首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The location and distribution of neural crest-derived Schwann cells during development of the peripheral nerves of chick forelimbs were examined using chick-quail chimeras. Neural crest cells were labeled by transplantation of the dorsal part of the neural tube from a quail donor to a chick host at levels of the neural tube destined to give rise to brachial innervation. The ventral roots, spinal nerves, and peripheral nerves innervating the chick forelimb were examined for the presence of quail-derived neural crest cells at several stages of embryonic development. These quail cells are likely to be Schwann cells or their precursors. Quail-derived Schwann cells were present in ventral roots and spinal nerves, and were distributed along previously described neural crest migratory pathways or along the peripheral nerve fibers at all stages of development examined. During early stages of wing innervation, quail-derived Schwann cells were not evenly distributed, but were concentrated in the ventral root and at the brachial plexus. The density of neural crest-derived Schwann cells decreased distal to the plexus, and no Schwann cells were ever seen in advance of the growing nerve front. When the characteristic peripheral nerve branching pattern was first formed, Schwann cells were clustered where muscle nerves diverged from common nerve trunks. In still older embryos, neural crest-derived Schwann cells were evenly distributed along the length of the peripheral nerves from the ventral root to the distal nerve terminations within the musculature of the forelimb. These observations indicate that Schwann cells accompany axons into the developing limb, but they do not appear to lead or direct axons to their targets. The transient clustering of neural crest-derived Schwann cells in the ventral root and at places where axon trajectories diverge from one another may reflect a response to some environmental feature within these regions.  相似文献   

2.
At embryonic stages, Olig3 is initially expressed in the dorsal-most region of the spinal cord, but later in the ventral marginal zone as well. Previous studies indicated that Olig3 controlled the patterning of dorsal spinal cord and loss of Olig3 function led to the re-specification of dI2 and dI3 neurons into dI4 interneurons. However, the role of Olig3 in regulating the development of ventral spinal cord has remained unknown. BrdU labeling demonstrated that ventral Olig3 was expressed in the post-mitotic neurons and Olig3+ cells seen at late embryonic stages were born at the earlier stage but remained in the marginal zone throughout embryogenesis. Loss-of-function and gain-of-function experiment indicated that Nkx2.2 regulated the expression of Olig3 in V3 interneurons. However, Olig3 mutation didn’t apparently affect the generation and migration of ventral neurons. These findings suggest that Olig3 plays different roles in regulating the development of dorsal and ventral spinal cord.  相似文献   

3.
In both invertebrate and lower vertebrate species, decussated commissural axons travel away from the midline and assume positions within distinct longitudinal tracts. We demonstrate that in the developing chick and mouse spinal cord, most dorsally situated commissural neuron populations extend axons across the ventral midline and through the ventral white matter along an arcuate trajectory on the contralateral side of the floor plate. Within the dorsal (chick) and intermediate (mouse) marginal zone, commissural axons turn at a conserved boundary of transmembrane ephrin expression, adjacent to which they form a discrete ascending fiber tract. In vitro perturbation of endogenous EphB-ephrinB interactions results in the failure of commissural axons to turn at the appropriate dorsoventral position on the contralateral side of the spinal cord; consequently, axons inappropriately invade more dorsal regions of B-class ephrin expression in the dorsal spinal cord. Taken together, these observations suggest that B-class ephrins act locally during a late phase of commissural axon pathfinding to specify the dorsoventral position at which decussated commissural axons turn into the longitudinal axis.  相似文献   

