首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The corpuscles of Stannius of threespined sticklebacks contain two glandular cell types of presumed endocrine nature. To elucidate the function of both cell types the secretory activity of the cells was studied in fully adapted seawater and freshwater fishes and in specimens transferred from sea water to fresh water or adapted to media of various ionic composition. The secretory activity was established, in tissue sections and freeze-etch replicas, by estimating the volume of the nuclei, the density of the nuclear pores, and the frequency of exocytotic phenomena.The type-1 cells, ultrastructurally comparable to the predominant or only cell type described in many other teleosts, are more active in sea water than in fresh water. The activity of the type-2 cells, whose ultrastructural appearance is known only for salmonids and eels, is higher in fresh water. Transfer of seawater fishes to fresh water results in reduction of type-1 cells and activation of type-2 cells. The factors responsible for these changes were analyzed by exposure of fishes to solutions of various salts in fresh water and to artificial sea water with a reduced content of one of its components. The high activity of type-1 cells in sea water proved to be related to the high calcium content of this medium. These cells probably produce a substance comparable to hypocalcin, the endocrine factor isolated from the Stannius corpuscles of some other teleost species. The high activity of type-2 cells in fresh water appeared to be connected with the low sodium and potassium levels of this medium. Type-2 cells possibly produce a hitherto unknown hormone involved in the control of sodium and/or potassium metabolism.The technical assistance of Miss C. Mein and Mr. J. Zagers is gratefully acknowledged  相似文献   

2.
MK 886, an arachidonic acid-related analog which inhibits the enzyme, 5-lipoxygenase by an indirect mechanism involving the 5-lipoxygenase activating protein, rapidly increased U937 cytosol Ca(2+), much of which localized around the cell nuclei. Five-lipoxygenase activity was not directly involved since the direct redox-dependent 5-LPOx inhibitor, SC-41661A did not increase Ca(2+). U937 cells subsequently undergo classic type 1 programmed cell death. At least initially the ionized calcium originates from internal stores. Coincident with the rise in U937 ionized calcium, MK 886 rapidly increased reactive oxygen species and reduced mitochondrial membrane potential, as judged by several fluorescent probes. The Ca(2+) response of myeloid leukemia-derived HL-60 cells to MK 886 was similar and both cell lines express Bcl-2 protein. Bcl-2-negative Panc-1 and PC-3 cells did not respond to MK 886 with a Ca(2+) signal but did develop oxidative stress and a decline in mitochondrial membrane potential; these events are thought to contribute to the inhibition of cell proliferation and induction of a type 2 PCD. In addition to its marked inhibition of Bcl-2 mRNA synthesis, an interesting hypothesis is that MK 886, serving as a low molecular weight ligand, either by direct or indirect inhibition of U937 Bcl-2 protein function, possibly related to an ion channel activity, alters the distribution of intracellular, possibly nuclear Ca(2+), thereby promoting the development of type 1 programmed cell death.  相似文献   

3.
We have identified two inducible, gelatin-cleaving activities in the sea urchin extraembryonic matrix, the hyaline layer. Isolated hyaline layers, incubated in the presence of benzamidine, were devoid of gelatin-cleavage activities with apparent molecular mass less then 80k. However, when layers were incubated for 9-11 h in the absence of benzamidine, gelatin-cleavage activities, with apparent molecular mass 40- and 50k, were detected. Induction required the presence of NaCl and CaCl(2) at concentrations similar to those found in seawater and readdition of the reversible serine protease inhibitor benzamidine prevented induction. Both gelatin-cleaving activities were activated by calcium at a concentration similar to the calcium concentration found in seawater. Magnesium, also a major cationic species present in seawater, could not replace calcium as the activating ion. In addition, magnesium could not compete with calcium for binding to the gelatinases. Both cleavage activities showed substrate specificity and each failed to cleave bovine serum albumin, bovine hemoglobin or casein. Cleavage activity towards gelatin was inhibited by benzamidine and aminoethyl benzenesulfonyl fluoride, indicating that both activities belonged to the serine class of proteases. The induced 40-kDa activity displayed similar properties to those of a comigrating, gelatin-cleaving activity present in 69-h-old embryos.  相似文献   

