0.4mm, for all types of bone studied: the critical stress was found to be related to the material's ultimate tensile strength by a constant factor of T=1.33. The results of this study will be of practical value in the assessment of stress concentration features introduced during surgery and of naturally occurring bone defects.  相似文献   

4.
In human cortical bone, cement lines (or reversal lines) separate osteons from the interstitial bone tissue, which consists of remnants of primary lamellar bone or fragments of remodeled osteons. There have been experimental evidences of the cement line involvement in the failure process of bone such as fatigue and damage. However, there are almost no experimental data on interfacial properties of cement lines in human cortical bone. The objective of this study is to design and assemble a precision and computer controlled osteon pushout microtesting system, and to experimentally determine the interfacial strength of cement lines in human cortical bone by performing osteon pushout tests. Thirty specimens were prepared from humeral diaphyses of four human subjects. Twenty specimens were tested under the condition of a small hole in the supporting plate, in which the cement line debonding occurred. The cement line interfacial strength ranged from 5.38 MPa to 10.85 MPa with an average of 7.31±1.73 MPa. On the other hand, ten specimens were tested under the condition of a large hole in the supporting plate, in which the shear failure inside osteons was observed. The specimens tested under the condition of the large hole resulted in an average shear strength of 73.71±15.06 MPa, ranging from 45.97 MPa to 93.74 MPa. Therefore, our results suggest that the cement line interface between osteon and interstitial bone tissue is weaker than that between bone tissue lamellae.  相似文献   

5.
A finite-element micromechanics model for Haversian cortical bone tissue has been developed and studied. The model is an extension of two-dimensional micromechanics techniques for fiber-reinforced composite materials. Haversian systems, or secondary osteons, are considered to be the fiber component, and interstitial lamellar bone the matrix material. The cement line is included as an 'interphase' component along the fiber/matrix interface. The model assumes a regular repeatable spacing of the longitudinally aligned continuous fibers and is, therefore, restricted to approximating Haversian cortical bone in its present form. Haversian porosity is modeled explicitly by incorporating a hollow fiber to represent the Haversian canal. Solutions have been obtained by applying uniform macroscopic stresses to the boundaries of the repeating unit cell model. Macroscopic mechanical property predictions correspond reasonably well with the experimental data for cortical bone, but are necessarily dependent on the input properties for each constituent, which are not well established. The predicted variation in the elastic modulus with porosity is not as sensitive as that observed experimentally. Stresses within the constituents can also be modeled with this method and are demonstrated to deviate from the macroscopic applied stress levels.  相似文献   

6.
目的:探讨骨质疏松椎体压缩骨折患者接受椎体成形术后再次新发骨折的危险因素。方法:选取2009年1月到2015年1月就诊于我院诊断为骨质疏松椎体压缩性骨折且行经皮椎体成形术的患者,收集患者的诊疗信息及影像学资料。收集患者的年龄、性别等基本资料及基于定量CT测量的骨矿物含量、骨水泥注射占椎体体积的比、骨水泥的分布及骨水泥的渗漏情况。将单椎体骨折且在随访时间内再次新发椎体骨折的患者分为A组,未骨折的患者分为B组,对比分析两组之间的参数的差异,并利用二项Logistic回归分析分析再次骨折的危险因素。结果:共有287例患者纳入研究,平均随访时间为34.7±17.8个月,压缩性骨折最常见的椎体依次为L1(29.1%)、T12(20.8%)及L2(13.5%)。在随访时间内共有32例患者再次发生椎体骨折。252例单椎体骨折患者中,26例(A组)再次发生骨折,226例(B组)未发生骨折。A组骨矿物含量低于B组(P0.001),骨水泥分布较B组差(P0.001),年龄高于B组(P0.001)且骨水泥渗漏发生率(34.6%)高于B组(13.7%)(P=0.006),两组在骨水泥占椎体的比、后凸程度、性别比例没有统计学差异。回归分析显示骨矿物含量(OR=1.092,P0.001)、年龄(OR=1.091,P0.001)及骨水泥渗漏(OR=1.200,P=0.002)均是再次骨折的危险因素,骨水泥的均匀分布是保护因素(OR=0.922,P0.001)。结论:年龄较大且骨质较差的患者容易再次发生椎体骨折,在行椎体成形术过程中应尽量使骨水泥均匀分布并避免骨水泥的渗漏。  相似文献   

