首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melanocytes produce two chemically distinct types of melanin pigments, eumelanin and pheomelanin. These pigments can be quantitatively analyzed by acidic permanganate oxidation or reductive hydrolysis with hydriodic acid to form pyrrole-2,3,5-tricarboxylic acid or aminohydroxyphenylalanine, respectively. About 30 coat color genes in mice have been cloned, and functions of many of those genes have been elucidated. However, little is known about the interacting functions of these loci. In this study, we used congenic mice to eliminate genetic variability, and analyzed eumelanin and pheomelanin contents of hairs from mice mutant at one or more of the major pigment loci, i.e., the albino (C) locus that encodes tyrosinase, the slaty (Slt) locus that encodes tyrosinase-related protein 2 (TRP2 also known as dopachrome tautomerase, DCT), the brown (B) locus that encodes TRP1, the silver (Si) locus that encodes a melanosomal silver protein, the agouti (A) locus that encodes agouti signaling protein (ASP), the extension (E) locus that encodes melanocortin-1 receptor, and the mahogany (Mg) locus that encodes attractin. We also measured total melanin contents after solubilization of hairs in hot Soluene-350 plus water. Hairs were shaved from 2-3-month-old congenic C57BL/6J mice. The chinchilla (c(ch)) allele is known to encode tyrosinase, whose activity is about one third that of wild type (C). Phenotypes of chinchilla (c(ch)/c(ch)) mice that are wild type or mutant at the brown and/or slaty, loci indicate that functioning TRP2 and TRP1 are necessary, in addition to high levels of tyrosinase, for a full production of eumelanin. The chinchilla allele was found to reduce the amount of pheomelanin in lethal yellow and recessive yellow mice to less than one fifth of that in congenic yellow mice that were wild type at the albino locus. This indicates that reduction in tyrosinase activity affects pheomelanogenesis more profoundly compared with eumelanogenesis. Hairs homozygous for mutation at the slaty locus contain 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-poor melanin, and this chemical phenotype was retained in hairs that were mutant at both the brown locus and the slaty locus. Hair from mice mutant at the brown locus, but not at the slaty locus, do not contain DHICA-poor melanin. This indicates that the proportion of DHICA in eumelanin is determined by TRP2, but not by TRP1. Mutation at the slaty locus (Slt(lt)) was found to have no effect on pheomelanogenesis, supporting a role of TRP2 only in eumelanogenesis. The mutation at silver (si) locus showed an effect similar to brown, a partial suppression of eumelanogenesis. The mutation at mahogany (mg) locus partially suppressed the effect of lethal yellow (Ay) on pheomelanogenesis, supporting a role of mahogany in interfering with agouti signaling. These results show that combination of double mutation study of congenic mice with chemical analysis of melanins is useful in evaluating the interaction of pigment gene functions.  相似文献   

2.
3.
Eumelanin is photoprotective while pheomelanin is phototoxic to pigmented tissues. Ultraviolet A (UVA)-induced tanning seems to result from the photooxidation of pre-existing melanin and contributes no photoprotection. However, data available for melanin biodegradation remain limited. In this study, we first examined photodegradation of eumelanin and pheomelanin in human black hairs and found that the ratio of Free (formed by peroxidation in situ) to Total (after hydrogen peroxide oxidation) pyrrole-2,3,5-tricarboxylic acid (PTCA) increases with hair aging, indicating fission of the dihydroxyindole moiety. In red hair, the ratio of thiazole-2,4,5-tricarboxylic acid (TTCA) to 4-amino-3-hydroxyphenylalanine (4-AHP) increases with aging, indicating the conversion from benzothiazine to benzothiazole moiety. These photodegradation of melanins were confirmed by UVA (not UVB) irradiation of melanins from mice and human hairs and synthetic eumelanin and pheomelanin. These results show that both eumelanin and pheomelanin degrade by UVA and that Free/Total PTCA and TTCA/4-AHP ratios serve as sensitive indicators of photodegradation.  相似文献   

4.
The effects of selection of agouti rats (with genotype AAHH) on the tame and aggressive behavior and dietary methyl given to females from the eighth day of pregnancy to the fifth day after the birth of the offspring on the intensity of the agouti coat color in the offspring have been studied. The morphometric parameters of hair determining the darkness of the agouti color (the total length of guard hairs, the lengths of their eumelanin end and pheomelanin band, the ratio between the lengths of the eumelanin and pheomelanin portions of the hair, the total length of the awn hairs, and the relative length of their widened “lanceolate” upper end) have been compared. It has been found that selection of agouti rats for aggressive behavior is accompanied by darkening of the coat color compared to tame rats due to an increase in the ratio of the length of the black eumelanin end of the guard hairs to the length of the yellow pheomelanin band. Methyl-containing additives to the diet of females affect the intensity of the agouti coat color in the offsprings with both types of behavior, but to different extents. Aggressive offspring is more sensitive to the mother’s methyl-containing diet: the percentage of animals that are darker than control rats is higher among aggressive animals than among tame ones due to a greater increase in the ratio between dark and light portions of hairs. The possible mechanisms of differences in the phenotypic modifications of coat color in control and experimental agouti rats with different types of behavior are discussed.  相似文献   