4.
5.
Quail-chick chimeras have been used extensively in the field of developmental biology. To detect quail cells more easily and to detect cellular processes of quail cells in quail-chick chimeras, we generated four monoclonal antibodies (MAb) specific to some quail tissues. MAb QCR1 recognizes blood vessels, blood cells, and cartilage cells, MAb QB1 recognizes quail blood vessels and blood cells, and MAb QB2 recognizes quail blood vessels, blood cells, and mesenchymal tissues. These antibodies bound to those tissues in 3-9-day quail embryos and did not bind to any tissues of 3-9-day chick embryos. MAb QSC1 is specific to the ventral half of spinal cord and thymus in 9-day quail embryo. No tissue in 9-day chick embryo reacted with this MAb. This antibody binds transiently to a small number of brain vesicle cells in developing chick embryo as well as in quail embryo. A preliminary application of two of these MAb, QCR1 and QSC1, on quail-chick chimeras of neural tube and somites is reported here.  相似文献   

6.
Kozlova  ELENA N.  Seiger  AKE  Aldskogius  HAKAN 《Brain Cell Biology》1997,26(12):811-822
Following dorsal root crush, the lesioned axons regenerate in the peripheral compartment of the dorsal root, but stop at the boundary between the peripheral and the central nervous system, the dorsal root transitional zone. We have previously shown that fibres from human fetal dorsal root ganglia grafted to adult rat hosts are able to grow into the spinal cord, but were not able to specify the route taken by the ingrowing fibres. In this study we have challenged the dorsal root transitional zone astrocyte boundary with human dorsal root ganglion transplants from 5–8-week-old embryos. By tracing immunolabelled human fibres in serial sections, we found that fibres consistently grow around the dorsal root transitional zone astrocytes in laminin-rich peripheral surroundings, and extend into the host rat spinal cord along blood vessels, either into deep or superficial laminae of the dorsal horn, or into the dorsal funiculus. Human fibres that did not have access to blood vessels grew on the spinal cord surface. These findings indicate, that in spite of a substantial growth capacity by axons from human embryonic dorsal root ganglion cells as well as their tolerance to non-permissive factors in the mature mammalian CNS, these axons are still sensitive to the repellent effects of astrocytes of the mature dorsal root transitional zone. Furthermore, this axonal ingrowth is consistently associated with laminin-expressing structures until the axons reach the host spinal cord.  相似文献   

7.
Interleukin-1beta (IL-1beta) is an important trophic factor in the nervous system (NS). IL-1beta is ubiquitously expressed from very early stages during the development of the amphibian NS and its action has been demonstrated in vitro on survival, proliferation and differentiation in mammalian embryos. In this report, we show that IL-1beta is immunocytochemically expressed in embryonic spinal cord from early stages, both in rat (embryonic day 12) and in chicken (stage 17-HH), in neuroepithelial cells and nerve fibres, dorsal root ganglia, anterior and posterior roots of the spinal nerves, and in the fibres of these nerves. Our in vivo experiments on chick embryos, with microbeads impregnated with IL-1beta implanted laterally to the spinal cord at the level of the wing anlage, demonstrate that this cytokine produces a statistically significant increase in nuclear incorporation of BrdU at the dorsal level and a reduction of this at the ventral level, whereas local immunoblocking with anti-IL-1beta antibodies causes a dorsal reduction of BrdU incorporation and alters ventral differentiation. These data demonstrate that IL-1beta plays a part in controlling proliferation and early differentiation during the development of the spinal cord in chick embryos.  相似文献   

8.
We isolated a chick homologue of LINGO-1 (cLINGO-1), a novel component of the Nogo-66 receptor (NgR)/p75 neurotrophin receptor (NTR) signaling complex, and examined the expression of cLINGO-1 in the developing brain and spinal cord of the chick embryo by in situ hybridization and immunohistochemistry. cLINGO-1 was expressed broadly in the spinal cord, including the ventral portion of the ventricular zone, and motor neurons. cLINGO-1 was also expressed in the dorsal root ganglion and boundary cap cells at dorsal and ventral roots. In the early embryonic brain, cLINGO-1 was first expressed in the prosencephalon and the ventral mesencephalon, and later in the telencephalon, the rostral part of the mesencephalon and some parts of the hindbrain. cLINGO-1 was also expressed in the ventral part of the neural retina and trigeminal and facial nerves. We also found that cLINGO-1, cNgR1 and p75NTR were expressed in overlapped patterns in the spinal cord and the dorsal root ganglion, but that these genes were expressed in distinct patterns in the early embryonic brain.  相似文献   

