首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pre-treating paclobutrazol enhanced chilling tolerance of sweetpotato   总被引:2,自引:0,他引:2  
The objective of this work was to study changes in low molecular weight antioxidants and antioxidative enzymes in chilling-stressed sweetpotato, as affected by paclobutrazol (PBZ) pre-treatment 24 h prior to exposure to chilling conditions. Sweetpotato ‘TN71’ and ‘TN65’ were treated with 300 mg PBZ/5 ml/plant, after which plants were subjected to 7°C/7°C (day/night) for periods of 1, 3 and 5 days, followed by a 3-day recovery period at 24°C/20°C (day/night). A factorial experiment in completely randomized design with four replications was used in this study. Young fully expanded leaves at each temperature and period of time were clipped for antioxidative system measurement. We concluded that different varieties displayed variations in their oxidative system, and the differential expressions of each genotype were associated with chilling stress response. Plants with various antioxidative systems responded differently to chilling stress according to the duration of the chilling period and subsequent re-warming period. ASA, GSH and GSSG contents were enhanced in TN71 prior to chilling stress. Increased APX, GR, ASA and MDA activities accounted for chilling tolerance in TN65. Furthermore, our results indicate that the elevated levels of the antioxidative system observed after PBZ pre-treatments afforded the sweetpotato leaf improved chilling-stress tolerance. The levels of ASA and GSSG of both TN71 and TN65 under chilling were significantly raised by pre-treating with PBZ. PBZ pre-treatment exhibited the important function of enhancing the restoration of leaf oxidative damage under chilling stress and increasing the chilling tolerance of plants to mitigate chilling stress effects.  相似文献   

2.
We investigated the changes in antioxidative enzyme activities of two sweet potato cultivars under waterlogging and high-light conditions in the growth chamber. The activities of antioxidative enzymes were measured from leaf crude extract of sweet potato during the first five days of the treatments. Activities of superoxide dismutase and catalase were consistently increased in Taoyuan 1 sweet potato over time under waterlogging and high-light conditions. However, decreases in both superoxide dismutase and catalase activities were observed for cultivar Yongtsai under waterlogging and high-light conditions. Waterlogging, together with high-light intensity, impairs superoxide dismutase and catalase activities in the cultivar Yongtsai indicating its greater susceptibility to waterlogging and high-light stress. In contrast, the increase in activities of superoxide dismutase and catalase in Taoyuan 1 indicated its greater ability to detoxify reactive oxygen species during the treatment and ensured its reduced susceptibility to waterlogging and high-light stress. The activities of peroxidase may be inactivated by high-light treatment and, therefore, may not be associated with tolerance of sweet potato plants to waterlogging and high-light stress. Differences in susceptibility to waterlogging and high-light conditions in the leafy vegetable Yongtsai and storage root Taoyuan 1 are discussed.  相似文献   

3.
Three sweet potato varieties, Taoyuan 2, Simon 1 and Sushu 18, were pretreated with four levels of CaCl2 (0, 60, 120 and 180 kg ha?1) weekly for 50 days from planting before being subjected to non‐flooding (control) and flooding conditions. The experiment used a randomised complete block design with a split‐split plot arrangement of treatments. Young, fully expanded leaves from each plant were clipped for measuring enzyme activities and antioxidant contents. The three genotypes exhibited unique abilities and specificities through the antioxidative systems in response to flooding stress. The level of activity of the antioxidative system in sweet potato leaves was related to CaCl2 pretreatment during flooding. The ascorbate peroxidase, superoxide dismutase, glutathione reductase, reduced ascorbate, total ascorbate, reduced glutathione and malondialdehyde contents of the three sweet potato varieties under flooding stress significantly increased because of pretreatment with 60 and 120 kg ha?1 of CaCl2. Moreover, pretreatment with 60 and 120 kg ha?1 CaCl2 enhanced the flooding tolerance of all three sweet potato varieties and mitigated the effects of flooding stress. However, pretreatment with 180 kg ha?1 CaCl2 markedly decreased some enzyme activities and antioxidant contents under a flooded condition. Calcium most likely played a role in the antioxidative system in the leaves of these three sweet potato varieties under flooding stress, as an optimum amount strengthened their oxidative systems.  相似文献   

