首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clint: a novel clathrin-binding ENTH-domain protein at the Golgi   总被引:11,自引:0,他引:11       下载免费PDF全文
We have characterized a novel clathrin-binding 68-kDa epsin N-terminal homology domain (ENTH-domain) protein that we name clathrin interacting protein localized in the trans-Golgi region (Clint). It localizes predominantly to the Golgi region of epithelial cells as well as to more peripheral vesicular structures. Clint colocalizes with AP-1 and clathrin only in the perinuclear area. Recombinantly expressed Clint interacts directly with the gamma-appendage domain of AP-1, with the clathrin N-terminal domain through the peptide motif (423)LFDLM, with the gamma-adaptin ear homology domain of Golgi-localizing, gamma-adaptin ear homology domain 2, with the appendage domain of beta2-adaptin and to a lesser extent with the appendage domain of alpha-adaptin. Moreover, the Clint ENTH-domain asssociates with phosphoinositide-containing liposomes. A significant amount of Clint copurifies with rat liver clathrin-coated vesicles. In rat kidney it is preferentially expressed in the apical region of epithelial cells that line the collecting duct. Clathrin and Clint also colocalize in the apical region of enterocytes along the villi of the small intestine. Apart from the ENTH-domain Clint has no similarities with the epsins AP180/CALM or Hip1/1R. A notable feature of Clint is a carboxyl-terminal methionine-rich domain (Met(427)-Met(605)), which contains >17% methionine. Our results suggest that Clint might participate in the formation of clathrin-coated vesicles at the level of the trans-Golgi network and remains associated with the vesicles longer than clathrin and adaptors.  相似文献   

2.
Clathrin assembly protein, AP180, was originally identified as a brain-specific protein localized to the presynaptic junction. AP180 acts to limit vesicle size and maintain a pool of releasable synaptic vesicles during rapid recycling. In this study, we show that polarized epithelial Madin-Darby canine kidney (MDCK) cells express two AP180-related proteins: the ubiquitously expressed 62-kDa clathrin assembly lymphoid myeloid leukemia (CALM, AP180-2) protein and a novel high-molecular-weight homolog that we have named AP180-3. Sequence analysis of AP180-3 expressed in MDCK cells shows high homology to AP180 from rat brain. AP180-3 contains conserved motifs found in brain-specific AP180, including the epsin NH2-terminal homology (ENTH) domain, the binding site for the -subunit of AP-2, and DLL repeats. Our studies show that AP180-3 from MDCK cells forms complexes with AP-2 and clathrin and that membrane recruitment of these complexes is modulated by phosphorylation. We demonstrate by immunohistochemistry that AP180-3 is localized to cytoplasmic vesicles in MDCK cells and is also present in tubule epithelial cells from mouse kidney. We observed by immunodetection that a high-molecular-weight AP180-related protein is expressed in numerous cells in addition to MDCK cells. clathrin assembly lympoid myeloid leukemia; kidney epithelial cells; epsin NH2-terminal homology domain; DLL repeats; clathrin; AP-2  相似文献   

3.
We recently reported that SMAP1, a GTPase-activating protein (GAP) for Arf6, directly interacts with clathrin and regulates the clathrin-dependent endocytosis of transferrin receptors from the plasma membrane. Here, we identified a SMAP1 homologue that we named SMAP2. Like SMAP1, SMAP2 exhibits GAP activity and interacts with clathrin heavy chain (CHC). Furthermore, we show that SMAP2 interacts with the clathrin assembly protein CALM. Unlike SMAP1, however, SMAP2 appears to be a regulator of Arf1 in vivo, because cells transfected with a GAP-negative SMAP2 mutant were resistant to brefeldin A. SMAP2 colocalized with the adaptor proteins for clathrin AP-1 and EpsinR on the early endosomes/trans-Golgi-network (TGN). Moreover, overexpression of SMAP2 delayed the accumulation of TGN38/46 molecule on the TGN. This suggests that SMAP2 functions in the retrograde, early endosome-to-TGN pathway in a clathrin- and AP-1-dependent manner. Thus, the SMAP gene family constitutes an important ArfGAP subfamily, with each SMAP member exerting both common and distinct functions in vesicle trafficking.  相似文献   

