首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of accumulation of nuclear and cytoplasmic poly(A) have been determined in sea urchin blastulas and gastrulas, stages when essentially all mRNA is synthesized de novo in the nucleus. A majority of the labeled poly(A) is found in the cytoplasmic fraction after a brief pulse. The ratio of radioactive AMP to adenosine in pulse-labeled nuclear, cytoplasmic, and polyribosomal poly(A) is considerably less than the number average length of the labeled poly(A), indicating that there is 3′-terminal addition of adenosine to previously synthesized poly(A). The size distribution of pulse-labeled, terminally elongated poly(A) in the cytoplasm is similar to that of the largest nuclear poly(A) rather than the steady-state size distribution of cytoplasmic poly(A), which is smaller and more heterogeneous. The most likely interpretation of these results is that there is a predominant 3′ terminal addition of short tracts of adenosine to poly(A) attached to nuclear RNA just before or during entrance of this RNA into the cytoplasm. In this respect, much of the 3′ terminal addition may be thought of as terminal completion of poly(A) synthesis.  相似文献   

2.
Properties and Location of Poly(A) in Rous Sarcoma Virus RNA   总被引:40,自引:26,他引:14       下载免费PDF全文
The poly(A) sequence of 30 to 40S Rous sarcoma virus RNA, prepared by digestion of the RNA with RNase T(1), showed a rather homogenous electrophoretic distribution in formamide-polyacrylamide gels. Its size was estimated to be about 200 AMP residues. The poly(A) appears to be located at or near the 3' end of the 30 to 40S RNA because: (i) it contained one adenosine per 180 AMP residues, and because (ii) incubation of 30 to 40S RNA with bacterial RNase H in the presence of poly(dT) removed its poly(A) without significantly affecting its hydrodynamic or electrophoretic properties in denaturing solvents. The viral 60 to 70S RNA complex was found to consist of 30 to 40S subunits both with (65%) and without (approximately 30%) poly(A). The heteropolymeric sequences of these two species of 30 to 40S subunits have the same RNase T(1)-resistant oligonucleotide composition. Some, perhaps all, RNase T(1)-resistant oligonucleotides of 30 to 40S Rous sarcoma virus RNA appear to have a unique location relative to the poly(A) sequence, because the complexity of poly(A)-tagged fragments of 30 to 40S RNA decreased with decreasing size of the fragment. Two RNase T(1)-resistant oligonucleotides which distinguish sarcoma virus Prague B RNA from that of a transformation-defective deletion mutant of the same virus appear to be associated with an 11S poly(A)-tagged fragment of Prague B RNA. Thus RNA sequences concerned with cell transformation seem to be located within 5 to 10% of the 3' terminus of Prague B RNA.  相似文献   

3.
A recombinant DNA plasmid, pBR322-GH1, which contains about 80% of the sequences of rat pregrowth hormone (pGH) mRNA, allowed an analysis of nuclear RNA from GH3 cells for possible precursors of cytoplasmic pGH mRNA. A single 20-22S RNA SPECIES ABOUT 2-3 TIMes larger than pGH mRNA was detected in nuclear RNA from GH3 cells labeled for 5 min. with 3H-uridine. After longer label times a 12S RNA indistinguishable in size from cytoplasmic 12S pGH mRNA became the predominant labeled RNA complementary to the plasmid pBR322-GH1. Both of these nuclear RNA species contained poly (A). Kinetic analysis of the labeling of nuclear and cytoplasmic pGH mRNA sequences showed that the 20S and 12S nuclear RNA molecules were labeled before significant labeling of cytoplasmic pGH mRNA was detected, and also indicated that there is complete conservation of nuclear pGH mRNA sequences in the production of cytoplasmic pGH mRNA. These results indicate that cytoplasmic pGH mRNA is generated by nuclear processing of a larger nuclear RNA molecule.  相似文献   