4.
The mycorrhizal associations established between plants and fungi have multiple effects on plant growth, directly affecting stress tolerance. This work aimed to explore arbuscular mycorrhizal (AM) effects on carbon and nitrogen relationships of Aster tripolium L. and consequently on its flooding tolerance. Mycorrhizal and non-mycorrhizal juvenile plants were submitted to non-flooding and tidal flooding conditions for 56 d. Tidal flooding reduced biomass, but the presence of mycorrhiza had an ameliorating effect. The AM symbioses seem to have, like flooding, a stressful effect on A. tripolium at an early stage of plant development. However, once the plant was established, an improvement of growth performance of plants with mycorrhiza under flooding conditions was observed. The better tolerance of AM plants to flooding was mediated through an improvement of the osmotic adjustment of the plant tissues (higher concentrations of soluble sugars and proline) and through the increment of nitrogen acquisition in tidal-flooded plants.  相似文献   

5.
Cucumis sativus L.) seedlings were irradiated or not irradiated with UV-B for several days in environment-controlled growth chambers. The first leaves irradiated with UV-B were retarded in growth but simultaneously acquired a remarkably high tolerance to oxidative stress, as induced by paraquat treatment, compared with the non-irradiated leaves. This enhanced tolerance was observed within 1d after the start of UV-B irradiation and was maintained during the 12 d period of UV-B treatment. The effects of UV-B on several antioxidative enzymes were examined, and activities of superoxide dismutase, ascorbate peroxidase and guaiacol peroxidase, but not of glutathione reductase, were found to be enhanced. However, activation of these enzymes occurred only from 6 d after the start of irradiation. In contrast, accumulation of phenolic compounds was observed within 1d after the start of UV-B irradiation. HPLC analysis of phenolic compounds showed the distinct enhancement of a substance, which may have antioxidative properties in cucumber seedlings irradiated with UV-B. On the basis of these results, we conclude that not only antioxidative enzymes but also other factors in cucumber seedlings irradiated with UV-B, such as phenolic compounds, may participate in the enhanced tolerance to oxidative stress. Received 10 June 2000/ Accepted in revised form 1 July 2000  相似文献   

6.
Fan W  Zhang M  Zhang H  Zhang P 《PloS one》2012,7(5):e37344
Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas), a root crop with worldwide importance. The increased production of glycine betaine (GB) improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable conditions. The gene encoding betaine aldehyde dehydrogenase (BADH) is involved in the biosynthesis of GB in plants, and the accumulation of GB by the heterologous overexpression of BADH improves abiotic stress tolerance in plants. This study is to improve sweet potato, a GB accumulator, resistant to multiple abiotic stresses by promoted GB biosynthesis. A chloroplastic BADH gene from Spinacia oleracea (SoBADH) was introduced into the sweet potato cultivar Sushu-2 via Agrobacterium-mediated transformation. The overexpression of SoBADH in the transgenic sweet potato improved tolerance to various abiotic stresses, including salt, oxidative stress, and low temperature. The increased BADH activity and GB accumulation in the transgenic plant lines under normal and multiple environmental stresses resulted in increased protection against cell damage through the maintenance of cell membrane integrity, stronger photosynthetic activity, reduced reactive oxygen species (ROS) production, and induction or activation of ROS scavenging by the increased activity of free radical-scavenging enzymes. The increased proline accumulation and systemic upregulation of many ROS-scavenging genes in stress-treated transgenic plants also indicated that GB accumulation might stimulate the ROS-scavenging system and proline biosynthesis via an integrative mechanism. This study demonstrates that the enhancement of GB biosynthesis in sweet potato is an effective and feasible approach to improve its tolerance to multiple abiotic stresses without causing phenotypic defects. This strategy for trait improvement in sweet potato not only stabilizes yield production in normal soils in unpredictable climates but also provides a novel germplasm for sweet potato production on marginal lands.  相似文献   