7.
摘要 目的:比较单侧与双侧经皮椎体成形术(PVP)治疗骨质疏松性椎体压缩骨折(OVCF)的临床疗效,并分析骨水泥渗漏的危险因素。方法:回顾性分析2019年5月~2020年12月期间本院收治的205例OVCF患者的临床资料,根据入路方式的不同分为单侧组和双侧组,例数分别为104例和101例。对比两组围术期指标、视觉模拟评分(VAS)、Oswestry功能障碍指数(ODI)、Cobb''s角和椎体前缘高度,记录两组骨水泥渗漏及其他并发症发生情况,采用单因素及多因素Logistic回归分析骨水泥渗漏的影响因素。结果:与双侧组相比,单侧组手术时间缩短,骨水泥注入量、术中透视次数减少(P<0.05)。两组术前、术后3个月、末次随访时VAS、ODI评分均呈下降趋势(P<0.05)。与术前相比,两组术后3个月及末次随访时的椎体前缘高度均升高,Cobb''s角均缩小(P<0.05)。两组并发症发生率组间对比无统计学差异(P>0.05)。PVP患者骨水泥渗漏与骨水泥黏度、皮质断裂、骨折严重程度、骨折位置、年龄、CT值、骨水泥注入量有关(P<0.05)。骨水泥渗漏的危险因素主要有骨水泥注入量>6 mL、骨折严重程度为重度、CT值>63HU、骨水泥黏度为低、皮质断裂(P<0.05)。结论:单侧与双侧PVP治疗OVCF效果相当。其中单侧可减少骨水泥注入量,缩短手术时间,减轻术后疼痛,促进术后功能恢复。而PVP手术最常见的并发症为骨水泥渗漏,受到骨折严重程度、皮质断裂、骨水泥黏度等因素的影响。  相似文献   

8.
Periacetabular bone metastases cause severe pain and functional disability in cancer patients. Percutaneous acetabuloplasty (PCA) is a minimally invasive, image-guided procedure whereby cement is injected into lesion sites. Pain relief and functional restoration have been observed clinically; however, neither the biomechanical consequences of the lesions nor the effectiveness of the PCA technique are well understood. The objective of this study was to investigate how periacetabular lesion size, cortex involvement, and cement modulus affect pelvic bone stresses and strains under single-legged stance loading. Experiments were performed on a male cadaver pelvis under conditions of intact, periacetabular defect, and cement-filling with surface strains recorded at three strain gage locations. The experimental data were then employed to validate three-dimensional finite element models of the same pelvis, developed using computed tomography data. The models demonstrated that increases in cortical stresses were highest along the posterior column of the acetabulum, adjacent to the defect. Cortical stresses were more profoundly affected in the presence of transcortical defects, as compared to those involving only trabecular bone. Cement filling with a modulus of 2.2 GPa was shown to restore cortical stresses to near intact values, while a decrease in cement modulus due to inclusion of BaSO(4) reduced the restorative effect. Peak acetabular contact pressures increased less than 15% for all simulated defect conditions; however, the contact stresses were reduced to levels below intact in the presence of either cement filling. These results suggest that periacetabular defects may increase the vulnerability of the pelvis to fracture depending on size and cortical involvement and that PCA filling may lower the risk of periacetabular fractures.  相似文献   

9.
A mechanistic understanding of the role of bone quality on fracture processes is essential for determining the underlying causes of age-related changes in the mechanical response of the human bone. In this study, a previously developed cohesive finite element model was used to investigate the effects of age-related changes and the orientation of crack growth on the toughening behavior of human cortical bone. The change in the anisotropy of toughening mechanisms with age was also studied. Finite element method (FEM) simulations showed that the initiation toughness decreased by 3% and 8%/decade for transverse and longitudinal crack growth, respectively. In contrast, fracture resistance curve slope for transverse and longitudinal crack growth decreased by 2% and 3%/decade, respectively. Initiation fracture toughness values were higher for the transverse than for the longitudinal for a given age. On the other hand, propagation fracture toughness values were higher for longitudinal than for transverse crack growth for a given age. With respect to age, the toughness ratio for crack initiation decreased by 6%/decade, but that for propagation showed almost no change (less than 1%). In light of these findings, an analytical model evaluating the crack arresting feature of cement lines, is proposed to explain the factors that determine crack penetration into osteons or its deflection by cement lines.  相似文献   

