首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using comparative modeling, we have generated structural models of 475 α and β tubulins. Using these models, we observed a global, structural similarity between the tubulin isotypes. However, a number of subtle differences in the isotypes physical properties, including net electric charges, solvent accessible surface areas, and electric dipole moments were also apparent. In order to examine the roles that these properties may play in microtubule (MT) assembly and stability, we have created a model to evaluate the dipole–dipole interaction energies of varying MT lattice conformations, using human tubulin isotypes as particularly important examples. We conclude that the dipole moments of each tubulin isotype may influence their functional characteristics within the cell, resulting in differences for MT assembly kinetics and stability.  相似文献   

2.
Chicken metallothionein (ckMT) is the paradigm for the study of metallothioneins (MTs) in the Aves class of vertebrates. Available literature data depict ckMT as a one-copy gene, encoding an MT protein highly similar to mammalian MT1. In contrast, the MT system in mammals consists of a four-member family exhibiting functional differentiation. This scenario prompted us to analyse the apparently distinct evolutionary patterns followed by MTs in birds and mammals, at both the functional and structural levels. Thus, in this work, the ckMT metal binding abilities towards Zn(II), Cd(II) and Cu(I) have been thoroughly revisited and then compared with those of the mammalian MT1 and MT4 isoforms, identified as zinc- and copper-thioneins, respectively. Interestingly, a new mechanism of MT dimerization is reported, on the basis of the coordinating capacity of the ckMT C-terminal histidine. Furthermore, an evolutionary study has been performed by means of in silico analyses of avian MT genes and proteins. The joint consideration of the functional and genomic data obtained questions the two features until now defining the avian MT system. Overall, in vivo and in vitro metal-binding results reveal that the Zn(II), Cd(II) and Cu(I) binding abilities of ckMT lay between those of mammalian MT1 and MT4, being closer to those of MT1 for the divalent metal ions but more similar to those of MT4 for Cu(I). This is consistent with a strong functional constraint operating on low-copy number genes that must cope with differentiating functional limitation. Finally, a second MT gene has been identified in silico in the chicken genome, ckMT2, exhibiting all the features to be considered an active coding region. The results presented here allow a new insight into the metal binding abilities of warm blooded vertebrate MTs and their evolutionary relationships.  相似文献   

3.
《Biophysical journal》2020,118(12):2938-2951
The dynamic instability of microtubules (MTs), which refers to their ability to switch between polymerization and depolymerization states, is crucial for their function. It has been proposed that the growing MT ends are protected by a “GTP cap” that consists of GTP-bound tubulin dimers. When the speed of GTP hydrolysis is faster than dimer recruitment, the loss of this GTP cap will lead the MT to undergo rapid disassembly. However, the underlying atomistic mechanistic details of the dynamic instability remains unclear. In this study, we have performed long-time atomistic molecular dynamics simulations (1 μs for each system) for MT patches as well as a short segment of a closed MT in both GTP- and GDP-bound states. Our results confirmed that MTs in the GDP state generally have weaker lateral interactions between neighboring protofilaments (PFs) and less cooperative outward bending conformational change, where the difference between bending angles of neighboring PFs tends to be larger compared with GTP ones. As a result, when the GDP state tubulin dimer is exposed at the growing MT end, these factors will be more likely to cause the MT to undergo rapid disassembly. We also compared simulation results between the special MT seam region and the remaining material and found that the lateral interactions between MT PFs at the seam region were comparatively much weaker. This finding is consistent with the experimental suggestion that the seam region tends to separate during the disassembly process of an MT.  相似文献   