4.
5.
6.
Messenger RNA (mRNA) of membrane-bound polysomes in a membrane fraction of WI-38 cells remains associated with the microsomal membranes even after ribosomes and their nascent polypeptide chains are removed by using puromycin in a high salt buffer or by disassembling the ribosomes in a medium of high ionic strength lacking magnesium. mRNA either was specifically labeled in the presence of actinomycin D, or it was recognized by virtue of its affinity for oligo-dT. Poly A segments in bound mRNAs have an electrophoretic mobility in acrylamide gels which is characteristic of cytoplasmic mRNAs and corresponds to 150-200 adenyl residues. Extensive RNase treatment did not lead to release of the poly A segments of membrane-associated mRNA molecules either from an intact membrane fraction or from a membrane fraction previously stripped of ribosomes. On the other hand, RNase treatment led to the release and digestion of the nonpoly A segments of the mRNA molecules, indicating that the site of attachment of mRNA to the ER membranes is located near or at the 3' end of the molecule which contains the poly A. A direct association of mRNAs and endoplasmic reticulum membranes is considered in a modelto explain the assembly of bound polysomes and protein synthesis in a membrane-associated apparatus.  相似文献   

7.
8.
R C Herman 《Biochemistry》1979,18(5):916-920
The message-sequence content of pulse-labeled poly(A)+ HeLa heterogenous nuclear RNA (hnRNA) has been examined by hybridizations to an excess of message cDNA. Control experiments show that the message cDNA accurately reflects the sequence distribution of the complex mixture of poly(A)+ messages present in the HeLa cytoplasm. Pulse-labeled poly(A)+ molecules in both the lamina-associated and shnRNA fractions contain message sequences, and approximately 65% of the poly(A)-adjacent hnRNA sequences are homologous to the 3' ends of mRNA. The majority of the pulse-labeled hnRNA molecules contain abundant message sequences. By use of these techniques it is also shown that some pulse-labeled polyadenylated message sequences are still synthesized in the presence of the adenosine analogue 5,6-dichloro-beta-D-ribofuranosylbenzimidazole under conditions where little or no new cytoplasmic mRNA is produced.  相似文献   

9.
J Astrm  A Astrm    A Virtanen 《The EMBO journal》1991,10(10):3067-3071
We have identified a 3' exonuclease in HeLa cell extracts which deadenylates mammalian mRNA and leaves the mRNA body intact after poly(A) removal. Only homopolymeric adenosine tails located at the 3' end were efficiently removed by the exonuclease. The poly(A) removing activity did not require any specific sequences in the mRNA body either for poly(A) removal or for accumulation of the deadenylated mRNA. We conclude that the poly(A) removing activity is a 3' exonuclease since (i) reaction intermediates gradually lose the poly(A) tail, (ii) degradation is prevented by the presence of a cordycepin residue at the 3' end and (iii) RNAs having internally located poly(A) stretches are poor substrates for degradation. The possible involvement of the poly(A) removing enzyme in regulating mRNA translation and stability is discussed.  相似文献   

10.
A group of RNAs 90–100 nucleotides long were isolated by melting them from poly(A)-terminated nuclear or cytoplasmic RNA from cultured Chinese hamster ovary cells. Conditions that favor hydrogen bond formation allowed the reassociation of these low molecular weight RNAs with poly(A)-terminated RNA. The nuclear poly(A)-terminated molecules contained 1.3 moles of the low molecular weight RNAs per mole of poly(A), while the cytoplasmic poly(A)-terminated RNA contained only one seventh as much. These low molecular weight RNAs were also isolated from the total 4S RNA of either the nucleus or cytoplasm by polyacrylamide gel electrophoresis. They formed a prominantly labeled band of RNA in the gels after cells had been labeled with H332PO4 for 4 hr. The low molecular weight RNAs melted from the nuclear poly(A)-terminated RNA were slightly different (although not necessarily in primary nucleotide sequence) from those melted from the cytoplasmic poly(A)-terminated RNA.  相似文献   

