首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
Ryu DS  Baek GO  Kim EY  Kim KH  Lee DS 《BMB reports》2010,43(11):750-755
Crude Orostachys japonicus polysaccharide extract (OJP) was prepared by hot steam extraction. Polysaccharides (OJPI) were separated from OJP by gel filtration chromatography and phenol-sulfuric acid assay. The average molecular weight of the OJPI was 30-50 kDa. The anti-proliferative effect of OJPI on HT-29 human colon cancer cells was investigated via morphology study, cell viability assay, apoptosis assay, cell cycle analysis, and cDNA microarray. OJPI inhibited proliferation and growth of HT29 cells and also stimulated apoptosis in a dose- and time-dependent manner. In cell cycle analysis, treatment with OJPI resulted in a marked increase of cells in the G0 (sub G1) and G2/M phases. To screen for genes involved in the induction of cell cycle arrest and apoptosis, the gene expression profiles of HT-29 cells treated with OJPI were examined by cDNA microarray, revealing that a number of genes were up- or down-regulated by OJPI. Whereas several genes involved in anti-apoptosis, cell proliferation and growth, and cell cycle regulation were down-regulated, expression levels of several genes involved in apoptosis, tumor suppression, and other signal transduction events were up-regulated. These results suggest that OJPI inhibits the growth of HT-29 human colon cancer cells by various apoptosis-aiding activities as well as apoptosis itself. Therefore, OJPI deserve further development as an effective agent exhibiting anticancer activity.  相似文献   

3.
Endogenous mitotic inhibitors act as control-mechanisms in intestinal epithelium proliferation. The presence of an inhibitor of cultured intestinal epithelial cell from a villous extract of rat jejunum has been reported in one of our papers. The object of the study now reported was to find the presence of a growth inhibitor in the villous extract from man's small intestine and to purify and characterize this factor when found. Our results reveal that: (1) Such an inhibitor was found in a supernatant preparation obtained from human intestinal epithelial cells. The inhibition of the proliferation of epithelial cells (IRD-98) it induced was seem to be dose-dependent and non-cytotoxic. (2) After chromatography on hydroxylapatite, on DEAE and then on ACA 54 (gel permeation), a low-molecular-weight protein (15 kDa) called purified intestinal inhibitor (PII) was isolated (purification factor of approx. 50,000 with respect to the supernatant fraction). This fraction proved to inhibit the IRD-98 cells in a reversible manner. When cells are incubated with this protein, cells prove to be arrested in phase G1 of the cell cycle as is revealed by the flow cytometry studies. The results obtained support the hypothesis that regulation of cell proliferation is mediated by endogenous inhibitors at the epithelial level.  相似文献   

4.
Lactoferrin inhibits cell proliferation and suppresses tumor growth in vivo. However, the molecular mechanisms underlying these effects remain unknown. In this in vitro study, we demonstrate that treatment of breast carcinoma cells MDA-MB-231 with human lactoferrin induces growth arrest at the G1 to S transition of the cell cycle. This G1 arrest is associated with a dramatic decrease in the protein levels of Cdk2 and cyclin E correlated with an inhibition of the Cdk2 kinase activity. Cdk4 activity is also significantly decreased in the treated cells and is accompanied by an increased expression of the Cdk inhibitor p21(CIP1). Furthermore, we show that lactoferrin maintains the cell cycle progression regulator retinoblastoma protein pRb in a hypophosphorylated form. Additional experiments with synchronized cells by serum depletion confirm the anti-proliferative activity of human lactoferrin. These effects of lactoferrin occur through a p53-independent mechanism both in MDA-MB-231 cells and other epithelial cell lines such as HBL-100, MCF-7, and HT-29. These findings demonstrate that lactoferrin induces growth arrest by modulating the expression and the activity of key G1 regulatory proteins.  相似文献   