7.
Effect of paclobutrazol (PBZ) treatment on salinity tolerance of wheat (Triticum aestivum) was investigated on a salt-tolerant (Karchia-65) and salt-sensitive (Ghods) cultivars. Salinity significantly reduced the investigated growth parameters such as plant height, length and area of sixth leaf, root length, fresh and dry weight of shoot, roots and sixth leaf, water content (WC) of plant and seeds weight in the both cultivars. The negative effect of salinity in Ghods cultivar was more than Karchia cultivar. However, PBZ treatment reduced the growth in both cultivars, the differences in plant growth among various levels of NaCl decreased in PBZ-treated plants. Salt stress resulted in high accumulation of Na+ in the sixth leaf and roots in both cultivars, particularly in Ghods cultivar. Against Karchia cultivar, salt stress decreased the storage of K+, P and N in sixth leaf and roots in Ghods cultivar. In the both cultivars, PBZ treatment enhanced the K+, P and N contents in sixth leaf and roots by increasing salinity. Although PBZ treatment decreased the growth of plants, it improved the weight of seeds against stress damage. PBZ treatment reduced the accumulation of harmful Na+ ion in plant tissues while increased the K+, P and N contents. These observations suggest that PBZ treatment may increase tolerance by diminishing ionic imbalance caused by salt stress.  相似文献   

8.
The effects of paclobutrazol (PBZ) (0, 30, 60, and 90 ppm) and NaCl (0, 75, 150, and 225 mM) treatments on a salt-tolerant (Karchia-65) cultivar of wheat (Triticum aestivum L.) at the pollination stage were studied. Salt stress decreased plant height, the length and area of the flag leaf, fresh and dry weights of the shoot, roots, and flag leaf, and water content. On the background of salinity, PBZ treatment further suppressed plant height. Although plants growth was suppressed in PBZ-treated plants, PBZ treatment moderated the negative effect of salinity on some growth parameters. Under PBZ treatments, plants tissues accumulated more watersoluble carbohydrates and reducing sugars than control plants, with the exception of water-soluble carbohydrates in the roots. The Na+ content in roots significantly (p ≤ 0.05) increased at 150 and 225 mM NaCl, but PBZ treatment moderated the harmful effect of the highest levels of salinity. Salinity with or without PBZ treatment improved the K+, P, and N contents in plants. It is reasonably to suggest that the protection and increasing salt tolerance caused by PBZ was due to the mechanism nearly similar to the salt-tolerant cultivar physiological systems. These observations suggest that PBZ treatment has the potential to increase salt tolerance with a limiting damage caused by salt stress even in salt-tolerant plants. This text was submitted by the authors in English. Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 2, pp. 278–284.  相似文献   

9.
10.
Responses of antioxidative defense systems to chilling and drought stresses were comparatively studied in four cultivars of rice (Oryza sativa L.) differing in sensitivity, two of them (Xiangnuo no. 1 and Zimanuo) are tolerant to chilling but sensitive to drought and the other two (Xiangzhongxian no. 2 and IR50) are tolerant to drought but sensitive to chilling. The seedlings of rice were transferred into growth chamber for 5 d at 8 degrees C as chilling treatment, or at 28 degrees C as control, or at 28 degrees C but cultured in 23% PEG-6000 solution as drought stress treatment. Under drought stress the elevated levels of electrolyte leakage, contents of H(2)O(2) and total thiobarbituric acid-reacting substances (TBARS) in Xiangzhongxian no. 2 and IR50 are lower than those in Xiangnuo no. 1 and Zimanuo. On the contrary, Xiangnuo no. 1 and Zimanuo have much lower level of electrolyte leakage, H(2)O(2) and TBARS than Xiangzhongxian no. 2 and IR50 under chilling stress. Activities of antioxidant enzymes (superoxide dismutase (SOD), catalase, and ascorbate-peroxidase (APX)) and contents of antioxidants (ascorbaic acid and reduced glutathione) were measured during the stress treatments. All of them were enhanced greatly until 3 d after drought stress in the two drought-tolerant cultivars, or after chilling stress in the two chilling-tolerant cultivars. They all were decreased at 5 d after stress treatments. On the other hand, activities of antioxidant enzymes and contents of antioxidants were decreased greatly in the drought-sensitive cultivars after drought stress, or in the chilling-sensitive cultivars after chilling stress. The results indicated that tolerance to drought or chilling in rice is well associated with the enhanced capacity of antioxidative system under drought or chilling condition, and that the sensitivity of rice to drought or chilling is linear correlated to the decreased capacity of antioxidative system.  相似文献   