4.
We investigated the contribution of external calcium ions to inositol phosphate-induced exocytosis in sea urchin eggs. We show that: (a) inositol phosphates activate eggs of the sea urchin species Lytechinus pictus and Lytechinus variegatus independently of external calcium ions; (b) the magnitude and duration of the inositol phosphate induced calcium changes are independent of external calcium; (c) in calcium-free seawater, increasing the volume of inositol trisphosphate solution injected decreased the extent of egg activation; (d) eggs in calcium-free sea water are more easily damaged by microinjection; microinjection of larger volumes increased leakage from eggs pre-loaded with fluorescent dye. We conclude that inositol phosphates do not require external calcium ions to activate sea urchin eggs. This is entirely consistent with their role as internal messengers at fertilization. The increased damage caused to eggs in calcium-free seawater injected with large volumes may allow the EGTA present in the seawater to enter the egg and chelate any calcium released by the inositol phosphates. This may explain the discrepancy between this and earlier reports.  相似文献   

5.
Changes in the state of actin assembly triggered by fertilization or by artificial activation of sea urchin eggs were quantified using the DNase I inhibition assay. Insemination of Lytechinus pictus or Strongylocentrotus purpuratus eggs induces a cyclic variation in the level of G-actin as follows: between 0 and 30 s after insemination, the G-actin content decreases. This is followed by an increase in the amount of monomeric actin between 30 and 60 s, and then from 60 s to 5 min postinsemination there is a progressive decrease in the egg's level of G-actin. This latter decrease is more pronounced in S. purpuratus eggs than in L. pictus eggs. Using sperm mimetics that trigger an increase in intracellular calcium concentration (A23187 in sodium-free seawater), a cytoplasmic alkalinization (NH4Cl), a plasma membrane depolarization (seawater enriched with potassium ions), or all three of these phenomena (A23187 in normal seawater), each phase depicted at fertilization correlates with the following metabolic events accompanying egg awakening: phase 1, of uncertain origin (possibly related to plasma membrane depolarization); phase 2, elevation of intracellular calcium concentration; phase 3, alkalinization of the intracellular milieu but only if the transient intracellular calcium rise has taken place.  相似文献   

6.
In order to elucidate the functional significance of accessory cells in freshwater fishes, such as the rainbow trout, which displays a poor adaptability to seawater life, a search for such cells was performed in two stenohaline freshwater fishes: the loach and the gudgeon. Accessory cells were never encountered in these species; but, in contrast, two types of chloride cells were observed consistently that strikingly resembled the alpha- and beta-cells previously described in the guppy, a freshwater-adapted euryhaline fish. The alpha-cell, a pale and elongated chloride cell, was located at the base of the secondary lamellae in close contact with the arterioarterial pillar capillary. Darker, ovoid chloride cells resembling the beta-cell were found exclusively in the interlamellar region of the primary epithelium facing the central venous sinous. The latter cells frequently formed multicellular complexes linked together by deep, narrow, apical junctions. In another experiment, a stenohaline seawater fish, the turbot, was adapted to diluted 5% saltwater and to fresh water. In seawater, the gill epithelium contained only one type of chloride cell, always associated with accessory cells. Due to numerous cytoplasmic interdigitations between the accessory cells and the apical portion of the chloride cell, there was a noticeable increase in the length of the shallow apical junction, sealing off the intercellular space between the two cell types. In 5% saltwater, there was a decrease in the number of these interdigitations and a concomitant decrease in the length of the shallow apical junction. In fresh water, chloride cells were partially or completely separated from the outside medium by modified accessory cells. It is thus concluded that accessory cells are found exclusively in fish living in seawater or preadapted to seawater and that they probably are involved in the formation and modulation of paracellular pathways for ionic excretion. In contrast, the respective roles of the two types of chloride cells observed in freshwater fishes are still to be determined.  相似文献   

7.
The pH of the oceans’ surface water is dropping, termed ocean acidification (OA), and the 0.4 unit reduction in pH by 2100 is projected to negatively impact benthic coastal organisms that produce calcium carbonate “skeletons.” Research has focussed on identifying species that are susceptible to OA, but there is an urgent need to discover refuge habitats that will afford protection to vulnerable species. The susceptibility of calcium carbonate skeletons to dissolution by OA depends on the pH at their surface, and this is controlled by the interaction between seawater velocity and organismal metabolism. This perspective considers how seawater velocity modifies the responses of calcifying organisms (seaweed, shellfish, and tropical corals) to OA through its action on controlling diffusion boundary layer thickness and thereby the pH and calcium carbonate saturation state (Ω) at the organisms’ surface. Evidence is presented to support the idea that slow‐flow habitats, such as wave‐sheltered bays or the within canopies of seaweed/seagrass beds, might provide inexpensive refugia from OA for vulnerable coastal calcifiers.  相似文献   