5.
Oleuropein (OL) and hydroxytyrosol (HT), the main olive oil polyphenols, possess anti-proliferative effects in vitro. Fatty acid synthase, a key anabolic enzyme of biosynthesis of fatty acids, plays an important role in colon carcinoma development. Our aim was to investigate whether gene expression of FAS, as well as its enzymatic activity, is regulated by HT and OL in two human colon cancer cell lines, as HT-29 and SW620. In addition, we investigated the effects of these polyphenols on growth and apoptosis in these cells. FAS gene expression and activity in treated HT-29 and SW620 cells were evaluated by real-time PCR and radiochemical assay, respectively. Cell growth and apoptosis, after polyphenols treatment, were measured by MTT test and flow cytometry, respectively. The inhibition of proliferation, detected after HT treatment, was mediated by an inhibition of FAS expression and its enzymatic activity in SW620 cells, while the anti-proliferative effect in HT-29 cells seems to be independent from FAS. OL exerted an anti-proliferative effect only on SW620 cells with a mechanism which excluded FAS. Olive oil polyphenols used were able to induce apoptosis in both cell lines studied. The increase of apoptosis in these cells was accompanied by the block of cell cycle in the S phase. This study demonstrates that HT and OL may induce anti-proliferative and pro-apoptotic effects only in certain human colorectal cancer cell types. These effects are FAS mediated only in SW620 cells after treatment with HT.  相似文献   

6.
Inhibition of lymphocyte proliferation by antibodies to prolactin   总被引:15,自引:0,他引:15  
Recent in vivo studies have shown that treatments that decrease circulating prolactin (PRL) in rodents result in significant immunosuppression. Our attempts to demonstrate corresponding direct stimulatory effects of PRL on cultured lymphocytes were unsuccessful. However, antibodies against pituitary PRL potently inhibited both murine and human lymphocyte proliferation in response to both T and B cell mitogens. Further studies using IL 2 and IL 4 responsive cell lines (CTLL-2 and HT-2) demonstrated that the same anti-PRL antibodies inhibited the proliferative response to these cytokine growth factors. Thus, antibodies to PRL appear to block an event occurring in the G1 to GS phase transition of these cell lines, which constitutively express growth factor receptors. The inhibitory activity of anti-PRL antibodies could be adsorbed by addition of purified human PRL or by immobilized PRL on an affinity column. Antibodies to other pituitary hormones were without inhibitory effect on CTLL-2 cell proliferation. Proliferation of lymphocytes in serum-free medium was also potently inhibited by anti-PRL antibodies, suggesting that antibody effects were not due to neutralization of PRL or other factors contained in culture serum supplements. We suggest from these data that a protein with homology to PRL and recognized by these anti-PRL antibodies is produced by lymphocytes and plays a critical role in their progression through the cell cycle.  相似文献   

7.
Huachansu, a traditional Chinese medicine prepared from the dried toad skin, has been used in clinical studies for various cancers in China. Resibufogenin is a component of huachansu and classified as bufadienolides. Resibufogenin has been shown to exhibit the anti-proliferative effect against cancer cells. However, the molecular mechanism of resibufogenin remains unknown. Here we report that resibufogenin induces G1-phase arrest with hypophosphorylation of retinoblastoma (RB) protein and down-regulation of cyclin D1 expression in human colon cancer HT-29 cells. Since the down-regulation of cyclin D1 was completely blocked by a proteasome inhibitor MG132, the suppression of cyclin D1 expression by resibufogenin was considered to be in a proteasome-dependent manner. It is known that glycogen synthase kinase-3β (GSK-3β) induces the proteasomal degradation of cyclin D1. The addition of GSK-3β inhibitor SB216763 inhibited the reduction of cyclin D1 caused by resibufogenin. These effects on cyclin D1 by resibufogenin were also observed in human lung cancer A549 cells. These findings suggest that the anti-proliferative effect of resibufogenin may be attributed to the degradation of cyclin D1 caused by the activation of GSK-3β.  相似文献   