11.
三峡库区消落区几种两栖植物的适生性评价   总被引:17,自引:0,他引:17  
根据三峡库区消落区的环境特征,两年间通过在库区消落区山地实验基地的种植及实地淹没试验,对几种备选用于生态修复的两栖植物进行适生性评价筛选研究.结果表明:狗牙根(Cynodon dactylon)、野地瓜藤(Ficus tikoua)、尼泊尔蓼(Polygonum nepalense )、水花生( Alternanthera philoxeroides)、百喜草(Paspalum Notatum )、香根草(Vetiveria zizanioides)、苏丹草(Sorghum sudanense)在100~150d的低水位出露期内均可完成生长、发育成熟过程,可作为消落区生态恢复的备选物种.其中,苏丹草可作为速生物种,能迅速恢复水位下降后消落区的植被覆盖率;复合群落在生长期间比单一种群提前5~10d完成对地表的覆盖,群落的稳定性、耐淤积性及抗干扰性较强,次年的萌发也更好,有利于构建稳定的生态系统;狗牙根、尼泊尔蓼和野地瓜藤根系生长良好,其中狗牙根在一个生长季内根系最长可达75cm, 有利于消落区控制水土流失;在自然水淹最深为15m,淹没时间6d的情况下,复合群落组植物、尼泊尔蓼、野地瓜藤、狗牙根和苏丹草的植物均能短期耐水淹和淤泥,水花生则是在水淹较深处能够生长良好;180d水下1.0~1.5m的连续淹水实验结果表明,狗牙根和野地瓜藤的耐淹性较强,经过长达半年的淹水过程能够成活,并在次年自然萌发;同时5~25m的深部淹水实验表明,随着深度增加,狗牙根的落叶率逐步提高,在180d的淹没后能够成活,并在次年自然萌发,可作为构建消落区生态系统的两栖植物物种.  相似文献   

12.
Bunch wilting, a disorder of date palm (Phoenix dactylifera L.) and caused by climatic factors (low relative humidity along with high temperatures), critically damages its production in Iran. In this study, the effects of 5-aminolevulinic acid (5-ALA) as precursor of chlorophyll and elicitor of antioxidants applied to be involve directly or indirectly in stress tolerance mechanisms, bunch wilting severity, and other physiological aspects on 10–12 years old date palm in two locations. 5-ALA concentrations included 0 (control), 200, 240 and 280 ppm, applied as aqueous solution at biweekly intervals from fruit set until the beginning of fruit Kimri stage on leaves around the fruit bunches (for three times). Results showed that the yield of trees and bunch weight increased; hydrolytic enzymes activities in stalk and fruit decreased and activities of peroxidase, superoxide dismutase, and catalase, important enzymes of the antioxidative system were increased. The plants’ redox state changed as identified by decrease in H2O2 and proline of fruits. Microelement concentrations of leaves were changed at damage stage. Perhaps, due to mild environmental conditions in location A, lower bunch wilting and better physiological conditions of fruits recorded compared to location B. Foliar application of 5-ALA resulted to a coordinated action of the antioxidative system, affecting the defense-related enzymes. The treatment caused biosynthesis of chlorophyll and adjustments in H2O2 and proline compositions in leaf, stalk, and fruit. Bunch wilting was alleviated by 240 ppm 5-ALA, moderating the response of tree load to environmental stress conditions.  相似文献   

