首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
《The Journal of cell biology》1994,127(6):2021-2036
The secreted polypeptide transforming growth factor-beta (TGF-beta) exerts its multiple activities through type I and II cell surface receptors. In epithelial cells, activation of the TGF-beta signal transduction pathways leads to inhibition of cell proliferation and an increase in extracellular matrix production. TGF-beta is widely expressed during development and its biological activity has been implicated in epithelial-mesenchymal interactions, e.g., in branching morphogenesis of the lung, kidney, and mammary gland, and in inductive events between mammary epithelium and stroma. In the present study, we investigated the effects of TGF-beta on mouse mammary epithelial cells in vitro. TGF-beta reversibly induced an alteration in the differentiation of normal mammary epithelial NMuMG cells from epithelial to fibroblastic phenotype. The change in cell morphology correlated with (a) decreased expression of the epithelial markers E- cadherin, ZO-1, and desmoplakin I and II; (b) increased expression of mesenchymal markers, such as fibronectin; and (c) a fibroblast-like reorganization of actin fibers. This phenotypic differentiation displays the hallmarks of an epithelial to mesenchymal transdifferentiation event. Since NMuMG cells make high levels of the type I TGF-beta receptor Tsk7L, yet lack expression of the ALK-5/R4 type I receptor which has been reported to mediate TGF-beta responsiveness, we evaluated the role of the Tsk7L receptor in TGF-beta- mediated transdifferentiation. We generated NMuMG cells that stably overexpress a truncated Tsk7L type I receptor that lacks most of the cytoplasmic kinase domain, thus function as a dominant negative mutant. These transfected cells no longer underwent epithelial to mesenchymal morphological change upon exposure to TGF-beta, yet still displayed some TGF-beta-mediated responses. We conclude that TGF-beta has the ability to modulate E-cadherin expression and induce a reversible epithelial to mesenchymal transdifferentiation in epithelial cells. Unlike other transdifferentiating growth factors, such as bFGF and HGF, these changes are accompanied by growth inhibition. Our results also implicate the Tsk7L type I receptor as mediating the TGF-beta-induced epithelial to mesenchymal transition.  相似文献   

5.
We have recently shown that induction of biglycan (BGN) expression by transforming growth factor-beta1 (TGF-beta1) required sequential activation of both Smad and p38 mitogen-activated protein kinase signaling (Ungefroren, H., Lenschow, W., Chen, W.-B., and Kalthoff, H. (2003) J. Biol. Chem. 278, 11041-11049). Here, we have analyzed the receptors through which TGF-beta1 controls expression of BGN and GADD45beta, the latter of which is postulated to link early Smad signaling to delayed activation of p38. Ectopic expression of a dominant-negative mutant of the TGF-beta type II receptor in PANC-1 cells abrogated TGF-beta-induced BGN up-regulation. Similarly, inhibition of the TGF-beta type I receptor/ALK5 with either SB431542 or by enforced stable expression of a kinase-dead mutant greatly attenuated the TGF-beta effect on both BGN and GADD45beta expression in PANC-1 and MG-63 cells. The enhancing effect of ALK5 on TGF-beta-mediated GADD45beta and BGN expression and on GADD45beta promoter activity was also dependent on its ability to activate Smad signaling, because an ALK5 mutant defective in Smad activation (TbetaRImL45) but with an otherwise functional kinase domain failed to mediate these responses. The TGF-beta/ALK5 effect on p38 activation and BGN expression was mimicked by overexpression of GADD45beta alone (in the absence of TGF-beta stimulation) and suppressed upon antisense inhibition of GADD45beta expression. These results show that TGF-beta induces BGN expression through (the Smad-activating function of) ALK5 and GADD45beta and suggest that the sensitivity of MyD118 to activation by TGF-beta, which varies between tissues, ultimately determines the strength of the TGF-beta effect on BGN.  相似文献   