4.
Retrograde transport links early/recycling endosomes to the trans-Golgi network (TGN), thereby connecting the endocytic and the biosynthetic/secretory pathways. To determine how internalized molecules are targeted to the retrograde route, we have interfered with the function of clathrin and that of two proteins that interact with it, AP1 and epsinR. We found that the glycosphingolipid binding bacterial Shiga toxin entered cells efficiently when clathrin expression was inhibited. However, retrograde transport of Shiga toxin to the TGN was strongly inhibited. This allowed us to show that for Shiga toxin, retrograde sorting on early/recycling endosomes depends on clathrin and epsinR, but not AP1. EpsinR was also involved in retrograde transport of two endogenous proteins, TGN38/46 and mannose 6-phosphate receptor. In conclusion, our work reveals the existence of clathrin-independent and -dependent transport steps in the retrograde route, and establishes a function for clathrin and epsinR at the endosome-TGN interface.  相似文献   

5.
The clathrin assembly lymphoid myeloid leukemia (CALM) gene encodes a putative homologue of the clathrin assembly synaptic protein AP180. Hence the biochemical properties, the subcellular localization, and the role in endocytosis of a CALM protein were studied. In vitro binding and coimmunoprecipitation demonstrated that the clathrin heavy chain is the major binding partner of CALM. The bulk of cellular CALM was associated with the membrane fractions of the cell and localized to clathrin-coated areas of the plasma membrane. In the membrane fraction, CALM was present at near stoichiometric amounts relative to clathrin. To perform structure-function analysis of CALM, we engineered chimeric fusion proteins of CALM and its fragments with the green fluorescent protein (GFP). GFP-CALM was targeted to the plasma membrane-coated pits and also found colocalized with clathrin in the Golgi area. High levels of expression of GFP-CALM or its fragments with clathrin-binding activity inhibited the endocytosis of transferrin and epidermal growth factor receptors and altered the steady-state distribution of the mannose-6-phosphate receptor in the cell. In addition, GFP-CALM overexpression caused the loss of clathrin accumulation in the trans-Golgi network area, whereas the localization of the clathrin adaptor protein complex 1 in the trans-Golgi network remained unaffected. The ability of the GFP-tagged fragments of CALM to affect clathrin-mediated processes correlated with the targeting of the fragments to clathrin-coated areas and their clathrin-binding capacities. Clathrin-CALM interaction seems to be regulated by multiple contact interfaces. The C-terminal part of CALM binds clathrin heavy chain, although the full-length protein exhibited maximal ability for interaction. Altogether, the data suggest that CALM is an important component of coated pit internalization machinery, possibly involved in the regulation of clathrin recruitment to the membrane and/or the formation of the coated pit.  相似文献   

6.
The endocytic accessory clathrin assembly lymphoid myeloid leukemia protein (CALM) is the ubiquitously expressed homolog of the neuron-specific protein AP180 that has been implicated in the retrieval of synaptic vesicle. Here, we show that CALM associates with the alpha-appendage domain of the AP2 adaptor via the three peptide motifs 420DPF, 375DIF and 489FESVF and to a lesser extent with the amino-terminal domain of the clathrin heavy chain. Reducing clathrin levels by RNA interference did not significantly affect CALM localization, but depletion of AP2 weakens its association with the plasma membrane. In cells, where CALM levels were reduced by RNA interference, AP2 and clathrin remained organized in somewhat enlarged bright fluorescent puncta. Electron microscopy showed that the depletion of CALM drastically affected the clathrin lattice structure. Round-coated buds, which are the predominant features in control cells, were replaced by irregularly shaped buds and long clathrin-coated tubules. Moreover, we noted an increase in the number of very small cages that formed on flat lattices. Furthermore, we noticed a redistribution of endosomal markers and AP1 in cells that were CALM depleted. Taken together, our findings indicate a critical role for CALM in the regulation and orderly progression of coated bud formation at the plasma membrane.  相似文献   