10.
The distribution of bone cement around an endoprosthesis influences its stability over the long term. We have developed a new method for the experimental measurement of the cement mantle thickness of an endoprosthesis. The use of this computer-aided procedure is described in a hip prosthesis. Transverse sections of a human femur containing a cemented stem were prepared, recorded with a CCD camera and the images fed into a computer. The image-processing software differentiated the metal and bone cement on the basis of the different colours. Radial lines were drawn from the calculated centre of gravity of the stem, and the cement thickness was measured automatically along these lines. In our experiment, the accuracy of the method was 0.2 mm. This method of measuring the thickness of the cement mantle is accurate, rapid and practical.  相似文献   

11.
Mechanical overload leads to a common arthrosis in the metacarpal condyle of the fetlock joint of racehorses. This is usually asymptomatic but severe forms can cause lameness. Subchondral bone failure is often present and the predictability of the site provided an opportunity to study of the progression of bone failure from microcracks to actual collapse of subchondral bone. Twenty-five fetlock condyles from racehorses with various stages of disease were selected. Stages ranged from mild through severe subchondral bone sclerosis, to the collapse of bone and indentation or loss of cartilage known as 'traumatic osteochondrosis'. Parasagittal slices were radiographed and examined with scanning electron microscopy. Fine matrix cracks were seen in the subchondral bone layer above the calcified cartilage and suggested loss of water or other non-collagenous components. The earliest microcracks appeared to develop in the sclerotic bone within 1-3 mm of the calcified cartilage layer and extend parallel to it in irregular branching lines. Longer cracks or microfractures appeared to develop gaps as fragmentation occurred along the margins. Occasional osteoclastic resorption sites along the fracture lines indicated activated remodeling may have caused previous weakening. In one sample, smoothly ground fragments were found in a fracture gap. Bone collapse occurred when there was compaction of the fragmented matrix along the microfracture. Bone collapse and fracture lines through the calcified cartilage were associated with indentation of articular cartilage at the site.  相似文献   

12.
In vivo, bone cement is subject to cyclic loading in a fluid environment. However, little is known about the effect of moisture absorption on the fatigue crack propagation resistance of bone cement. The effect of moisture absorption at 37 degrees C on the fatigue crack propagation resistance of a common bone cement (Endurance, DePuy, Orthopaedics, Inc.) was examined. Preliminary fracture toughness tests were conducted on disk-shaped, vacuum-mixed cement specimens (compact tension type) that were cyclically pre-cracked. Plain-strain fracture toughness K(IC) (MPa square root(m)) was determined. To study the effect of moisture absorption four treatment groups, with different soaking periods in Ringer's at 37 degrees C, of Endurance cement were tested. The specimens weights prior to and following soaking showed a significant increase in mean weight for specimens soaked for 8 and 12 weeks. Linear regression analysis of log(da/dN) vs. log (deltaK) was conducted on the combined data in each fatigue test group. Soaking bone cement in Ringer's at 37 degrees C for 8 and 12 weeks lead to an improvement in fatigue crack propagation resistance, that may be related to water sorption that increases polymer chain mobility, with enhanced crack tip blunting. It may be more physiologically relevant to conduct in vitro studies of fatigue and fracture toughness of bone cements following storage in a fluid environment.  相似文献   

13.
目的:研究在有血和无血环境下粘合骨水泥和骨,比较两种粘合骨水泥的方式对骨与骨水泥界面稳定性影响的区别。方法:选取新鲜猪肱骨头20块,随机分成两组:实验组在有血的环境下用骨水泥将股骨头与金属粘合;对照组在无血的环境下用骨水泥将肱骨头和金属粘合,再将两组实验材料分别做拉伸试验,至骨与骨水泥界面断裂,最后再沿垂直于截骨面的方向做骨切片,在扫描电镜下观察并测量出每个实验对象中骨水泥的最大浸润深度。比较两组实验过程中拉力的最大载荷和断裂时的拉力以及骨水泥最大浸润深度。结果:实验组10个实验对象拉力最大载荷平均为738.50±262.15 N,断裂时的拉力平均为656.50±242.88N,骨水泥最大浸润深度平均为1.22±0.19 MM;对照组10个实验对象实验过程中拉力最大载平均为739.60±306.98 N,断裂时的拉力平均为658.80±264.56 N,骨水泥最大浸润深度平均为1.22±0.21 MM。20个实验对象在实验过程中均无意外断裂的情况发生,均在骨与骨水泥界面发生断裂。两组实验的拉力最大载荷与断裂拉力以及骨水泥最大浸润深度,均无统计学差异(P0.05)。结论:血液环境不能增加骨与骨水泥界面的不稳定因素。因此,与应用止血带相比,在TKA手术中不用止血带可能不会对骨与骨水泥界面稳定性和假体的寿命产生影响。  相似文献   