9.
The early development of interneurons in the chick embryo spinal cord was studied using a monoclonal antibody against a neuron-specific beta-tubulin isoform. Early developing interneurons were divided into two cell groups on the basis of their location and the pattern of growth of their axons. One group is composed of cells that establish a primitive longitudinal pathway (PL-cells), whereas the other group contains cells constituting a circumferential pathway (C-cells). The onset of axonal development in both cell groups occurs at stage (st.) 15 (embryonic day, (E), 2) in the branchial segments, which is prior to axonogenesis of motoneurons. PL-cells develop in the region between the floor plate and the motoneuron nucleus. Their axons are the first neuronal processes ('pioneer axons') to arrive in the ventrolateral marginal zone and they project both rostrally and caudally to establish a primitive longitudinal association pathway at the ventrolateral surface of the neural tube. This pathway is formed before axons of C-cells arrive in the ventrolateral region. The first C-cells are initially located in the most dorsal portion of the neural tube, whereas later appearing C-cells are also located in both intermediate and ventral regions of the neural tube. The axons of C-cells project ventrally, without fasciculating, along the lateral border of the neural tube. Some of their axons enter the ipsilateral ventrolateral longitudinal pathway at st. 17. We often observed apparent contacts and interactions between preexisting axons of PL-cells and newly arriving axons of C-cells. The axons of commissural C-cells first enter the floor plate at st. 17 and cross the midline at st. 18. Axons of C cells begin to join the contralateral ventrolateral longitudinal pathway at st. 18+ to st. 19. In the floor plate region, contacts between growth cones and axons were often observed. However, axons in the floor plate at these stages were not fasciculated. These observations establish the timing and pattern of growth of axons from two specific populations of early developing interneurons in the chick spinal cord. Additionally, we have identified an early and apparently previously undescribed 'pioneer' pathway that constitutes the first longitudinal pathway in the chick spinal cord.  相似文献   

10.
We are using a monoclonal antibody, QH-1, as a label for angioblasts in quail embryos to study vascular development. Our previous experiments showed that major embryonic blood vessels, such as the dorsal aortae and posterior cardinal veins, develop from angioblasts of mesodermal origin that appear in the body of the embryo proper (Coffin and Poole: Development, 102:735-748, '88). We theorized that there are two separate processes for blood vessel development that occur in quail embryos. One mechanism termed "vasculogenesis" forms blood vessels in place by the aggregation of angioblasts into a cord. The other mechanism, termed "angiogenesis," is the formation of new vessels by sprouting of capillaries from existing vessels. Here we report the results of microsurgical transplantation experiments designed to determine the extent of cell migration taking place during blood vessel formation. Comparison of the chimeras to normal embryos suggests that the vascular pattern develops, in part, from the normally restricted points of entry of angioblasts into the head from the ventral and dorsal aortae. Transplantations of quail mesoderm (1-15 somite stage) into the head of 5-15 somite chick hosts resulted in extensive sprouting and in migration of single and small groups of angioblasts away from the graft sites. Transplantations into the trunk resulted in incorporation of the graft into the normal vascular pattern of the host. Lateral plate mesoderm was incorporated into the dorsal aortae and individual sprouts grew between somites and along the neural tube to contribute to the intersomitic and vertebral arteries, respectively.  相似文献   