7.
Lee GJ  Kim H  Kang H  Jang M  Lee DW  Lee S  Hwang I 《Plant physiology》2007,143(4):1561-1575
Members of the epsin family of proteins (epsins) are characterized by the presence of an epsin N-terminal homology (ENTH) domain. Epsins have been implicated in various protein-trafficking pathways in animal and yeast (Saccharomyces cerevisiae) cells. Plant cells also contain multiple epsin-related proteins. In Arabidopsis (Arabidopsis thaliana), EPSIN1 is involved in vacuolar trafficking of soluble proteins. In this study, we investigated the role of Arabidopsis EpsinR2 in protein trafficking in plant cells. EpsinR2 contains a highly conserved ENTH domain but a fairly divergent C-terminal sequence. We found that the N-terminal ENTH domain specifically binds to phosphatidylinositol-3-P in vitro and has a critical role in the targeting of EpsinR2. Upon transient expression in protoplasts, hemagglutinin epitope-tagged EpsinR2 was translocated primarily to a novel cellular compartment, while a minor portion localized to the Golgi complex. Protein-binding experiments showed that EpsinR2 interacts with clathrin, AtVTI12, and the Arabidopsis homologs of adaptor protein-3 delta-adaptin and adaptor protein-2 alpha-adaptin. Localization experiments revealed that hemagglutinin epitope-tagged EpsinR2 colocalizes primarily with delta-adaptin and partially colocalizes with clathrin and AtVTI12. Based on these findings, we propose that EpsinR2 plays an important role in protein trafficking through interactions with delta-adaptin, AtVTI12, clathrin, and phosphatidylinositol-3-P.  相似文献   

8.
Epsin and AP180/CALM are important endocytic accessory proteins that are believed to be involved in the formation of clathrin coats. Both proteins associate with phosphorylated membrane inositol lipids through their epsin N-terminal homology domains and with other components of the endocytic machinery through short peptide motifs in their carboxyl-terminal segments. Using hydrodynamic and spectroscopic methods, we demonstrate that the parts of epsin 1 and AP180 that are involved in protein-protein interactions behave as poorly structured flexible polypeptide chains with little or no conventional secondary structure. The predominant cytosolic forms of both proteins are monomers. Furthermore, we show that recombinant epsin 1, like AP180, drives in vitro assembly of clathrin cages. We conclude that the epsin N-terminal homology domain-containing proteins AP180/CALM and epsin 1 have a very similar molecular architecture that is designed for the rapid and efficient recruitment of the principal coat components clathrin and AP-2 at the sites of coated pit assembly.  相似文献   

9.
EpsinR is a clathrin-coated vesicle (CCV) enriched 70-kD protein that binds to phosphatidylinositol-4-phosphate, clathrin, and the gamma appendage domain of the adaptor protein complex 1 (AP1). In cells, its distribution overlaps with the perinuclear pool of clathrin and AP1 adaptors. Overexpression disrupts the CCV-dependent trafficking of cathepsin D from the trans-Golgi network to lysosomes and the incorporation of mannose-6-phosphate receptors into CCVs. These biochemical and cell biological data point to a role for epsinR in AP1/clathrin budding events in the cell, just as epsin1 is involved in the budding of AP2 CCVs. Furthermore, we show that two gamma appendage domains can simultaneously bind to epsinR with affinities of 0.7 and 45 microM, respectively. Thus, potentially, two AP1 complexes can bind to one epsinR. This high affinity binding allowed us to identify a consensus binding motif of the form DFxDF, which we also find in gamma-synergin and use to predict that an uncharacterized EF-hand-containing protein will be a new gamma binding partner.  相似文献   