8.
Wan B  Zhou YB  Zhang X  Zhu H  Huo K  Han ZG 《FEBS letters》2008,582(21-22):3185-3192
We describe a novel secreted protein, named hOLFML1 (human olfactomedin-like protein 1), with an olfectamine domain in its C-terminus, mainly expressed in the small intestine, liver, lung and heart. Immunohistochemical staining on human small intestine indicated that the protein localizes preferentially in the intestinal villi. Interestingly, ectopic hOLFML1 promoted proliferation of HeLa cells and increased the percentage of cells in S phase. In contrast, knock down of hOLFML1 protein expression by siRNA inhibited cell proliferation and delayed the entry of cells into S phase. Our data also revealed that hOLFML1 is N-glycosylated and its secretion is triggered by serum. Taken together, these findings suggest that hOLFML1 may play a significant role in the regulation of cell proliferation in vitro.  相似文献   

9.
BACKGROUND: CXCL8 (previously known as Interleukin-8), a member of the alpha-chemokine family of chemotactic cytokines, stimulates intestinal neutrophil activation and chemotaxis. As intestinal epithelial cells have been recently shown to produce CXCL8, the aim of this study was to identify functional activities of CXCL8 on intestinal epithelial cells. METHODS: The expression of CXCL8 receptors CXCR1 and CXCR2 was assessed by RT-PCR and FACS analysis in human Caco-2 and HT-29 cells. The effects of CXCL8 on intestinal epithelial proliferation were assessed with colorimetric MTT assays and the effects on epithelial restitution with an in vitro migration model using Caco-2 and HT-29 cells. RESULTS: While the expression of both CXCR1 mRNA and protein could be demonstrated by RT-PCR and FACS analysis in human Caco-2 and HT-29 cells, no expression of CXCR2 was observed in these cell lines. Colorimetric MTT assays revealed that CXCL8 does not modulate cell proliferation in HT-29 and Caco-2 cells. In contrast, CXCL8 significantly enhanced intestinal epithelial migration in an in vitro migration model of HT-29 and Caco-2 cells. Enhancement of intestinal epithelial cell migration by CXCL8 was partially CXCR1-dependent and TGFbeta-independent. CONCLUSION: CXCL8 exerts functional effects on intestinal epithelial cells that may be relevant for intestinal inflammation and mucosal healing.  相似文献   

10.
Erosions and ulcerations of the intestinal epithelium are hallmarks of inflammatory bowel diseases (IBD). Intestinal epithelial cell migration (restitution) and proliferation are pivotal mechanisms for healing of epithelial defects after mucosal injury. In addition, the rate of apoptosis of epithelial cells may modulate intestinal wound healing. The purine antagonists azathioprine (AZA) and 6-mercaptopurine (6-MP) are widely used drugs in the treatment of IBD. In the present study, the hitherto unknown effects of AZA as well as its metabolites 6-MP and 6-thioguanine (6-TG) on repair mechanisms and apoptosis of intestinal epithelia were analysed. Intestinal epithelial cell lines (human Caco-2, T-84 and HT-29 cells, rat IEC-6 cells) were incubated with AZA, 6-MP or 6-TG for 24 h (final concentrations 0.1-10 microM). Migration of Caco-2 and IEC-6 cells was analysed by in vitro restitution assays. Caco-2 and IEC-6 cell proliferation was evaluated by measurement of [3H]thymidine incorporation into DNA. Apoptosis of Caco-2, T-84, HT-29 and IEC-6 cells was assessed by histone ELISA, 4'6'diamidino-2'phenylindole-dihydrochloride staining as well as flow cytometric analysis of Annexin V/propidium iodide (PI)-stained cells. Cell cycle progression was evaluated by PI staining and flow cytometry. Epithelial restitution was not significantly affected by any of the substances tested. However, proliferation of intestinal epithelial cells was inhibited in a dose-dependent manner (maximal effect 92%) by AZA, 6-MP as well as 6-TG. In HT-29 cells, purine antagonist-effected inhibition of cell proliferation was explained by a cell cycle arrest in the G2 phase. In contrast, AZA, 6-MP and 6-TG induced no cell cycle arrest in Caco-2, T-84 and IEC-6 cells. AZA, 6-MP as well as 6-TG induced apoptosis in the non-transformed IEC-6 cell line but not in human Caco-2, T-84 and HT-29 cells. In summary, AZA and its metabolites exert no significant effect on intestinal epithelial restitution. However, they profoundly inhibit intestinal epithelial cell growth via various mechanisms: they cause a G2 cell cycle arrest in HT-29 cells, induce apoptosis in IEC-6 cells and dose-dependently inhibit intestinal epithelial proliferation.  相似文献   