4.
Metallothioneins (MTs) are essential mammalian metal chaperones. MT isoform 1 (MT1) is expressed in the kidneys and isoform 3 (MT3) is expressed in nervous tissue. For MTs, the solution-based NMR structure was determined for metal-bound MT1 and MT2, and only one X-ray diffraction structure on a crystallized mixed metal-bound MT2 has been reported. The structure of solution-based metalated MT3 is partially known using NMR methods; however, little is known about the fluxional de novo apo-MT3 because the structure cannot be determined by traditional methods. Here, we used cysteine modification coupled with electrospray ionization mass spectrometry, denaturing reactions with guanidinium chloride, stopped-flow methods measuring cysteine modification and metalation, and ion mobility mass spectrometry to reveal that apo-MT3 adopts a compact structure under physiological conditions and an extended structure under denaturing conditions, with no intermediates. Compared with apo-MT1, we found that this compact apo-MT3 binds to a cysteine modifier more cooperatively at equilibrium and 0.5 times the rate, providing quantitative evidence that many of the 20 cysteines of apo-MT3 are less accessible than those of apo-MT1. In addition, this compact apo-MT3 can be identified as a distinct population using ion mobility mass spectrometry. Furthermore, proposed structural models can be calculated using molecular dynamics methods. Collectively, these findings provide support for MT3 acting as a noninducible regulator of the nervous system compared with MT1 as an inducible scavenger of trace metals and toxic metals in the kidneys.  相似文献   

5.
Melatonin modulates many important functions within the eye by interacting with a family of G-protein-coupled receptors that are negatively coupled with adenylate cyclase. In the mouse, Melatonin Receptors type 1 (MT(1)) mRNAs have been localized to photoreceptors, inner retinal neurons, and ganglion cells, thus suggesting that MT(1) receptors may play an important role in retinal physiology. Indeed, we have recently reported that absence of the MT(1) receptors has a dramatic effect on the regulation of the daily rhythm in visual processing, and on retinal cell viability during aging. We have also shown that removal of MT(1) receptors leads to a small (3-4 mmHg) increase in the level of the intraocular pressure during the night and to a significant loss (25-30%) in the number of cells within the retinal ganglion cell layer during aging. In the present study we investigated the cellular distribution in the C3H/f(+/+) mouse retina of MT(1) receptors using a newly developed MT(1) receptor antibody, and then we determined the role that MT(1) signaling plays in the circadian regulation of the mouse electroretinogram, and in the retinal dopaminergic system. Our data indicate that MT(1) receptor immunoreactivity is present in many retinal cell types, and in particular, on rod and cone photoreceptors and on intrinsically photosensitive ganglion cells (ipRGCs). MT(1) signaling is necessary for the circadian rhythm in the photopic ERG, but not for the circadian rhythm in the retinal dopaminergic system. Finally our data suggest that the circadian regulation of dopamine turnover does not drive the photopic ERG rhythm.  相似文献   

6.
Membrane type 1 matrix metalloproteinase (MT1-MMP/MMP14) is a zinc-dependent type I transmembrane metalloproteinase playing pivotal roles in the regulation of pericellular proteolysis and cellular migration. Elevated expression levels of MT1-MMP have been demonstrated to correlate with a poor prognosis in cancer. MT1-MMP has a short intracellular domain (ICD) that has been shown to play important roles in cellular migration and invasion, although these ICD-mediated mechanisms remain poorly understood. In this study, we report that MT1-MMP is mono-ubiquitinated at its unique lysine residue (Lys(581)) within the ICD. Our data suggest that this post-translational modification is involved in MT1-MMP trafficking as well as in modulating cellular invasion through type I collagen matrices. By using an MT1-MMP Y573A mutant or the Src family inhibitor PP2, we observed that the previously described Src-dependent MT1-MMP phosphorylation is a prerequisite for ubiquitination. Taken together, these findings show for the first time an additional post-translational modification of MT1-MMP that regulates its trafficking and cellular invasion, which further emphasizes the key role of the MT1-MMP ICD.  相似文献   

7.
The cortical microtubule (MT) array and its organization is important in defining the growth axes of plant cells. In roots, the MT array exhibits a net-like configuration in the division zone, and a densely-packed transverse alignment in the elongation zone. This transition is essential for anisotropic cell expansion and consequently has been the subject of intense study. Cotyledons exhibit a net-like array in pavement cells and a predominantly aligned array in the petioles, and provide an excellent system for determining the basis of plant MT organization. We show that in both kinds of MT array, growing MTs frequently encounter existing MTs. Although some steep-angled encounters result in catastrophes, the most frequent outcome of these encounters is successful negotiation of the existing MT by the growing MT to form an MT crossover. Surprisingly, the outcome of such encounters is similar in both aligned and net-like arrays. In contrast, aligned arrays exhibit a much higher frequency of MT severing events compared with net-like arrays. Severing events occur almost exclusively at sites where MTs cross over one another. This process of severing at sites of MT crossover results in the removal of unaligned MTs, and is likely to form the basis for the difference between a net-like and an aligned MT array.  相似文献   