10.
Brain-specific AP180 is present in clathrin coats at equal concentration to the adapter complex, AP2, and assembles clathrin faster than any other protein in vitro. Both AP180 and its ubiquitously expressed homolog clathrin assembly lymphoid myeloid leukemia protein (CALM) control vesicle size and shape in clathrin mediated endocytosis. The clathrin assembly role of AP180 is mediated by a long disordered C-terminal assembly domain. Within this assembly domain, a central acidic clathrin and adapter binding (CLAP) sub-domain contains all of the known short binding motifs for clathrin and AP2. The role of the remaining ∼16 kDa C-terminal sequence has not been clear. We show that this sequence has a separate function in ensuring efficient binding of clathrin, based on in vitro binding and ex vivo transferrin uptake assays. Sequence alignment suggests the C-terminal sub-domain is conserved in CALM.  相似文献   

11.
The overproduction and extracellular buildup of amyloid-β peptide (Aβ) is a critical step in the etiology of Alzheimer’s disease. Recent data suggest that intracellular trafficking is of central importance in the production of Aβ. Here we use a neuronal cell line to examine two structurally similar clathrin assembly proteins, AP180 and CALM. We show that RNA interference-mediated knockdown of AP180 reduces the generation of Aβ1-40 and Aβ1-42, whereas CALM knockdown has no effect on Aβ generation. Thus AP180 is among the traffic controllers that oversee and regulate amyloid precursor protein processing pathways. Our results also suggest that AP180 and CALM, while similar in their domain structures and biochemical properties, are in fact dedicated to separate trafficking pathways in neurons.  相似文献   

12.
Dynamic flux of membrane between intracellular compartments is a key feature of all eukaryotic cells. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) play a crucial role in membrane dynamics by facilitating membrane fusion, for example at synapses where small synaptic vesicles (SVs) undergo activity-regulated neuroexocytosis, followed by the endocytic re-cycling of SV proteins and lipids. Recent work shows that the assembly protein 180 (AP180) N-terminal homology (ANTH) domain containing proteins AP180 and clathrin assembly lymphoid myeloid leukaemia (CALM) not only regulate the assembly of the endocytic machinery but also act as sorters for a subset of SNAREs, the vesicle-associated membrane proteins (VAMPs), most notably VAMP/synaptobrevin 2 at synapses. In this review, we summarise the current state of knowledge about the roles of AP180 and CALM family members in clathrin-dependent membrane traffic, the molecular mechanistic basis for their activities and their potential involvement in human disease.  相似文献   

13.
Big conductance Ca2+ activated K+ channels (BK channels) is an abundant channel present in almost all kind of tissue. The accurate quantity and especially the precise distribution of this channel in kidney epithelia are, however, still debated. The aim of the present study has therefore been to examine the presence of BK channels in kidney epithelia and determine the actual number and distribution of these channels. For this purpose, a selective peptidyl ligand for BK channels called iberiotoxin or the radiolabeled double mutant analog 125I-IbTX-D19Y/Y36F has been employed. The presence of BK channels were determined by a isotope flux assay where up to 44% of the total K+ channel activity could be inhibited by iberiotoxin indicating that BK channels are widely present in kidney epithelia. Consistent with these functional studies, 125I-IbTX-D19Y/Y36F binds to membrane vesicles from outer cortex, outer medulla and inner medulla with Bmax values (in fmol/mg protein) of 6.8, 2.6 and 21.4, respectively. These studies were performed applying rabbit kidney epithelia tissue. The distinct distribution of BK channels in both rabbit and rat kidney epithelia was confirmed by autoradiography and immunohistochemical studies. In cortical collecting ducts, BK channels were exclusively located in principal cells while no channels could be found in intercalated cells. The abundant and distinct distribution in kidney epithelia talks in favor for BK channels being important contributors in maintaining salt and water homeostasis.  相似文献   