14.
The effect of a short-stem femoral resurfacing component on load transfer and potential failure mechanisms has rarely been studied. The stem length has been reduced by approximately 50% as compared to the current long-stem design. Using 3-D FE models of natural and resurfaced femurs, the study is aimed at investigating the influence of a short-stem resurfacing component on load transfer and bone remodelling. Applied loading conditions include normal walking and stair climbing. The mechanical role of the stem along with implant–cement and stem–bone contact conditions was observed to be crucial. Shortening the stem length to half of the current length (long-stem) led to several favourable effects, even though the stress distributions in the implant and the cement were similar in both the cases. The short-stem implant led not only to a more physiological stress distribution but also to bone apposition (increase of 20–70% bone density) in the superior resurfaced head, when the stem–bone contact prevailed. This also led to a reduction in strain concentration in the cancellous bone around the femoral neck–component junction. The normalised peak strain in this region was lower for the short-stem design as compared to that of the long-stem one, thereby reducing the initial risk of neck fracture. The effect of strain shielding (50–75% reduction) was restricted to a small bone volume underlying the cement, which was approximately half of that of the long-stem design. Consequently, bone resorption was considerably less for the short-stem design. The short-stem design offers better prospects than the long-stem resurfacing component.  相似文献   

15.
This study aimed to improve understanding of the mechanical aspects of cemented implant loosening. After aggressive fatigue loading of stem/cement/femur constructs, micro-cracks and stem/bone micro-motions were quantified to answer three research questions: Are cracks preferentially associated with the stem/cement interface, the cement/bone interface or voids? Is cement damage dependent on axial position? Does cement damage correlate with micro-motion between the stem and the bone? Eight Charnley Cobra stems were implanted in cadaveric femora. Six stem/cement/femur constructs were subjected to "stair-climbing" loads for 300 kcycles at 2Hz. Loads were normalized by construct stiffness to avoid fracture. Two additional constructs were not loaded. Transverse sections were cut at 10mm intervals, stained with a fluorescent dye penetrant and examined using epi-fluorescence stereomicroscopy. Crack lengths and cement areas were recorded for 9 sections per specimen. Crack length-density was calculated by dividing summed crack length by cement mantle area. To isolate the effect of loading, length-density data were offset by the baseline length-density measured in the non-loaded specimens. Significantly more cracks were associated with the interdigitated area (35.1%+/-11.6%) and the cement/bone interface (31.0%+/-6.2%) than with the stem/cement interface (11.0%+/-5.2%) or voids (6.1%+/-4.8%) (p<0.05). Load-induced micro-crack length-density was significantly dependent on axial position, increasing proximally (p<0.001). Micro-motions were small, all stems rotated internally. Cement damage did not correlate with micro-motion.  相似文献   

16.
Fractures of osteoporotic vertebral bodies are increasingly stabilized with bone cement. The effects of vertebral-body stiffness before and after augmentation with bone cement and of wedge-shaped vertebral body fractures on intradiscal pressure are insufficiently known. In a finite element model of the lumbar spine the elastic modulus of cancellous bone as well as the amount and the elastic modulus of bone cement were varied and the dependency of intradiscal pressure on these parameters was calculated. In addition, a wedge-shaped vertebral-body fracture was simulated. The bulge of the vertebral-body endplate and thus the intradiscal pressure depends strongly on the grade of osteoporosis in the vertebral body. The influence of amount and elastic modulus of bone cement on intradiscal pressure is small. A wedge-shaped vertebral-body fracture causes an anterior shift of upper-body centre of gravity. If this shift is not compensated, it leads to an increased flexion moment that has to be balanced by muscle forces. In addition, this shift leads to a stronger increase of intradiscal pressure than the augmentation of the vertebral body with bone cement.  相似文献   