11.
Liu CT  Chu FJ  Chou CC  Yu RC 《Mutation research》2011,721(2):157-162
Cell fractions including heat-treated cells, crude cell walls, intracellular extracts and exopolysaccharides (EPSs) obtained from Lactobacillus casei 01 were first studied for their effects on the proliferation of human intestinal epithelial cells, intestine 407 and the human colon cancer cell, HT-29. Their effects on the cytotoxicity of 4-nitroquinoline 1-oxide (4-NQO) against intestine 407 were further investigated. The results revealed that EPS exhibited the highest antiproliferation activity on HT-29 cells while the viability of intestine 407 cells was not affected by EPS at a concentration of 5-50μg/mL. It was also noted that all the cell fractions and EPS from L. casei 01 reduced the cytotoxicity of 4-NQO against intestine 407 with EPS showing the highest anticytotoxic activity. Additionally, it was found that EPS might exert blocking and bioanticytotoxic effects by both adjusting the function of intestine 407 and repairing the 4-NQO-damaged cells, thus reducing cytotoxicity of 4-NQO.  相似文献   

12.
13.
We and others have found that wheat bran oil is the active constituent in wheat bran for colon cancer prevention. However, the active components in wheat bran oil are still unknown. Using human colon cancer cells (HCT-116 and HT-29) as the guiding assays, we further purified the active components from wheat bran using column chromatography. In this study, we identified that a fraction containing 5-n-alk(en)ylresorcinols had the strongest inhibitory effect on the proliferation of human HCT-116 and HT-29 colon cancer cells. Further purification led to the identification of 14 5-alk(en)ylresorcinols. Among them, 7, (10'Z,13'Z,16'Z)-5-(nonadeca-10',13',16'-trienyl)resorcinol, is a novel compound and 5, 6, 9, 10, and 13 were purified as individual compounds for the first time. The identification and structural elucidation of these compounds were based on 1D and 2D NMR and tandem mass spectral analyses. All these compounds (1-14) except 10 were evaluated for growth inhibition of human colon cancer cell lines (HCT-116 and HT-29). Our results indicate that increasing the length of the side chain will diminish the inhibitory activity, and the existence of a double bond and a carbonyl group will strengthen such an activity.  相似文献   

14.
The role and regulation of signal transduction pathways in proliferation and differentiation of intestinal epithelial cells are still poorly understood. However, growing evidences have been recently accumulated demostrating that mitogen-activated protein kinases (MAPKs) play a pivotal function in the normal development of intestine. We have investigated, in the intestinal cell line HT-29, the regulation (namely activity and phosphorylation degree) of MAP kinases ERK 1 (p44) and ERK 2 (p42) during differentiation. Addition of fetal calf serum to HT-29 undifferentiated resting cells caused a rapid phosphorylation of both ERKs and an increase of their specific kinase activity. Moreover, nuclear translocation of ERK 1 and ERK 2 occurred concurrently to their activation, leading to the conclusion that ERK 1 and ERK 2 are classically regulated when quiescent HT-29 cells are induced to proliferate. Butyrate addition to the intestinal cell line resulted in terminal differentiation and in a selective down-regulation of ERK 2 activity (and phosphorylation degree) without any effect on ERK 1. Conversely, when HT-29 cells were differentiated by repeated passages in a glucose-free medium, we observed a progressive dephosphorylation and inactivation of p42 and p44 kinases along with the failure of serum to activate both the enzymes. Our findings suggest that, during the differentiation of intestinal cells, remarkable changes occur in ERK 1 and ERK 2 control mechanisms leading to an unresponsivness of MAP kinase pathway.  相似文献   