11.
12.
Cytoplasmic poly(A) elongation is one mechanism that regulates translational recruitment of maternal mRNA in early development. In Xenopus laevis, poly(A) elongation is controlled by two cis elements in the 3' untranslated regions of responsive mRNAs: the hexanucleotide AAUAAA and a U-rich structure with the general sequence UUUUUAAU, which is referred to as the cytoplasmic polyadenylation element (CPE). B4 RNA, which contains these sequences, is polyadenylated during oocyte maturation and maintains a poly(A) tail in early embryos. However, cdk2 RNA, which also contains these sequences, is polyadenylated during maturation but deadenylated after fertilization. This suggests that cis-acting elements in cdk2 RNA signal the removal of the poly(A) tail at this time. By using poly(A) RNA-injected eggs, we showed that two elements which reside 5' of the CPE and 3' of the hexanucleotide act synergistically to promote embryonic deadenylation of this RNA. When an identical RNA lacking a poly(A) tail was injected, these sequences also prevented poly(A) addition. When fused to CAT RNA, the cdk2 3' untranslated region, which contains these elements, as well as the CPE and the hexanucleotide, promoted poly(A) addition and enhanced chloramphenicol acetyltransferase activity during maturation, as well as repression of these events after fertilization. Incubation of fertilized eggs with cycloheximide prevented the embryonic inhibition of cdk2 RNA polyadenylation but did not affect the robust polyadenylation of B4 RNA. This suggests that a maternal mRNA, whose translation occurs only after fertilization, is necessary for the cdk2 deadenylation or inhibition of RNA polyadenylation. This was further suggested when poly(A)+ RNA isolated from two-cell embryos was injected into oocytes that were then allowed to mature. Such oocytes became deficient for cdk2 RNA polyadenylation but remained proficient for B4 RNA polyadenylation. These data show that CPE function is developmentally regulated by multiple sequences and factors.  相似文献   

13.
14.
The Role of the poly(A) sequence in mammalian messenger RNA   总被引:41,自引:0,他引:41  
The poly(A) sequence is added to 3' termini of nuclear RNA segments destined to become part of the mRNA, and may play an essential role in the selection of these segments. It appears to be required for at least some of the splicing events involved in mRNA processing. In the cytoplasm, the poly(A) segment is the target of a degradation process which causes its gradual shortening, and leads to a heterogeneous steady-state poly(A)-size distribution. Complete loss of the poly(A) is probably followed by inactivation of the mRNA, since chains depleted of poly(A) do not accumulate in the cells. A role for this sequence in the promotion of mRNA stability is suggested by the behavior of globin mRNA depleted of poly(A) after injection into frog oocytes. The poly(A) shortening process may be part of the mRNA inactivation mechanism, as indicated by the greater sensitivity to degradation of the poly(A) of some short-lived mRNAs. However, the stochastic mRNA decay implies that new and old mRNA chains, with long and short poly(A) segments, respectively are equally susceptible to inactivation. The poly(A)-lacking histone mRNAs are stable only in cells engaged in DNA replication. Present knowledge favors a role for poly(A) in the control of mRNA stability. Loss of this sequence could be controlled through modulation of poly(A)-protein interactions or through masking of a sequence directly adjacent to the poly(A). In the nucleus, the poly(A) sequence could also serve as stabilizing agent, but, in addition, it might interact with the splicing machinery.  相似文献   

15.
The role of RNA molecules in transduction of the proto-oncogene c-fps   总被引:14,自引:0,他引:14  
C C Huang  N Hay  J M Bishop 《Cell》1986,44(6):935-940
  相似文献   