6.
7.
8.
Transforming growth factor-beta stimulates the production of the extracellular matrix, whereas TNF-alpha has antifibrotic activity. Understanding the molecular mechanism underlying the antagonistic activities of TNF-alpha against TGF-beta is critical in the context of tissue repair and maintenance of tissue homeostasis. In the present study, we demonstrated a novel mechanism by which TNF-alpha blocks TGF-beta-induced gene and signaling pathways in human dermal fibroblasts. We showed that TNF-alpha prevents TGF-beta-induced gene trans activation, such as alpha2(I) collagen or tissue inhibitor of metalloproteinases 1, and TGF-beta signaling pathways, such as Smad3, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinases, without inducing levels of inhibitory Smad7 in human dermal fibroblasts. TNF-alpha down-regulates the expression of type II TGF-beta receptor (TbetaRII) proteins, but not type I TGF-beta receptor (TbetaRI), in human dermal fibroblasts. However, neither TbetaRII mRNA nor TbetaRII promoter activity was decreased by TNF-alpha. TNF-alpha-mediated decrease of TbetaRII protein expression was not inhibited by the treatment of fibroblasts with either a selective inhibitor of I-kappaB-alpha phosphorylation, BAY 11-7082, or a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor, PD98059. Calpain inhibitor I (ALLN), a protease inhibitor, inhibits TNF-alpha-mediated down-regulation of TbetaRII. We found that TNF-alpha triggered down-regulation of TbetaRII, leading to desensitization of human dermal fibroblasts toward TGF-beta. Furthermore, these events seemed to cause a dramatic down-regulation of alpha2(I) collagen and tissue inhibitor of metalloproteinases 1 in systemic sclerosis fibroblasts. These results indicated that TNF-alpha impaired the response of the cells to TGF-beta by regulating the turnover of TbetaRII.  相似文献   

9.
10.
X H Feng  R Derynck 《The EMBO journal》1997,16(13):3912-3923
Transforming growth factor-beta (TGF-beta) signals through a heteromeric complex of related type I and type II serine/threonine kinase receptors. In Mv1Lu cells the type I receptor TbetaRI mediates TGF-beta-induced gene expression and growth inhibition, while the closely related type I receptors Tsk7L and TSR1 are inactive in these responses. Using chimeras between TbetaRI and Tsk7L or TSR1, we have defined the structural requirements for TGF-beta signaling by TbetaRI. The extracellular/transmembrane or cytoplasmic domains of TbetaRI and Tsk7L were functionally not equivalent. The juxtamembrane domain, including the GS motif, and most regions in the kinase domain can functionally substitute for each other, but the alphaC-beta4-beta5 region from kinase subdomains III to V conferred a distinct signaling ability. Replacement of this sequence in TbetaRI by the corresponding domain of Tsk7L inactivated TGF-beta signaling, whereas its introduction into Tsk7L conferred TGF-beta signaling. The differential signaling associated with this region was narrowed down to a sequence of eight amino acids, the L45 loop, which is exposed in the three-dimensional kinase structure and diverges highly between TbetaRI and Tsk7L or TSR1. Replacement of the L45 sequence in Tsk7L with that of TbetaRI conferred TGF-beta responsiveness to the Tsk7L cytoplasmic domain in Mv1Lu cells. Thus, the L45 sequence between kinase subdomains IV and V specifies TGF-beta responsiveness of the type I receptor.  相似文献   

11.
TGF-beta inhibits adipocyte differentiation, yet is expressed by adipocytes. The function of TGF-beta in adipogenesis, and its mechanism of action, is unknown. To address the role of TGF-beta signaling in adipocyte differentiation, we characterized the expression of the TGF-beta receptors, and the Smads which transmit or inhibit TGF-beta signals, during adipogenesis in 3T3-F442A cells. We found that the cell-surface availability of TGF-beta receptors strongly decreased as adipogenesis proceeds. Whereas mRNA levels for Smads 2, 3, and 4 were unchanged during differentiation, mRNA levels for Smads 6 and 7, which are known to inhibit TGF-beta responses, decreased severely. Dominant negative interference with TGF-beta receptor signaling, by stably expressing a truncated type II TGF-beta receptor, enhanced differentiation and decreased growth. Stable overexpression of Smad2 or Smad3 inhibited differentiation and dominant negative inhibition of Smad3 function, but not Smad2 function, enhanced adipogenesis. Increased Smad6 and Smad7 levels blocked differentiation and enhanced TGF-beta-induced responses. The inhibitory effect of Smad7 on adipocyte differentiation and its cooperation with TGF-beta was associated with the C-domain of Smad7. Our results indicate that endogenous TGF-beta signaling regulates the rate of adipogenesis, and that Smad2 and Smad3 have distinct functions in this endogenous control of differentiation. Smad6 and Smad7 act as negative regulators of adipogenesis and, even though known to inhibit TGF-beta responses, enhance the effects of TGF-beta on these cells.  相似文献   