8.
S A Pomponi  T L Cucci 《Cytometry》1989,10(5):580-586
Centrifugal elutriation is a technique for separating particles on the basis of their sedimentation velocity, an expression of size, shape, and specific gravity. Unialgal cultures, mixtures of two phytoplankton cultures, and natural seawater samples were elutriated to determine the feasibility of this technique for collecting fractions of different cell cycle phases, separating two phytoplankton species, and concentrating cells from dilute samples. Elutriation resulted in the separation of a culture of Dunaliella tertiolecta and Phaeodactylum tricornutum into homogeneous fractions of each species. Cells in the natural seawater sample were concentrated by nearly 2 orders of magnitude. Centrifugal elutriation provides an alternative cell separation and concentration technique when large numbers of cells are required.  相似文献   

9.
A new species ofHyphomicrobium is described. The organism was isolated from a sample of stored seawater originating from the harbor of Barcelona, Spain. The life cycles and various morphological types are illustrated by photomicrographs. Growth takes place readily on simple peptone media with the addition of a small amount of calcium or magnesium salt, or seawater. The general physiological and cultural characteristics are recorded.  相似文献   

10.
Reactive oxygen species (ROS) cause oxidative stress and act as signal transduction molecules in many cells. Spermatozoa from several mammals generate ROS, which are involved in male infertility and signaling during capacitation. In the present study, we investigated ROS generation by sea urchin spermatozoa at the initiation of motility, during dilution with seawater, and following egg jelly treatment. In seawater containing an ROS indicator, 5-(and 6-)chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H(2)DCFDA), fluorescence increased after the addition of spermatozoa. The ROS generation rate was dependent upon the dilution ratio and respiratory rate of the spermatozoa. Spermatozoa in sodium-free seawater did not increase fluorescence, but fluorescence did increase with the addition of NaCl. Sodium chloride also led to the initiation of sperm motility and respiration. Using the indicator MitoSOX Red, ROS generation was detected from spermatozoa exposed to egg jelly dissolved in seawater, but not in normal seawater. Moreover, the respiratory inhibitor antimycin A prevented CM-H(2)DCFDA-detectable ROS and increased MitoSox-detectable ROS at a higher concentration. These findings revealed that the ROS generated were of different species, possibly hydrogen peroxide (H(2)O(2)) and superoxide anion (O(-)(2)), and their detected levels were altered by egg jelly. We concluded that sea urchin spermatozoa generate at least two species of ROS depending on the physiological conditions to which they are exposed. It is possible that the major ROS from sea urchin spermatozoa changes during the course of fertilization.  相似文献   

11.
A Euglena gracilis Z strain was used as a biomarker to examine the detoxifying effects of desalinated deep seawater (DDSW) and surface seawater (DSSW) on the hazardous chemical, tributyltin chloride (TBTCl). A distinct restoration effect on cell motility was observed after incubating with DDSW. The effect was largely attributed to magnesium, calcium and silicon that are involved in cell motility and morphology.  相似文献   

12.
Ocean acidification (OA) is a major threat to marine ecosystems, particularly coral reefs which are heavily reliant on calcareous species. OA decreases seawater pH and calcium carbonate saturation state (Ω), and increases the concentration of dissolved inorganic carbon (DIC). Intense scientific effort has attempted to determine the mechanisms via which ocean acidification (OA) influences calcification, led by early hypotheses that calcium carbonate saturation state (Ω) is the main driver. We grew corals and coralline algae for 8–21 weeks, under treatments where the seawater parameters Ω, pH, and DIC were manipulated to examine their differential effects on calcification rates and calcifying fluid chemistry (Ωcf, pHcf, and DICcf). Here, using long duration experiments, we provide geochemical evidence that differing physiological controls on carbonate chemistry at the site of calcification, rather than seawater Ω, are the main determinants of calcification. We found that changes in seawater pH and DIC rather than Ω had the greatest effects on calcification and calcifying fluid chemistry, though the effects of seawater carbonate chemistry were limited. Our results demonstrate the capacity of organisms from taxa with vastly different calcification mechanisms to regulate their internal chemistry under extreme chemical conditions. These findings provide an explanation for the resistance of some species to OA, while also demonstrating how changes in seawater DIC and pH under OA influence calcification of key coral reef taxa.  相似文献   

13.
Calcium regulation in lower vertebrates appears to be a continuum.The predominant hypercalcemic hormone in reptiles, birds andmammals is parathyroid hormone, while the major hypercalcemiccontrol in fishes is a pituitary factor, probably prolactin.In the amphibians dual controlling mechanisms are at work, sothat both the pituitary and parathyroids exert their influence.Prolactin may still retain some hypercalcemic potency in thehigher vertebrate groups, either directly or indirectly by influencingthe secretion of other hypercalcemic hormones. On the otherhand, parathyroid hormone does not occur in, nor does it elevateblood calcium in fishes. It thus seems to be a new inventionof tetrapods, or possibly to have evolved from a pituitary factorof fishes. The ability to lower blood calcium seems to be veryimportant in seawater fishes, in which the corpuscles of Stanniusexert major control. In terrestrial forms, the corpuscles ofStannius are not present, and hypocalcemic factors assume aminor role in overall calcium regulation  相似文献   