17.
In order to generate a calcium-phosphate bone cement as a transient replacement for bone defects, we modified Biocement D (Merck Biomaterial GmbH) containing mineralised collagen with osteocalcin, the most abundant non-collageneous protein of bone. Osteocalcin was added to the cement paste during setting in order to control the crystallisation kinetics of hydroxyapatite (HAP) as well as to stimulate the interaction of osteoblasts and osteoclasts with the bone replacement material. Analysis by SEM and AFM shows, that the addition of osteocalcin causes a nanosize microstructure of the calcium cement, which can be explained by inhibited growth of HAP crystals. The fracture strength of the material decreased by incorporation of osteocalcin, pointing onto a higher defect concentration of the crystalline structure. The impact of osteocalcin onto the interaction of bone cells with HAP-Collagen I-cements was studied in a cell culture system using the human osteosarcoma cell line SAOS-2. Results suggest, that osteocalcin might possibly improve the initial adherence of osteoblast-like cells, whereas proliferation of the cells is not effected.  相似文献   

18.
A Strain energy density (SED) criterion based on a fracture mechanics approach was used to assess the possible failure of acetabular bone cement after total hip replacement. Stress distributions in the cement at the bone-cement interface were calculated using two-dimensional finite element analyses. The results indicate that increasing the thickness of bone cement reduces the risk of cement fracture. The addition of a metal backing to the polyethylene cup and retention of the subchondral bone further reduces the risk of failure. The SED criterion was found to predict the same critical regions as zones of possible cement failure as the von Mises' criterion. Although either criterion can be used for predicting failure in this acetabular analysis both criteria are excessively conservative in predicting failure in regions where high principal compressive stresses are present. Further development of cement failure criteria are indicated.  相似文献   

19.
目的:探讨骨水泥型与生物型髋关节置换术治疗股骨颈骨折对术后患者关节疼痛的影响。方法:回顾性分析2012年2月-2013年8月我院收治的股骨颈骨折患者的临床病历资料,按照假体类型将其分为骨水泥型髋关节置换术(A组)和生物型髋关节置换术(B组),通过Harris与分项百分制髋关节疼痛评分比较两组患者术后髋关节的疼痛情况。结果:两组患者的手术时间、术中出血量以及术后引流量比较,差异无统计学意义(P0.05),A组的住院时间短于B组,差异有统计学意义(P0.05)。A组术后3、6个月的髋关节疼痛率均低于B组,术后12、24个月则高于B组,差异有统计学意义(P0.05);经x2趋势分析,A组患者术后髋关节疼痛率随时间增加呈逐渐上升趋势,差异有统计学意义(x2=10.837,P=0.001),B组患者术后髋关节疼痛率随时间增加呈逐渐下降趋势,差异有统计学意义(x2=9.842,P=0.002)。A组患者术后3、6个月的髋关节疼痛评分高于B组,术后12、24个月则低于B组,差异有统计学意义(P0.05);A组术后3、6个月的髋关节疼痛评分高于术后12、24个月,B组3、6个月的髋关节疼痛评分低于术后12、24个月,差异有统计学意义(P0.05)。结论:骨水泥型假体缓解髋关节疼痛近期效果优于生物型假体,而生物型假体远期效果优于骨水泥型假体。  相似文献   

20.
Axial loading of the foot/ankle complex is an important injury mechanism in vehicular trauma that is responsible for severe injuries such as calcaneal and tibial pilon fractures. Axial loading may be applied to the leg externally, by the toepan and/or pedals, as well as internally, by active muscle tension applied through the Achilles tendon during pre-impact bracing. The objectives of this study were to investigate the effect of Achilles tension on fracture mode and to empirically model the axial loading tolerance of the foot/ankle complex. Blunt axial impact tests were performed on forty-three (43) isolated lower extremities with and without experimentally simulated Achilles tension. The primary fracture mode was calcaneal fracture in both groups. However, fracture initiated at the distal tibia more frequently with the addition of Achilles tension (p < 0.05). Acoustic sensors mounted to the bone demonstrated that fracture initiated at the time of peak local axial force. A survival analysis was performed on the injury data set using a Weibull regression model with specimen age, gender, body mass, and peak Achilles tension as predictor variables (R2 = 0.90). A closed-form survivor function was developed to predict the risk of fracture to the foot/ankle complex in terms of axial tibial force. The axial tibial force associated with a 50% risk of injury ranged from 3.7 kN for a 65 year-old 5th percentile female to 8.3 kN for a 45 year-old 50th percentile male, assuming no Achilles tension. The survivor function presented here may be used to estimate the risk of foot/ankle fracture that a blunt axial impact would pose to a human based on the peak tibial axial force measured by an anthropomorphic test device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号