11.
The floor plate plays crucial roles in the specification and differentiation of neurons along the dorsal-ventral (DV) axis of the neural tube. The transplantation of the mesecephalic floor plate (mfp) into the dorsal mesencephalon in chick embryos alters the fate of the mesencephalon adjacent to the transplant from the tectum to the tegmentum, a ventral tissue of the mesencephalon. In this study, to test whether the mfp is involved in the specification of the DV polarity of the tectum and affects the projection patterns of retinal fibers to the tectum along the DV axis, we transplanted quail mfp into the dorsal mesencephalon of chick embryos, and analyzed projection patterns of dorsal and ventral retinal fibers to the tectum. In the embryos with the mfp graft, dorsal retinal fibers grew into the dorsal part of the tectum which is the original target for ventral but not dorsal retinal fibers and formed tight focuses there. In contrast, ventral retinal fibers did not terminate at any part of the tectum. Transplantation of Sonic hedgehog (Shh)-secreting quail fibroblasts into the dorsal mesencephalon also induced the ectopic tegmentum and altered the retinotectal projection along the DV axis, as the mfp graft did. These results suggest that some factors from the mesencephalic floor plate or the tegmentum, or Shh itself, play a crucial role in the establishment of the DV polarity of the tectum and the retinotectal projection map along the DV axis.  相似文献   

12.
Long ascending fiber systems were investigated in the spinal cord of a teleost fish, Gnathonemus petersii. Concomitant results of Fink-Heimer degeneration tracing as well as CaBP28K immunohistochemical labelling demonstrate the existence of a well defined direct pathway from the very lowest spinal level to the caudal lobe of the cerebellum. HRP retrograde labelling shows that this pathway originates in a cellular column located in the most ventral part of the lateral column next to the lateral extremity of the ventral horn. From each spinal segment, the large axons of these cells gather and form a strip shaped tract at the periphery of the lateral column immediately dorsal to the cell column from which they originate. The spinal course of these fibers is ipsilateral; they give off a large number of collaterals to the lateral reticular nucleus. Bypassing the trigeminal motor nucleus, the lateral column tract courses dorsally to the paratrigeminal command associated nucleus between the lateral lemniscus and the nucleus preeminentialis and with a ventro-dorsally oriented large loop, turns in the caudal direction and penetrates into the cerebellar caudal lobe. Running caudally in the dorsal granular layer of the caudal lobe, it shifts more and more medially and crosses the midline whilst decussating with the contralateral tract on the dorsal margin of the molecular layer of the caudal lobe. Finally, the tract splits off and terminates throughout the granular layer of the caudal lobe. The main characteristics of this pathway are similar to those of the ventral spinocerebellar tract of higher vertebrates; it conveys information from all spinal levels directly to the contralateral cerebellum. However, it does not seem to receive direct synaptic input from the periphery, since projection of the dorsal root fibers appears to be limited to the dorsal ipsilateral half of the spinal cord. The appearance of such a pathway in a teleost fish is probably related to the existence of a well developed proprioceptive system in this species.  相似文献   

13.
The character of dorsal horn motoneurons and interneurons evoked by stimulation of the dorsal root, and activity of Renshaw cells in response to stimulation of the ventral root were studied in albino rats in the lower lumbar segments of the spinal cord 5 days after sciatic nerve division. A significant increase in the mean amplitude of excitatory postsynaptic potentials of motoneurons was observed on the side of division of the nerve. No significant change in membrane potential and in the threshold of appearance of the action potential of these motoneurons took place. The mean number of action potentials and the duration of discharge of the Renshaw cells and dorsal horn interneurons likewise were not significantly changed.Dnepropetrovsk Medical Institute, Ukrainian Ministry of Health. Translated from Neirofiziologiya, Vol. 24, No. 3, pp. 306–314, May–June, 1992.  相似文献   