12.
This article focuses on recent findings that the type V TGF-beta receptor (TbetaR-V), which co-expresses with other TGF-beta receptors (TbetaR-I, TbetaR-II, and TbetaR-III) in all normal cell types studied, is involved in growth inhibition by IGFBP-3 and TGF-beta and that TGF-beta activity is regulated by two distinct endocytic pathways (clathrin- and caveolar/lipid-raft-mediated). TGF-beta is a potent growth inhibitor for most cell types, including epithelial and endothelial cells. The signaling by which TGF-beta controls cell proliferation is not well understood. Many lines of evidence indicate that other signaling pathways, in addition to the prominent TbetaR-I/TbetaR-II/Smad2/3/4 signaling cascade, are required for mediating TGF-beta-induced growth inhibition. Recent studies revealed that TbetaR-V, which is identical to LRP-1, mediates IGF-independent growth inhibition by IGFBP-3 and mediates TGF-beta-induced growth inhibition in concert with TbetaR-I and TbetaR-II. In addition, IRS proteins and a Ser/Thr-specific protein phosphatase(s) are involved in the TbetaR-V-mediated growth inhibitory signaling cascade. The TbetaR-V signaling cascade appears to cross-talk with the TbetaR-I/TbetaR-II, insulin receptor (IR), IGF-I receptor (IGF-IR), integrin and c-Met signaling cascades. Attenuation or loss of the TbetaR-V signaling cascade may enable carcinoma cells to escape from TGF-beta growth control and may contribute to the aggressiveness and invasiveness of these cells via promoting epithelial-to-mesenchymal transdifferentiation (EMT). Finally, the ratio of TGF-beta binding to TbetaR-II and TbetaR-I is a signal controlling TGF-beta partitioning between two distinct endocytosis pathways and resultant TGF-beta responsiveness. These recent studies have provided new insights into the molecular mechanisms underlying TGF-beta-induced cellular growth inhibition, cross-talk between the TbetaR-V and other signaling cascades, the signal that controls TGF-beta responsiveness and the role of TbetaR-V in tumorigenesis.  相似文献   

13.
14.
Specificity, diversity, and regulation in TGF-beta superfamily signaling.   总被引:44,自引:0,他引:44  
E Piek  C H Heldin  P Ten Dijke 《FASEB journal》1999,13(15):2105-2124
  相似文献   

15.
Divergence and convergence of TGF-beta/BMP signaling   总被引:41,自引:0,他引:41  
The transforming growth factor-beta (TGF-beta) superfamily includes more than 30 members which have a broad array of biological activities. TGF-beta superfamily ligands bind to type II and type I serine/threonine kinase receptors and transduce signals via Smad proteins. Receptor-regulated Smads (R-Smads) can be classified into two subclasses, i.e. those activated by activin and TGF-beta signaling pathways (AR-Smads), and those activated by bone morphogenetic protein (BMP) pathways (BR-Smads). The numbers of type II and type I receptors and Smad proteins are limited. Thus, signaling of the TGF-beta superfamily converges at the receptor and Smad levels. In the intracellular signaling pathways, Smads interact with various partner proteins and thereby exhibit a wide variety of biological activities. Moreover, signaling by Smads is modulated by various other signaling pathways allowing TGF-beta superfamily ligands to elicit diverse effects on target cells. Perturbations of the TGF-beta/BMP signaling pathways result in various clinical disorders including cancers, vascular diseases, and bone disorders.  相似文献   