13.
The effect of paclobutrazol (PBZ) treatments on the antioxidant metabolism of white yam (Dioscorea rotundata Poir.) was investigated in the present study. PBZ @ 15 mg l(-1) plant(-1) was given to plants by soil drenching, 30, 60, and 90 days after planting (DAP). The non-enzymatic antioxidant contents like ascorbic acid (AA), reduced glutathione (GSH) and alpha-tocopherol (alpha-toc), activities of antioxidant enzymes like superoxide dismutase (SOD), ascorbate peroxidase (APX), polyphenol oxidase (PPO) and catalase (CAT) were extracted and assayed on 100 DAP from leaf, stem and tubers of both control and PBZ treated plants. It was found that PBZ has a profound effect on the antioxidant metabolism and caused an enhancement in both non-enzymatic and enzymatic antioxidant potentials under treatments in white yam. Our results have good significance, as this increase the innate antioxidant potential of this food crop, which is helpful to satisfy the needs of antioxidants in diet and thereby make it an economically important food crop.  相似文献   

14.
Some properties of sucrose-P synthetases obtained from various plant tissues, including sweet potato roots, potato tubers and leaves of barley, rape and ladino clover were studied. The specific enzyme activity of the sucrose-P synthetase from sweet potato roots was much lower than that of the sucrose synthetase of the other tissues. The enzyme activity decreased gradually as the roots developed. The optimum pH did not differ between enzyme preparations from sweet potato roots and barley leaves. Manganese chloride exhibited a marked stimulative effect on the sucrose-P synthetase from sweet potato roots and potato tubers, whereas it was inhibited the barley leaf enzyme.

Kinetic studies of sucrose-P synthetase showed that the behavior of the enzyme to the substrates did not differ in the enzyme sources examined. The substrate saturation curve of the enzyme with respect to fructose-6-P was sigmodal in shape, giving a straight line with a slope of 1.35~1.5 (n value) in a plot of the data using the empirical Hill equation. On the other hand, enzymes from all the various tissues exhibited a hyperbolic substrate saturation curve for UDP-glucose, obeying the ordinary Michaelis-Menten type reaction. Manganese chloride had no effect on the Km for UDP-glucose, the S0.5 for fructose-6-P and the n value of the enzyme from potato tuber tissues.  相似文献   

15.
16.
以超表达甘薯橙色基因(IbOr)的转基因甘薯(TS)以及非转基因甘薯(NT)为实验材料,通过15%聚乙二醇6000(PEG-6000)模拟干旱条件,研究转基因与非转基因甘薯幼苗在水分胁迫不同时间的光合系统,膜脂过氧化及抗氧化防御系统中主要指标的变化情况,探讨转基因甘薯耐旱性的生理机制。结果显示:(1)随PEG-6000胁迫时间延长,甘薯叶片的叶绿素、类胡萝卜素含量及其叶片净光合速率、气孔导度、胞间CO2浓度、蒸腾速率都显著降低,但转基因株系降低幅度小于非转基因植株。(2)在正常供水和水分胁迫下,超表达IbOr基因甘薯叶片中O-·2、MDA含量均低于非转基因甘薯,即转基因甘薯具有较低的活性氧水平且脂膜受损伤较小。(3)PEG-6000胁迫24h后,甘薯叶片中SOD、POD酶活性均增加,48h达到最大值,且转基因甘薯中2种酶活性显著高于非转基因甘薯。研究表明,过表达IbOr基因可以有效减轻甘薯在水分胁迫条件下受损害的程度,且可能主要通过提高甘薯的抗氧化胁迫能力来完成。  相似文献   

17.
水分胁迫使转铜/锌超氧化物歧化酶基因(Cu/Zn SOD)和抗坏血酸过氧化物酶基因(APX)甘薯及未转基因甘薯中超氧阴离子(O2^-)、过氧化氢(H2O2)、丙二醛(MDA)含量和细胞膜相对透性增加,在相同条件下以上指标均为转基因甘薯低于未转基因甘薯;而叶片含水量、净光合速率(Pn)和气孔导度(Gs)均下降,SOD和APX酶活性随胁迫程度的加重先增大后减小,胞间CO2浓度(Ci)则先减小后增大,在相同条件下转基因甘薯中以上指标均高于未转基因甘薯。这些结果表明:转入Cu/Zn SOD和APX基因使转基因甘薯清除活性氧的能力增强,在水分胁迫下能保持较高的叶片含水量和Pn,耐旱性得到提高。  相似文献   