14.
A new artificial seawater medium has been tested with 83 strains of coastal and open ocean phytoplankton from 11 different algal classes. The cultures were carried through four transfers, representing a period of eight weeks for most species. Only three species could not be maintained in the enriched artificial seawater, and 16 species, mainly from the Prymnesiophyceae and Dinophyceae, had reduced final cell yields compared to those grown in enriched natural seawater. Since 77% of the species tested grew equally well in enriched artificial or natural seawater and more than 95% could be maintained in the artificial medium, this recipe is useful over a broad spectrum of species. The artificial seawater base was enriched with a modified ES enrichment solution; the primary modifications were the omission of Tris and the addition of Si. Enriched medium was autoclaved without precipitation by lowering the pH before autoclaving. This was accomplished by adding equimolar amounts of Na-HCO3 and HCl which produced NaCl and CO2 during the heating process. When no pH buffer was used, precipitation could only be avoided by autoclaving the artificial seawater base as two separate salt solutions (with Ca and Sr separated from CO3?2 and SO4?2), cooling, mixing and aseptically adding the sterilized enrichment solution.  相似文献   

15.
The effects of an N-terminal peptide (amino acids 1-38) of Fugu parathyroid hormone-related protein (PTHrP 1-38) on calcium regulation of larval sea bream were investigated in seawater (36 per thousand) and after transfer to dilute seawater (12 per thousand). Exposure to PTHrP 1-38 evoked a 1.5-fold increase in calcium influx in both full-strength and dilute seawater. Calcium influx in dilute seawater-adapted larvae was roughly one-half that observed in full-strength seawater controls. PTHrP 1-38 also reduced drinking of fish in seawater but, at all concentrations tested, was without effect in dilute seawater. The amount of water imbibed was 55% lower in dilute seawater than in seawater. PTHrP 1-38 exposure affected the calcium influx route: the main contribution of calcium uptake shifted from intestinal absorption to extraintestinal uptake, probably by the induction of a dose-dependent increase in branchial (active) transport. Moreover, seawater-adapted fish exposed to 1 nM and 10 mM PTHrP 1-38 experienced a 2.5-fold reduction in overall calcium efflux. Overall, the calciotropic action of PTHrP 1-38 resulted in a dose-dependent increase in net calcium balance.  相似文献   

16.
Gametes of the unicellular green alga Chlamydomonas reinhardii recognize and adhere to cells of the opposite mating type by flagellar contact. Adhesion between these specialized organelles signals a rapid series of mating events which result in gamete fusion. The sequence of morphological changes (flagellar tip activation, cell wall loss, and mating structure elongation), which occur as a consequence of the sexual signalling, have been characterized. The signalling mechanisms have, however, not been defined. Calcium is known to be involved during fertilization of animal species. Increased intracellular free calcium, which can be achieved either by calcium influx or by mobilization of ions from intracellular stores, has been observed during activation of both eggs and sperm. A recent report by Bloodgood & Levin that gametes of C. reinhardii preloaded with 45Ca showed a transient increase in Ca efflux following mating, suggests that intracellular Ca redistribution may also accompany mating in this algal species. We have used X-ray microanalysis to analyze the subcellular distribution of bound calcium during mating in Chlamydomonas reinhardii. X-ray maps reveal that calcium is sequestered in discrete granules within the gamete cell body prior to mating and that during activation and cell fusion, calcium is diffuse throughout the cell. This suggests the possibility that calcium serves as a second messenger in this species.  相似文献   

17.
Salt-spray stimulated growth in strand-line species   总被引:2,自引:0,他引:2  
The response to salt spray and soil salinity of two sand dune strandline species ( Cakile maritima Scop. and Salsola kali L.) and two salt marsh strand-line species ( Atriplex hastata L. and A. littoralis L.) was compared in sand-compost cultures. The growth of the salt-marsh species remained unaffected, while the growth of the sand dune species Cakile maritima was strongly reduced by NaCl (150 and 300 m M ) absorbed via the root system. All four species were resistant to airborne salinity, and under conditions of low soil fertility, salt spray increased the dry matter production, especially of the sand dune species. Mineral analysis revealed foliar uptake of Na, K, Cl, Ca and Mg. Na and Cl ions absorbed from seawater droplets induced succulence. Both salt spray and soil salt increased the methylated quaternary ammonium compound content in the shoot tissue. Under non-saline conditions a considerable amount of these osmotic solutes was still present, while turgor pressure potential in these plants was rather low. The relation between salt, compatible osmotic solutes, turgor pressure potential and growth is discussed. Next to the major constituents of seawater, Na and Cl, especially magnesium and to a lesser extent, calcium, accumulated in the shoot tissue. Based on the positive growth response of the sand dune species to airborne salt, they should be termed 'aerohalophytes', whereas 'soil halophytes' should be used when referring to the Atriplex species, which are more specifically adapted to the increased salinity of salt marsh soils.  相似文献   