16.
In Saccharomyces cerevisiae the function of the RN A1 gene is believed to be required for the transport of newly synthesized mRNA from the nucleus to the cytoplasm. Nuclear poly(A)+ RNAs accumulate and cytoplasmic mRNAs decay after the temperature-sensitive (ts) rna1.1 mutant is shifted from 25 degrees C to 37 degrees C. In this study the 3' poly(A) upon poly(A)+ RNA synthesized after expression of rna1.1 was shown to be appreciably longer than the poly(A) normally present on yeast cytoplasmic mRNA. This increased poly(A) length is due to rna1.1, since it was found only in this mutant after a 25 degrees C to 37 degrees C heat shock, not an intragenic non-ts revertant of rna1.1, wild-type (RN A1+) cells or a RN A1+, rna2.1 mutant subjected to equivalent heat shocks. It may be an indication that the normal shortening of the poly(A) on mRNAs does not occur in the nucleus, but happens only with transport to the cytoplasm. Alterations in the mean size of poly(A) may be a relatively simple marker for mRNA transport defects.  相似文献   

17.
The iridovirus frog virus 3 (FV3) can replicate in culture in fat head minnow (FHM) fish cells or in BHK-21 hamster cells. Viral DNA replication commences about 3 h after infection of FHM cells with FV3. Between 3 and 6 h postinfection (p.i.), a portion of the intranuclear FV3 DNA is partly unmethylated. At later times, p.i., all of the viral DNA in the nuclear and cytoplasmic compartments is methylated at the 5'-CCGG-3' sequences. Cytoplasmic FV3 DNA has not been found unmethylated. We have cloned viral DNA fragments from methylated virion DNA. By using the genomic sequencing technique, it has been demonstrated for segments of the FV3 DNA replicated both in FHM fish and BHK21 hamster cells that in a stretch encompassing a total of 350 bp, all of the analyzed 5'-CG-3' dinucleotides are methylated. The modified nucleotide 5-methyldeoxycytidine is present exclusively in the 5'-CG-3' dinucleotide combination. In the cloned FV3 DNA fragment p21A, an open reading frame has been located. The 5' region of this presumptive viral gene is also methylated in all 5'-CG-3' positions. DNA methyltransferase activity has been detected in the nuclei of FV3-infected FHM cells at 4, 11, and 20 h p.i. In the cytoplasmic fraction, comparable activity has not been observed. These data are consistent with the interpretation that FV3 DNA is newly synthesized and de novo methylated in the nuclei of infected FHM cells and subsequently exported into the cytoplasm for viral assembly.  相似文献   

18.
19.
The relative kinetics of cytoplasmic appearance and polyadenylation were determined for informosomal (ribosome-free) and polysomal (ribosome-associated) mRNAs of cultured Chinese hamster cells. Label appeared in polysomal mRNA 17--20 min and into informosomal mRNA 2--5 min after addition of radio-labelled uridine. Adenosine appeared in polysomal mRNA 4--5 min before uridine. In contrast, adenosine label preceded uridine into informosomal mRNA by less than 1 min. About one-third of newly formed informosomal and two-thirds of newly formed polysomal mRNA are poly(A+). The data indicate that newly formed informosomal mRNA cannot be simple precursor to polysomal mRNA. Further, the pronounced difference in time required for polyadenylation and cytoplasmic appearances of these messenger ribonucleoproteins suggests that there may be fundamental differences in their mode of processing.  相似文献   

20.
Addition of poly(A) to nuclear RNA occurs soon after RNA synthesis   总被引:11,自引:2,他引:9       下载免费PDF全文
A kinetic analysis of the appearance of [3H]uridine label in RNA sequences that neighbor poly(A), as well as the incorporation of [3H]adenosine label into both the RNA chain and the poly(A) of poly(A)-containing molecules, shows that poly(A) is added within a minute or so after RNA chain synthesis in Chinese hamster ovary cells and HeLa cells. Previous conclusions by several groups (5-7) that poly(A) might be added as long as 20-30 min after RNA synthesis appear to be in error, and the present conclusion seems much more in line with several different types of recent studies with specific mRNAs that suggest prompt poly(A) addition (13-16).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号