14.
Clathrin assembly lymphoid myeloid leukemia protein (CALM) is a clathrin assembly protein with a domain structure similar to the neuron-specific assembly protein AP180. We have previously found that CALM is expressed in neurons and present in synapses. We now report that CALM has a neuron-related function: it facilitates the endocytosis of the synaptic vesicle protein VAMP2 from the plasma membrane. Overexpression of CALM leads to the reduction of cell surface VAMP2, whereas knockdown of CALM by RNA interference results in the accumulation of surface VAMP2. The AP180 N-terminal homology (ANTH) domain of CALM is required for its effect on VAMP2 trafficking, and the ANTH domain itself acts as a dominant-negative mutant. Thus, our results reveal a role for CALM in directing VAMP2 trafficking during endocytosis.  相似文献   

15.
Clathrin and the epithelial-specific clathrin adaptor AP-1B mediate basolateral trafficking in epithelia. However, several epithelia lack AP-1B, and mice knocked out for AP-1B are viable, suggesting the existence of additional mechanisms that control basolateral polarity. Here, we demonstrate a distinct role of the ubiquitous clathrin adaptor AP-1A in basolateral protein sorting. Knockdown of AP-1A causes missorting of basolateral proteins in MDCK cells, but only after knockdown of AP-1B, suggesting that AP-1B can compensate for lack of AP-1A. AP-1A localizes predominantly to the TGN, and its knockdown promotes spillover of basolateral proteins into common recycling endosomes, the site of function of AP-1B, suggesting complementary roles of both adaptors in basolateral sorting. Yeast two-hybrid assays detect interactions between the basolateral signal of transferrin receptor and the medium subunits of both AP-1A and AP-1B. The basolateral sorting function of AP-1A reported here establishes AP-1 as a major regulator of epithelial polarity.  相似文献   

16.
Proliferation of epithelial tissues is controlled by polarized distribution of signaling receptors including the EGF receptor (EGFR). In kidney, EGFRs are segregated from soluble ligands present in apical fluid of nephrons by selective targeting to basolateral membranes. We have shown previously that the epithelial‐specific clathrin adaptor AP1B mediates basolateral EGFR sorting in established epithelia. Here we show that protein kinase C (PKC)‐dependent phosphorylation of Thr654 regulates EGFR polarity as epithelial cells form new cell–cell junctional complexes. The AP1B‐dependent pathway does not override a PKC‐resistant T654A mutation, and conversely AP1B‐defective EGFRs sort basolaterally by a PKC‐dependent mechanism, in polarizing cells. Surprisingly, EGFR mutations that interfere with these different sorting pathways also produce very distinct phenotypes in three‐dimensional organotypic cultures. Thus EGFRs execute different functions depending on the basolateral sorting route. Many renal disorders have defects in cell polarity and the notion that apically mislocalized EGFRs promote proliferation is still an attractive model to explain many aspects of polycystic kidney disease. Our data suggest EGFR also integrates various aspects of polarity by switching between different basolateral sorting programs in developing epithelial cells. Fundamental knowledge of basic mechanisms governing EGFR sorting therefore provides new insights into pathogenesis and advances drug discovery for these renal disorders.  相似文献   

17.
Heterotetrameric clathrin adaptor protein complexes (APs) orchestrate the formation of coated vesicles for transport among organelles of the cell periphery. AP1 binds membranes enriched for phosphatidylinositol 4‐phosphate, such as the trans Golgi network, while AP2 associates with phosphatidylinositol 4,5‐bisphosphate of the plasma membrane. At their respective membranes, AP1 and AP2 bind the cytoplasmic tails of transmembrane protein cargo and clathrin triskelions, thereby coupling cargo recruitment to coat polymerization. Structural, biochemical and genetic studies have revealed that APs undergo conformational rearrangements and reversible phosphorylation to cycle between different activity states. While membrane, cargo and clathrin have been demonstrated to promote AP activation, growing evidence supports that membrane‐associated proteins such as Arf1 and FCHo also stimulate this transition. APs may be returned to the inactive state via a regulated process involving phosphorylation and a protein called NECAP. Finally, because antiviral mechanisms often rely on appropriate trafficking of membrane proteins, viruses have evolved novel strategies to evade host defenses by influencing the conformation of APs. This review will cover recent advances in our understanding of the molecular inputs that stimulate AP1 and AP2 to adopt structurally and functionally distinct configurations.  相似文献   