14.
Abstract— Experimental hind-limb rigidity of spinal origin was produced in cats by temporary occlusion of thoracic aorta and internal mammary arteries. In the lumbar segments (L6- S1) of these rigid cats, the monosynaptic reflex recorded from ventral roots was enhanced whereas the polysynaptic reflexes as well as the dorsal root reflexes were almost abolished. On morphological examination of the lumbar spinal cord, the number of interneurons was greatly reduced, whereas the small sized cells, presumably glial cells, were increased by about two times. Ventral horn motoneurons were also reduced. The lumbar spinal cords of the rigid cats were analysed for amino acid and substance P contents. Four major amino acids, aspartate, glutamate, glycine and GABA, were definitely reduced in both grey and white matter except that the glutamate level in the dorsal white was within the normal range. Content and distribution pattern of substance P were not altered in the lumbar cord of the rigid cats. These results are consistent with the notions that GABA occurs in the dorsal horn interneurons subserving primary afferent depolarisation, and that substance P is concentrated in primary afferent fibre terminals. The implications of the decrease of aspartate, glutamate and glycine in the spinal cord of rigid cats are discussed.  相似文献   

15.
The spinal cord in 25 non-inbred dogs has been studied macro-microscopically. The dissymmetry in the arrangement level in the right and left root bases on the dorsal surface of the spinal cord is much greater than on the ventral surface. The same as in the human being, the dissymmetry is the greatest in the thoracic part (as compared to other spinal parts). On the ventral surface of the spinal cord both along the anterior and posterior margin of the root bases, there is a right-sided dissymmetry (with cranial shift); on the dorsal surface it is present only at the roots along the posterior margin. The dissymmetry of the dog spinal cord is quantitatively estimated along its whole extension.  相似文献   

16.
Apical ectodermal ridges (AERs) isolated from 3- to 4-day chick and quail embryos were prepared by means of trypsinization and microdissection and then were grafted to the dorsal or ventral side of a host chick wing bud. They induced supernumerary limb outgrowths from the host bud showing, respectively, a bidorsal or biventral organization, as determined by the patterns of feather germs. The grafted ridge cells persisted, as revealed by histological sections of supernumerary chick limb parts growing under the influence of quail AERs, whose cells are readily distinguished after application of the Feulgen reagent.These results show that the AER induces limb outgrowth regardless of whether it is associated with dorsal or ventral limb ectoderm and that its continued existence is not dependent on contributions of ectodermal cells from the opposed ectodermal faces of the limb bud. The AER is pictured as maintaining the subjacent mesoderm in a condition of developmental plasticity without specifying its differentiation with respect to the proximodistal axis. It remains uncertain whether the positional values of cells that develop under the influence of the AER arise within these cells themselves or appear in response to influences from proximal sources.  相似文献   

17.
The monoclonal antibody technique was used to investigate neuronal heterogeneity and its developmental changes in the chick embryo trunk especially at the thoracic level. We report here four monoclonal antibodies (called SC 1, SC 2, SC 3, and SC 4) that bound to cell surface antigens. These antigens appeared to be proteins or glycoproteins because of their susceptibility to trypsin. In the spinal cord, antibody SC 3 stained all cells, but antibody SC 1 specifically stained motoneurons and ventral epithelial cells. The staining of motoneurons by antibody SC 1 was transient. It appeared at early stages (stage 16-17; Hamburger and Hamilton), but decreased markedly in intensity at older stages (stage 30-31). Antibody SC 2 did not stain cells in the spinal cord. It stained only neurons in the dorsal root and sympathetic ganglia. Antibody SC 4 stained only cells derived from the neural crest at the early stages (stage 16-20). At later stages, it stained a wider population of cells, including sensory neurons, Schwann cells, and cells in the central nervous system. In the dorsal root ganglion, antibodies SC 1 and SC 2 stained only neuronal cells whereas antibodies SC 3 and SC 4 stained both neuronal and glial cells. The dorsal root ganglionic antigens recognized by these antibodies were not expressed concurrently but appeared in a developmental sequence. Staining with antibodies SC 3 and SC 4 appeared first, then SC 1, and finally SC 2. Among these four antigens, the antigens common to both neuronal and glial cells appeared earlier than the neuron specific antigens. Thus, our monoclonal antibodies revealed heterogeneities in cell surface neuronal molecules and their transient and sequential appearance during embryonic development.  相似文献   