8.
Metallothioneins (MTs) are low molecular weight, cysteine-rich proteins that bind heavy metals. MT induction occurs in liver in response to either heavy metal (Zn++ or Cd++) administration or stress. The synthesis of MT can also be induced by either heavy metals or glucocorticoid hormones in HeLa cells cultured in serum-free medium. Induction of MT by zinc is subject to "desensitization." In contrast, dexamethasone (dex) induction results in a continued elevation in the rate of MT synthesis. The stability of MT is dependent on the availability of metal; consequently, MT induced by dex is degraded much more rapidly (half-life of 11 to 12 hours) than MT induced by elevated zinc levels (half-life of 36 to 38 hours). Removal of either inducer results in biphasic degradation curves, as apothionein and zinc come into balance. In contrast, deinduction kinetics for MT synthesis following removal of the two inducers (zinc and dex) are the same, with a half-life of two and one-half hours. Inhibition of RNA synthesis blocks deinduction after removal of inducer. Induction of MT occurs in a wide variety of species, from blue-green algae to man. This system should provide an excellent model for the comparative biochemistry of regulation of gene expression.  相似文献   

9.
The microtubule (MT)-kinesin system has been proposed as the building block of biomolecular motor based artificial biomachines. Considerable efforts have been devoted to integrate this system that produced a variety of ordered structures including the ring-shaped MT assembly which is being considered as a promising candidate for the further development of the biomachines. However, lack of proper knowledge that might help tune the direction of motion of ring-shaped microtubule assembly from counterclockwise to clockwise direction, and vice versa, significantly restricted their potential applications. We report our success in controlling the direction of rotational motion of ring-shaped MT assembly by altering the preparation conditions of microtubules. The change in the direction of rotation of MT rings could be interpreted in terms of the accompanied structural rearrangement of the MT lattice. For achieving handedness-regulated efficient biomachines having tunable asymmetric property, our study will be significantly directive.  相似文献   

10.
Pituitary adenylate cyclase activating polypeptide (PACAP) has been shown to participate in modulation of circadian rhythm and to stimulate melatonin (MT) secretion in both the rat and chicken pineal glands. In contrast to mammals, the main regulator of circadian rhythm in birds is the pineal gland, which begins its rhythmic MT production already during embryonic life. In the present study, we investigated the development of MT secretion in explanted embryonic chicken pineals and their responsiveness to PACAP in a perifusion system. Our results show that: (1) the circadian clock and/or the intracellular signal transduction system connecting the clock to MT synthesizing apparatus develop between the embryonic days 16-18 (E16-18), even in vitro. (2) Exposure of the embryonic chicken pineal gland to PACAP induces transitory increase in MT secretion but does not induce visible phase shift in the circadian rhythm. (3) Cyclic AMP (cAMP) efflux also responds to PACAP at or before day E13 in embryonic chicken pineal gland in vitro.  相似文献   

11.
Studies of the physiological actions of melatonin have been hindered by the lack of specific, potent and subtype selective agonists and antagonists. In the present study, we describe the utility of a melanophore cell line from Xenopus laevis for exploring structure-activity relationships among novel melatonin analogues and report a novel MT2-selective agonist (IIK7) and MT2-selective receptor antagonist (K185). IIK7 is a potent melatonin receptor agonist in the melanophore model, and in NIH3T3 cells expressing human mt1 and MT2 receptor subtypes. In radioligand binding experiments IIK7 is 90-fold selective for the MT2 subtype. K185 is devoid of agonist activity, but acts as a competitive melatonin antagonist in melanophores. A low concentration (10(-9) M) antagonizes melatonin inhibition of forskolin stimulation of cyclic AMP in NIH3T3 cells expressing human MT2 receptors, but has no effect in cells expressing mt1 receptors. In binding assays, K185 is 140-fold selective for the MT2 subtype.  相似文献   