18.
To assess the contribution of individual endocytic proteins to the assembly of clathrin coated pits, we depleted the clathrin heavy chain and the alpha-adaptin subunit of AP-2 in HeLa-cells using RNA interference. 48 h after transfection with clathrin heavy chain-specific short interfering RNA both, the heavy and light chains were depleted by more than 80%. Residual clathrin was mainly membrane-associated, and an increase in shallow pits was noted. The membrane-association of adaptors, clathrin assembly lymphoid myeloid leukemia protein (CALM), epsin, dynamin, and Eps15 was only moderately affected by the knockdown and all proteins still displayed a punctate staining distribution. Clathrin depletion inhibited the uptake of transferrin but not that of the epidermal growth factor. However, efficient sorting of the epidermal growth factor into hepatocyte growth factor-regulated tyrosine kinase substrate-positive endosomes was impaired. Depletion of alpha-adaptin abolished almost completely the plasma membrane association of clathrin. Binding of Eps15 to membranes was strongly and that of CALM moderately reduced. Whereas the uptake of transferrin was efficiently blocked in alpha-adaptin knockdown cells, the internalization and sorting of the epidermal growth factor was not significantly impaired. Since neither clathrin nor AP-2 is essential for the internalization of EGF, we conclude that it is taken up by an alternative mechanism.  相似文献   

19.
The spatial and temporal regulation of the interactions among the approximately 60 proteins required for endocytosis is under active investigation in many laboratories. We have identified the interaction between monomeric clathrin adaptors and endocytic scaffold proteins as a critical prerequisite for the recruitment and/or spatiotemporal dynamics of endocytic proteins at early and late stages of internalization. Quadruple deletion yeast cells (DeltaDeltaDeltaDelta) lacking four putative adaptors, Ent1/2 and Yap1801/2 (homologues of epsin and AP180/CALM proteins), with a plasmid encoding Ent1 or Yap1802 mutants, have defects in endocytosis and growth at 37 degrees C. Live-cell imaging revealed that the dynamics of the early- and late-acting scaffold proteins Ede1 and Pan1, respectively, depend upon adaptor interactions mediated by adaptor asparagine-proline-phenylalanine motifs binding to scaffold Eps15 homology domains. These results suggest that adaptor/scaffold interactions regulate transitions from early to late events and that clathrin adaptor/scaffold protein interaction is essential for clathrin-mediated endocytosis.  相似文献   

20.
Rat kidney NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) was measured in zones and substructure of the rat kidney nephron. This was accomplished utilizing an assay procedure based upon determining the amount of prostaglandin E1 present before and after the reaction with the 15-hydroxyprostaglandin dehydrogenase contained in the tissue sample. The enzyme activity was assayed in freeze dried, quick frozen rat kidney sections and its distribution within the rat kidney was determined. In kidney zones, it was localized to medullary rays and inner cortex. In kidney substructure, activity was highest in collecting tubule, pars recti tubule, distal convoluted tubule and the ascending limb of Henle (14.2, 11.5, 6.4 and 9.2 mM kg-1hr-1, respectively). Activity in glomeruli, proximal convoluted tubule and small arteries was lower (2.1, 2.8 and 2.1 mM kg-1hr-1, respectively). The assay procedure was verified by established assays (spectrophotometric, fluorometric and radiometric TLC) which are often used in homogenate and purified PGDH preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号