18.
Y. B. Ho 《Hydrobiologia》1981,77(1):43-47
The amounts of tissue nitrogen, phosphorus, potassium, sodium, calcium and iron were estimated in the green alga Ulva lactuca L. collected from 9 rural and 14 urban littoral sites in the waters around Hong Kong Island during 1978 and 1979. The mean levels of tissue nitrogen and phosphorus were respectively 65% and 87% more in urban sites than in rural ones. Very significant correlation (r = 0.920) was found between the logarithmic concentration of seawater inorganic nitrogen and that of tissue nitrogen. The same applied to soluble reactive phosphorus in seawater and tissue phosphorus (r = 0.886). The levels of potassium, sodium and calcium in the alga were relatively uniform. However considerable variation in the level of iron was detected. The potential use of Ulva as an indicator species for eutrophication is discussed.  相似文献   

19.
Susceptibility to different diseases among related species, such as coho salmon (Oncorhynchus kisutch), rainbow trout (Oncorhyncus mykiss) and Atlantic salmon (Salmo salar), is variable. The prominence of these species in aquaculture warrants investigation into sources of this variability to assist future disease management. To develop a better understanding of the basis for species variability, several important non-specific humoral parameters were examined in juvenile fish of these three economically important species. Mucous protease, alkaline phosphatase and lysozyme, as well as plasma lysozyme activities and histological parameters (epidermal thickness and mucous cell density, and size) were characterized and compared for three salmonids: rainbow trout, Atlantic salmon and coho salmon. Rainbow trout had a thicker epidermis and significantly more mucous cells per cross-sectional area than the other two species. Rainbow trout also had significantly higher mucous protease activity than Atlantic salmon and significantly higher lysozyme (plasma and mucus) activities than coho and Atlantic salmon, in seawater. Atlantic salmon, on the other hand, had the lowest activities of mucous lysozyme and proteases, the thinnest epidermal layer and the sparsest distribution of mucous cells, compared with the two other salmonids in seawater. Only coho salmon had sacciform cells. Atlantic and coho salmon had higher mucous lysozyme activities in freshwater as compared to seawater. There was no significant difference between mucous lysozyme activities in any of the three species reared in freshwater; however, rainbow trout still had a significantly higher plasma lysozyme activity compared with the other two species. All three species exhibited significantly lower mucous alkaline phosphatase and protease activities in freshwater than in seawater. Our results demonstrate that there are significant histological and biochemical differences between the skin and mucus of these three salmonid species, which may change as a result of differing environments. Variation in these innate immune factors is likely to have differing influences on each species response to disease processes.  相似文献   

20.
A novel calcium-sensing domain in the BK channel.   总被引:32,自引:0,他引:32       下载免费PDF全文
The high-conductance Ca2+-activated K+ channel (mSlo) plays a vital role in regulating calcium entry in many cell types. mSlo channels behave like voltage-dependent channels, but their voltage range of activity is set by intracellular free calcium. The mSlo subunit has two parts: a "core" resembling a subunit from a voltage-dependent K+ channel, and an appended "tail" that plays a role in calcium sensing. Here we present evidence for a site on the tail that interacts with calcium. This site, the "calcium bowl," is a novel calcium-binding motif that includes a string of conserved aspartate residues. Mutations of the calcium bowl fall into two categories: 1) those that shift the position of the G-V relation a similar amount at all [Ca2+], and 2) those that shift the position of the G-V relation only at low [Ca2+]. None of these mutants alters the slope of the G-V curve. These mutant phenotypes are apparent in calcium ion, but not in cadmium ion, where mutant and wild type are indistinguishable. This suggests that the calcium bowl is sensitive to calcium ion, but insensitive to cadmium ion. The presence and independence of a second calcium-binding site is inferred because channels still respond to increasing levels of [Ca2+] or [Cd2+], even when the calcium bowl is mutationally deleted. Thus a low level of activation in the absence of divalent cations is identical in mutant and wild-type channels, possibly because of activation of this second Ca2+-binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号