12.
Cell migration requires polarization of the cell into the leading edge and the trailing edge. Microtubules (MTs) are indispensable for polarized cell migration in the majority of cell types. To support cell polarity, MT network has to be functionally and structurally asymmetric. How is this asymmetry achieved? In interphase cells, MTs form a dynamic system radiating from a centrosome-based MT-organizing center (MTOC) to the cell edges. Symmetry of this radial array can be broken according to four general principles. Asymmetry occurs due to differential modulation of MT dynamics, relocation of existing MTs within a cell, adding an asymmetric nucleation site, and/or repositioning of a symmetric nucleation site to one side of a cell. Combinations of these asymmetry regulation principles result in a variety of asymmetric MT networks typical for diverse motile cell types. Importantly, an asymmetric MT array is formed at a non-conventional MT nucleation site, the Golgi. Here, we emphasize the contribution of this array to the asymmetry of MT network.  相似文献   

13.
Vorob'ev IA  Malyĭ IV 《Tsitologiia》2008,50(6):477-486
In interphase cells, microtubules (MT) are long and form extended radial array. The length of individual MTs in living cells exhibits substantial stochastic fluctuations while the average length distribution in a cell remains nearly constant. We present a quantitative model that describes relation of the MT length and dynamics in the steady state in the cell using the minimal set of parameters (cell radius, tubulin concentration, critical concentration for plus end elongation, and the number of nucleation sites). The MT array is approximated as a radial system, where MT minus ends are associated with the nucleation sites on the centrosome, while plus ends grow and shorten. Dynamic instability of MT plus ends is approximated as a random walk process with boundary conditions and the behavior of MT array is quantified using diffusion and drift coefficients (Vorobjev et al., 1997, 1999). We show that establishment of the extended steady-state array could be accomplished solely by the limitation of the MT growth by the cell margin. We determined for the cell radius, tubulin concentration, critical concentration for plus end elongation, and number of nucleation sites the reference point in the parameter space where plus ends of individual MT on average neither elongate nor shorten. In this case average length of MT is equal to the half of cell radius. When any parameter is shifted from its reference value MTs become longer or shorter and consequently acquire positive or negative drift of their ends. In the vicinity of reference point, change in any parameter has major effect on the MT length and rather small effect on the drift. When mean length of the MTs is close to the cell radius the drift of the free plus ends becomes substantial, resulting in processive growth of individual MTs in the internal cytoplasm accompanied by apparent stabilization of the plus ends at the cell margin. Under these conditions small changes in parameters have significant impact on the magnitude of drift. Experimental analysis of the MT plus ends dynamics in different cultured cells shows that in most cases plus ends display positive drift, which, in the framework of the presented model, is in agreement with the simultaneous presence of long MTs.  相似文献   

14.
Nuclear movement before karyogamy in eukaryotes is known as pronuclear migration or as nuclear congression in Saccharomyces cerevisiae. In this study, S. cerevisiae is used as a model system to study microtubule (MT)-dependent nuclear movements during mating. We find that nuclear congression occurs through the interaction of MT plus ends rather than sliding and extensive MT overlap. Furthermore, the orientation and attachment of MTs to the shmoo tip before cell wall breakdown is not required for nuclear congression. The MT plus end-binding proteins Kar3p, a class 14 COOH-terminal kinesin, and Bik1p, the CLIP-170 orthologue, localize to plus ends in the shmoo tip and initiate MT interactions and depolymerization after cell wall breakdown. These data support a model in which nuclear congression in budding yeast occurs by plus end MT capture and depolymerization, generating forces sufficient to move nuclei through the cytoplasm. This is the first evidence that MT plus end interactions from oppositely oriented organizing centers can provide the force for organelle transport in vivo.  相似文献   

15.
Microtubules, MAPs and plant directional cell expansion   总被引:1,自引:0,他引:1  
Plant microtubules (MTs) polymerize and depolymerize in a process termed dynamic instability. This allows the assembly, reorganization, and disassembly of at least four MT arrays throughout the cell cycle. The cortical MT array lines the plasma membrane during interphase and plays a central role in directional cell expansion. Microtubule-associated proteins (MAPs) decorate cortical MTs with distinct patterns, regulating MT dynamic instability, MT severing, and other array-ordering processes. The Arabidopsis root has emerged as a highly useful system for identifying and studying cell-expansion-related MAPs. Here, we review how cortical MTs are thought to behave and become ordered in expanding root cells, and we discuss the emerging picture of how MAPs fundamentally govern MT ordering and directional growth processes.  相似文献   