15.
The anti-proliferative activity of a series of ester- and amide-linked Inhoffen–Lythgoe side chain analogues is reported. Whereas the Inhoffen–Lythgoe diol was inactive in these studies, a number of aromatic and aliphatic ester-linked side chains demonstrated modest in vitro growth inhibition in two human cancepar cell lines, U87MG (glioblastoma) and HT-29 (colorectal adenocarcinoma). Structure–activity relationship (SAR) studies demonstrated the most active aromatic (13) and aliphatic (25 and 29) substituted analogues were approximately equipotent in U87MG and HT-29 cells. Further evaluation of 13, 25, and 29 indicated these analogues do not activate canonical vitamin D signaling nor antagonize Hedgehog (Hh) signaling. Thus, the cellular mechanism(s) that govern the anti-proliferative activity for this class of truncated vitamin D-based structures appears to be different from classical mechanisms previously identified for these scaffolds.  相似文献   

16.
17.
The human intestinal epithelium is rapidly and perpetually renewed as the descendants of multipotent stem cells located in crypts undergo proliferation, differentiation, and eventual exfoliation during a very well organized migration along the crypt to villus axis. The mechanisms that establish and maintain this balance between proliferation and differentiation are largely unknown. We have utilized HT-29 cells, derived from a human colon adenocarcinoma, as a model system for identifying gene products that may regulate these processes. Proliferating HT-29 cells cultured in the absence of glucose (e.g., using inosine as the carbon source) have some of the characteristics of undifferentiated but committed crypt epithelial cells while postconfluent cells cultured in the absence of glucose resemble terminally differentiated enterocytes or goblet cells. A cDNA library, constructed from exponentially growing HT-29 cells maintained in inosine-containing media, was sequentially screened with a series of probes depleted of sequences encoding housekeeping functions and enriched for intestine-specific sequences that are expressed in proliferating committed, but not differentiated, epithelial cells. Of 100,000 recombinant phage surveyed, one was found whose cDNA was derived from an apparently gut-specific mRNA. It encodes a 316 residue, 35,463-D protein that is a new member of the annexin/lipocortin family. Other family members have been implicated in regulation of cellular growth and in signal transduction pathways. RNA blot and in situ hybridization studies indicate that the gene encoding this new annexin exhibits region-specific expression along both axes of the human gut: (a) highest levels of mRNA are present in the jejunum with marked and progressive reductions occurring distally; (b) its mRNA appears in crypt-associated epithelial cells and increases in concentration as they exit the crypt. Villus-associated epithelial cells continue to transcribe this gene during their differentiation/translocation up the villus. Immunocytochemical studies reveal that the intestine-specific annexin (ISA) is associated with the plasma membrane of undifferentiated, proliferating crypt epithelial cells as well as differentiated villus enterocytes. In polarized enterocytes, the highest concentrations of ISA are found at the apical compared to basolateral membrane. In vitro studies using an octapeptide derived from residues 2-9 of the primary translation product of ISA mRNA and purified myristoyl-CoA:protein N-myristoyltransferase suggested that it is N-myristoylated. In vivo labeling studies confirmed that myristate is covalently attached to ISA via a hydroxylamine resistant amide linkage. The restricted cellular expression and acylation of ISA distinguish it from other known annexins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
NGX6基因对人结肠癌细胞HT-29细胞周期的影响   总被引:6,自引:1,他引:6  
NGX6基因是新克隆的候选抑瘤基因,研究表明NGX6重表达可抑制结肠癌细胞的增殖.为进一步研究NGX6对细胞周期的影响,采用流式细胞仪检测NGX6重表达对结肠癌细胞HT-29细胞周期的影响,发现NGX6重表达可增加HT-29细胞在G0/G1期的分布比例,减少了S,G2,M期细胞数.利用蛋白质印迹和流式细胞术分析NGX6转染前后HT-29细胞周期素(cyclins)和细胞周期素依赖性蛋白激酶抑制物(cyclin-dependentkinaseinhibitor,CKI)的表达变化,发现NGX6可下调HT-29细胞中cyclinE、cyclinD1的表达及上调p27的表达,对cyclinA和cyclinB的表达无明显影响,p16在三组结肠癌细胞中均无表达.研究结果表明,NGX6在HT-29细胞中通过下调cyclinE、cyclinD1和上调p27的表达,阻滞细胞周期于G0/G1期,从而发挥其在结肠癌中的抑瘤作用.  相似文献   