18.
Stages in the development of sensory ganglia in the regenerating newt tail after amputation are described by taking advantage of the rostrocaudal developmental gradient of the regenerating tail. A series of ganglia, beginning at the tip of the regenerate and progressing rostrally, were examined. Eight-week regenerates were used because they showed the most complete array of stages. The first recognizable ganglia appear as small clusters of cells sitting dorsally on the already established ventral roots. The cluster of ganglionic cells steadily expands with the addition of many new cells. Signs of cell differentiation within the ganglion precede the formation of the dorsal root rudiment, which assumes several different configurations but most commonly enters the cord close to the ventral root. Our material suggests that ganglion precursor cells originate in the ventral region of the developing spinal cord and migrate out of the cord by travelling along the ventral root until, at a suitable distance from the cord, they halt, proliferate, and eventually differentiate. In the regenerate, we saw no evidence of neural crest cells--such as those that give rise to ganglia in the trunk region during development--forming at the dorsal region of the regenerated neural tube. Nor was there any morphological evidence of mesenchymal contribution to the ganglion cell clusters.  相似文献   

19.
Chick embryos and posthatched chicks were examined at several ages for the presence of pyknotic interneurons in the lumbar spinal cord. Because no pyknotic interneurons were found, direct cell counts of healthy interneurons were carried out and a comparison made between early- and late-stage embryos and hatchlings. There was no decrease in the number of interneurons in the ventral intermediate gray matter of the spinal cord between embryonic day (E) 8 and 2 weeks posthatching (PH) or in the dorsal horn between E10 and 2 weeks PH. To study whether interneuron survival is regulated by targets or afferents, a situation known to exist in other developing neural populations, early embryos were subjected to (1) removal of one limb, resulting in the loss of lateral motor column motoneurons and dorsal root ganglion sensory afferents; (2) transection of the thoracic spinal cord, thereby removing both descending afferents and rostral targets of spinal interneurons, or (3) a combination of the two operations. No reductions in interneuron numbers were found as a result of these operations. Furthermore, morphometric analysis also revealed no change in neuronal size following these experimental manipulations. By contrast, there was a slight decrease in the total area of spinal gray matter that was most prominent in the dorsal region following limb bud removal. Our results indicate (1) that spinal interneurons fail to exhibit the massive naturally occurring death of postmitotic neurons that has been observed for several other populations of spinal neurons, and (2) spinal interneurons appear to be relatively resistant to induced cell death following the removal of substantial numbers of afferent inputs and targets.  相似文献   

20.
Dorsal spinal cord inhibits oligodendrocyte development   总被引:3,自引:0,他引:3  
Oligodendrocytes are the myelinating cells of the mammalian central nervous system. In the mouse spinal cord, oligodendrocytes are generated from strictly restricted regions of the ventral ventricular zone. To investigate how they originate from these specific regions, we used an explant culture system of the E12 mouse cervical spinal cord and hindbrain. In this culture system O4(+) cells were first detected along the ventral midline of the explant and were subsequently expanded to the dorsal region similar to in vivo. When we cultured the ventral and dorsal spinal cords separately, a robust increase in the number of O4(+) cells was observed in the ventral fragment. The number of both progenitor cells and mature cells also increased in the ventral fragment. This phenomenon suggests the presence of inhibitory factor for oligodendrocyte development from dorsal spinal cord. BMP4, a strong candidate for this factor that is secreted from the dorsal spinal cord, did not affect oligodendrocyte development. Previous studies demonstrated that signals from the notochord and ventral spinal cord, such as sonic hedgehog and neuregulin, promote the ventral region-specific development of oligodendrocytes. Our present study demonstrates that the dorsal spinal cord negatively regulates oligodendrocyte development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号