18.
利用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术和磷脂脂肪酸(PLFA)分析方法,比较了北京通州、顺义、昌平、延庆地区甘薯叶际细菌的多样性和生物量,并调查了通州地区甘薯叶际细菌群落在不同生长季节的变化情况。PLFA分析结果发现所有检测样品中,革兰氏阳性细菌生物量均高于革兰氏阴性细菌生物量。PCR-DGGE方法与PLFA方法聚类分析结果较一致,甘薯叶际细菌群落结构受到时空因素、甘薯生理特性等的影响,不同地点、不同生长季节甘薯叶际细菌群落结构有较大差异,DGGE条带测序分析表明,Pseudomonas sp.在不同地点的甘薯叶际均为保守菌群,Bacillus sp.,Acinetobacter sp.,  相似文献   

19.
In order to assess the role of the antioxidative defense system against salt treatment, the activities of some antioxidative enzymes and levels of antioxidants were monitored in a true mangrove, Bruguiera parviflora, subjected to varying levels of NaCl under hydroponic culture. In the leaves of B. parviflora, salt treatment preferentially enhanced the content of H2O2 as well as the activity of ascorbate peroxidase (APX), guaiacol peroxidase (GPX), glutathione reductase (GR), and superoxide dismutase (SOD), whereas it induced the decrease of total ascorbate and glutathione (GSH+GSSG) content as well as catalase (CAT) activity. Analysis of isoforms of antioxidative enzymes by native PAGE and activity staining revealed that leaves of B. parviflora had one isoform each of Mn-SOD and Cu/Zn-SOD and three isoforms of Fe-SOD. Expression of Mn-SOD and Fe-SOD-2 was preferentially elevated by NaCl. Similarly, out of the six isoforms of GPX, the GPX-1, 2, 3 and 6 were enhanced by salt treatment but the levels of GPX-4 and -5 changed minimally as compared to those of a control. Activity staining gel revealed only one prominent isoform of APX and two isoforms of GR (GR-1 and GR-2), all of these isoforms increased upon salt exposure. Four CAT-isoforms were identified, among which the prominent CAT-2 isoform level was maximally reduced, suggesting differential down regulation of CAT isoforms by NaCl. The concentrations of malondialdehyde (MDA), a product of lipid peroxidation, remained unchanged in leaves of the plant treated with different concentrations of NaCl. This suggests that plants are protected against activated oxygen species by the elevated levels of certain antioxidative enzymes, thus avoiding lipid peroxidation during salt exposure. The differential changes in the levels of the isoforms due to NaCl treatment may be useful as markers for recognizing salt tolerance in mangroves.  相似文献   

20.
Hydrogen sulfide (H2S) is a signal molecule that is involved in plant growth, development and the acquisition of stress tolerance including heat tolerance, but the mechanism of H2S-induced heat tolerance is not completely clear. In present study, the effect of sodium hydrosulfide (NaHS), a H2S donor, treatment on heat tolerance of maize seedlings in relation to antioxidant system was investigated. The results showed that NaHS treatment improved survival percentage of maize seedlings under heat stress in a concentration-dependent manner, indicating that H2S treatment could improve heat tolerance of maize seedlings. To further study mechanism of NaHS-induced heat tolerance, catalase (CAT), guaiacol peroxidase (GPX), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX) activities, and glutathione (GSH) and ascorbic acid (AsA) contents in maize seedlings were determined. The results showed that NaHS treatment increased the activities of CAT, GPX, SOD and GR, and GSH and AsA contents as well as the ratio of reduced antioxidants to total antioxidants [AsA/(AsA+DHA) and GSH/(GSH +GSSG)] in maize seedlings under normal culture conditions compared with the control. Under heat stress, antioxidant enzymes activities, antioxidants contents and the ratio of the reduced antioxidants to total antioxidants in control and treated seedlings all decreased, but NaHS-treated seedlings maintained higher antioxidant enzymes activities and antioxidants levels as well as the ratio of reduced antioxidants to total antioxidants. All of above-mentioned results suggested that NaHS treatment could improve heat tolerance of maize seedlings, and the acquisition of this heat tolerance may be relation to enhanced antioxidant system activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号