16.
17.
Transforming growth factor-beta (TGF-beta) is a potent inducer of collagenase-3 (MMP-13) gene expression in human gingival fibroblasts, and this requires activation of the p38 mitogen-activated protein kinase pathway. Here, we have constructed recombinant adenoviruses harboring genes for hemagglutinin-tagged Smad2, Smad3, and Smad4 and used these in dissecting the role of Smads, the signaling mediators of TGF-beta, in regulation of endogenous MMP-13 gene expression in human gingival fibroblasts. Adenoviral expression of Smad3, but not Smad2, augmented the TGF-beta-elicited induction of MMP-13 expression. In addition, adenoviral gene delivery of dominant negative Smad3 blocked the TGF-beta-induced MMP-13 expression in gingival fibroblasts. Co-expression of Smad3 with constitutively active MKK3b and MKK6b, the upstream activators of p38, resulted in nuclear translocation of Smad3 in the absence of TGF-beta and in induction of MMP-13 expression. The induction of MMP-13 expression by Smad3 and constitutively active mutants of MKK3b or MKK6b was blocked by specific p38 inhibitor SB203580 and by the dominant negative form of p38alpha. These results show that TGF-beta-induced expression of human MMP-13 gene in gingival fibroblasts is dependent on the activation of two distinct signaling pathways (i.e. Smad3 and p38alpha). In addition, these findings provide evidence for a novel type of cross-talk between Smad and p38 mitogen-activated protein kinase signaling cascades, which involves activation of Smad3 by p38alpha.  相似文献   

18.
Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that regulates embryonic development and tissue homeostasis; however, aberrations of its activity occur in cancer. TGF-beta signals through its Type II and Type I receptors (TbetaRII and TbetaRI) causing phosphorylation of Smad proteins. TGF-beta-associated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, was originally identified as an effector of TGF-beta-induced p38 activation. However, the molecular mechanisms for its activation are unknown. Here we report that the ubiquitin ligase (E3) TRAF6 interacts with a consensus motif present in TbetaRI. The TbetaRI-TRAF6 interaction is required for TGF-beta-induced autoubiquitylation of TRAF6 and subsequent activation of the TAK1-p38/JNK pathway, which leads to apoptosis. TbetaRI kinase activity is required for activation of the canonical Smad pathway, whereas E3 activity of TRAF6 regulates the activation of TAK1 in a receptor kinase-independent manner. Intriguingly, TGF-beta-induced TRAF6-mediated Lys 63-linked polyubiquitylation of TAK1 Lys 34 correlates with TAK1 activation. Our data show that TGF-beta specifically activates TAK1 through interaction of TbetaRI with TRAF6, whereas activation of Smad2 is not dependent on TRAF6.  相似文献   

19.
In many physiological and disease processes, TGF-beta usurps branches of MAP kinase pathways in conjunction with Smads to induce apoptosis and epithelial-to-mesenchymal transition, but the detailed mechanism of how a MAP kinase cascade is activated by TGF-beta receptors is not clear. We report here that TRAF6 is specifically required for the Smad-independent activation of JNK and p38, and its carboxyl TRAF homology domain physically interacts with TGF-beta receptors. TGF-beta induces K63-linked ubiquitination of TRAF6 and promotes association between TRAF6 and TAK1. Our results indicate that TGF-beta activates JNK and p38 through a mechanism similar to that operating in the interleukin-1beta/Toll-like receptor pathway.  相似文献   

20.
Dual role for TGF-beta1 in apoptosis   总被引:6,自引:0,他引:6  
The exposure of cells to TGF-beta1 can trigger a variety of cellular responses including the inhibition of cell growth, migration, differentiation and apoptosis. TGF-beta1-regulated apoptosis is cell type and context-dependent, indeed TGF-beta1 provides signals for both cell survival or apoptosis. The molecular mechanisms underlying the role of TGF-beta1 in apoptosis remains unclear. The proteins that primarily mediate the intracellular signaling of TGF-beta1 are the members of the Smad family. Nevertheless, TGF-beta1 signaling can also cooperate with the death receptor apoptotic pathway (Fas, TNF), with the intracellular modulators of apoptosis JNK and p38 MAP kinases, Akt, NF-kappaB, and with the mitochondrial apoptotic pathway mediated by members of the Bcl-2 family. Moreover, the involvement of TGF-beta1 in the production of oxidative stress and in preventing the inflammatory processes required for the clearance of apoptotic bodies is further evidence of its integration into apoptotic pathways. The interaction and balance between different stimuli provides the basis for the pro- or anti-apoptotic output of TGF-beta1 signaling in a given cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号