19.
Two Lactobacillus plantarum strains of human intestinal origin, strains 299 (= DSM 6595) and 299v (= DSM 9843), have proved to be efficient colonizers of the human intestine under experimental conditions. These strains and 17 other L. plantarum strains were tested for the ability to adhere to cells of the human colonic cell line HT-29.L.plantarum 299 and 299v and nine other L. plantarum strains, including all six strains that belong to the same genetic subgroup as L. plantarum 299 and 299v, adhered to HT-29 cells in a manner that could be inhibited by methyl-alpha-D-mannoside. The ability to adhere to HT-29 cells correlated with an ability to agglutinate cells of Saccharomyces cerevisiae and erythrocytes in a mannose-sensitive manner and with adherence to D-mannose-coated agarose beads. L. plantarum 299 and 299v adhered to freshly isolated human colonic and ileal enterocytes, but the binding was not significantly inhibited by methyl-alpha-D-mannoside. Periodate treatment of HT-29 cells abolished mannose-sensitive adherence, confirming that the cell-bound receptor was of carbohydrate nature. Proteinase K treatment of the bacteria also abolished adherence, indicating that the binding involved protein structures on the bacterial cell surface. Thus, a mannose-specific adhesin has been identified in L. plantarum; this adhesin could be involved in the ability to colonize the intestine.  相似文献   

20.
A panel of monoclonal antibodies was produced against purified microvillus membranes of human small intestinal enterocytes. By means of these probes three disaccharidases (sucrase-isomaltase, lactase-phlorizin hydrolase, and maltase-glucoamylase) and four peptidases (aminopeptidase N, dipeptidylpeptidase IV, angiotension I-converting enzyme, and p-aminobenzoic acid peptide hydrolase) were successfully identified as individual entities by SDS PAGE and localized in the microvillus border of the enterocytes by immunofluorescence microscopy. The antibodies were used to study the expression of small intestinal hydrolases in the colonic adenocarcinoma cell line Caco 2. This cell line was found to express sucrase-isomaltase, lactase-phlorizin hydrolase, aminopeptidase N, and dipeptidylpeptidase IV, but not the other three enzymes. Pulse-chase studies with [35S]methionine and analysis by subunit-specific monoclonal antibodies revealed that sucrase-isomaltase was synthesized and persisted as a single-chain protein comprising both subunits. Similarly, lactase-phlorizin hydrolase was synthesized as a large precursor about twice the size of the lactase subunits found in the human intestine. Aminopeptidase N and dipeptidylpeptidase IV, known to be dimeric enzymes in most mammals, were synthesized as monomers. Transport from the rough endoplasmic reticulum to the trans-Golgi apparatus was considerably faster for the peptidases than for the disaccharidases, as probed by endoglycosidase H sensitivity. These results suggest that the major disaccharidases share a common biosynthetic mechanism that differs from that for peptidases. Furthermore, the data indicate that the transport of microvillus membrane proteins to and through the Golgi apparatus is a selective process that may be mediated by transport receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号