16.
The microtubule (MT)-associated DCX protein plays an essential role in the development of the mammalian cerebral cortex. We report on the identification of a protein kinase, doublecortin kinase-2 (DCK2), with a domain (DC) highly homologous to DCX. DCK2 has MT binding activity associated with its DC domain and protein kinase activity mediated by a kinase domain, organized in a structure in which the two domains are functionally independent. Overexpression of DCK2 stabilizes the MT cytoskeleton against cold-induced depolymerization. Autophosphorylation of DCK2 strongly reduces its affinity for MTs. DCK2 and DCX mRNAs are nervous system-specific and are expressed during the period of cerebrocortical lamination. DCX is down-regulated postnatally, whereas DCK2 persists in abundance into adulthood, suggesting that the DC sequence has previously unrecognized functions in the mature nervous system. In sympathetic neurons, DCK2 is localized to the cell body and to the terminal segments of axons and dendrites. DCK2 may represent a phosphorylation-dependent switch for the reversible control of MT dynamics in the vicinity of neuronal growth cones.  相似文献   

17.
The Cucumber mosaic virus (CMV)-encoded 1a protein has been implicated to play a role in replication of the viral genome along with 2a and one or more host factors. To identify the host cell factors interacting with CMV 1a, we used the yeast two-hybrid system using tobacco cDNA library. One of the cDNA clones encoded a protein homologous to the Arabidopsis putative protein kinase and was designated as Tcoi2 (Tobacco CMV 1a interacting protein 2). Tcoi2 specifically interacted with methyltransferase (MT) domain of CMV 1a protein in yeast cell. In vitro analyses using recombinant proteins showed that Tcoi2 also specifically interacted with CMV 1a MT domain. Tcoi2 did not have autophosphorylation activity but phosphorylated CMV 1a MT domain. Analysis of the subcellular localization of the Tcoi2 fused to GFP demonstrated that it is targeted to the endoplasmic reticulum. These results suggest Tcoi2 as a novel host factor that is capable of interacting and phosphorylating MT domain of CMV 1a protein.  相似文献   

18.
Zn- and Cu-thioneins: a functional classification for metallothioneins?   总被引:1,自引:0,他引:1  
This report intends to provide the reader with a deeper insight in the chemical, and extensively biological, characteristics of the metallothionein (MT) system. We have devoted nearly 20 years to the study of MTs and this has allowed us to form what we believe is a more complete picture of this peculiar family of metalloproteins. At the beginning of the 1990s, the landscape of this field was quite different from the overall picture we have now. Many researchers have contributed to the readjustment of this part of scientific knowledge. In our case, we implemented a unified method for obtaining MTs, for characterizing their metal-binding features, and for applying a unified research rationale. All this has helped to enlarge the initial picture that was mainly dominated by mammalian MT1/MT2 and yeast Cup1, by introducing approximately 20 new MTs. It has also allowed some characteristics to be clarified and examined in more detail, such as the cooperativity or the coexistence of multiple species in the metal-substitution reactions, the availability of Ag(I) or Cd(II) for use as respective probes for the Cu(I) and Zn(II) binding sites, the participation of chloride or sulfide ligands in the metal coordination spheres, and the feasibility of using in vitro data as representative of in vivo scenarios. Overall, the results yield enough data to consider new criteria for a proposal of classification of MTs based on MT metal-binding features, which complements the previous classifications, and that can shed light on the still controversial physiological functions of this peculiar superfamily of metalloproteins.  相似文献   

19.
通过化学反应体系产生OH-和O自由基,采用荧光和化学发光检测体系,比较研究了不同亚型及不同结合金属的金属硫蛋白(MT)清除自由基能力的大小。结果表明,对于同一亚型,Zn结合MT清除自由基的能力大于Cd结合MT同一结合金属的MT,MT1清除自由基的能力大于MT2。通过比较ZnMT1与谷胱甘肽(GSH)及超氧化物歧化酶(SOD)清除自由基的能力大小发现,ZnMT1清除OH的能力是GSH的100倍,清除O自由基的能力分别是GSH和SOD的25和0.01倍。即MT是一种很好的OH自由基清除剂。以OH对核酸(DNA)的损伤为例,研究了MT对核酸损伤的保护作用,其变化规律与上述结果相一致。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号