5.
The effect of methyl supplements to the diet of pregnant homozygous (AAHH) female rats with agouti coat color mated with homozygous (aahh) males on the phenotypic modification of the coat color of their heterozygous offspring (AaHh) has been studied. Comparative morphological analysis of the main parameters of hair that determine coat color, including the total length of hairs of different types and the length of the upper black (eumelanin) and light (pheomelanin) parts of awn hairs has been performed. The pattern of pigment granule distribution among hair layers has been analyzed. The melanin content of the hair has been determined using electron spin resonance (ESR). Although all offspring have a typical agouti coat color (alternating black and light portions of hair), 39% of them have a darker coat color than control and other experimental rats have. The main differences between the offspring with darkened and standard coat colors are accounted for by the ratio between the eumelanin and pheomelanin portions of awn hairs. In darkened offspring, this ratio is significantly higher than in control rats. The possible mechanisms of the phenotypic modification of agouti coat color in experimental animals are discussed.  相似文献   

6.
The wild-type agouti-banding pattern for hair is well characterized in lower mammals such as mice. The switch between eumelanin and pheomelanin in bands in the hair results from the interaction of alpha-melanocyte stimulating hormone and agouti signal protein through the melanocortin 1 receptor on melanocytes. However, such banding patterns have not been described to date in higher mammals. We now report such 'agouti'-banding patterns that occur in several subspecies of baboons, and characterize those hairs using chemical and immunohistochemical methods. Hair and skin samples were obtained from the dorsa of adult male baboons of different subspecies (Papio cynocephalus hamadryas (PCH) and Papio cynocephalus anubis (PCA)). The hairs were excised with scissors into the gray and the white bands of the PCH subspecies and into the black and the yellow bands of the PCA subspecies, and were analyzed for total melanin, eumelanin, and pheomelanin by spectrophotometric and chemical methods. Hairs in the PCA subspecies oscillate between a eumelanic band (with high melanin content) and a pheomelanic band, while hairs in the PCH subspecies oscillate between a eumelanic band (with low melanin content) and a non-pigmented band. Those chemical data are consistent with the histological appearance of the hair bulbs stained by the Fontana-Masson technique. The difference in the melanin content between PCH and PCA subspecies is most likely related to tyrosinase levels, as suggested by the presence of unpigmented muzzle in the PCH subspecies compared with the black muzzle in the PCA subspecies.  相似文献   

7.
The wild‐type agouti‐banding pattern for hair is well characterized in lower mammals such as mice. The switch between eumelanin and pheomelanin in bands in the hair results from the interaction of α‐melanocyte stimulating hormone and agouti signal protein through the melanocortin 1 receptor on melanocytes. However, such banding patterns have not been described to date in higher mammals. We now report such ‘agouti’‐banding patterns that occur in several subspecies of baboons, and characterize those hairs using chemical and immunohistochemical methods. Hair and skin samples were obtained from the dorsa of adult male baboons of different subspecies (Papio cynocephalus hamadryas (PCH) and Papio cynocephalus anubis (PCA)). The hairs were excised with scissors into the gray and the white bands of the PCH subspecies and into the black and the yellow bands of the PCA subspecies, and were analyzed for total melanin, eumelanin, and pheomelanin by spectrophotometric and chemical methods. Hairs in the PCA subspecies oscillate between a eumelanic band (with high melanin content) and a pheomelanic band, while hairs in the PCH subspecies oscillate between a eumelanic band (with low melanin content) and a non‐pigmented band. Those chemical data are consistent with the histological appearance of the hair bulbs stained by the Fontana‐Masson technique. The difference in the melanin content between PCH and PCA subspecies is most likely related to tyrosinase levels, as suggested by the presence of unpigmented muzzle in the PCH subspecies compared with the black muzzle in the PCA subspecies.  相似文献   

8.
The effect of methyl supplements to the diet of pregnant homozygous (AAHH) female rats with agouti coat color mated with homozygous (aahh) males on the phenotypic modification of the coat color of their heterozygous offspring (AaHh) has been studied. Comparative morphological analysis of the main parameters of hair that determine coat color, including the total length of hairs of different types and the length of the upper black (eumelanin) and light (pheomelanin) parts of awn hairs has been performed. The pattern of pigment granule distribution among hair layers has been analyzed. The melanin content of the hair has been determined using electron spin resonance (ESR). Although all offspring have a typical agouti coat color (alternating black and light portions of hair), 39% of them have a darker coat color than control and other experimental rats have. The main differences between the offspring with darkened and standard coat colors are accounted for by the ratio between the eumelanin and pheomelanin portions of awn hairs. In darkened offspring, this ratio is significantly higher than in control rats. The possible mechanisms of the phenotypic modification of agouti coat color in experimental animals are discussed.  相似文献   

9.
The color of hair and wool in mammals and feathers in birds is mostly determined by the quantity and quality of melanins that are synthesized in follicular melanocytes and transferred to keratinocytes. There are two chemically distinct types of melanin pigments: the black to brown eumelanins and the yellow to reddish pheomelanins. Melanins in sheep wool and human hair of various colors were characterized by HPLC methods to estimate 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-derived units in eumelanins and benzothiazine units in pheomelanins. Melanins were also characterized by spectrophotometric methods after differential solubilization in alkalies. It was demonstrated that 1) black wool in Asiatic sheep contains eumelanin with the DHICA content similar to black mouse melanin, while black to brown melanins from human hair contain much lower ratios of DHICA-derived units, comparable to the slaty mutation in mice, 2) dark brown to brown hair in human contains eumelanin whose chemical properties are indistinguishable from those of black hair, 3) dark red wool and red human hair contain pheomelanic pigments whose chemical properties are rather different from those of yellow pheomelanins in mice, and 4) light brown, blonde, and red hairs in human can be differentiated from each other with this methodology.  相似文献   

10.
Alleles at the agouti locus in the mouse determine the synthesis of either phaeomelanin or eumelanin by follicular melanocytes by altering the hair follicle environment. The method of dermal-epidermal recombination of mouse skin from C57BL/6J a/a and C57BL/6J A(w-J)/A(w-J) embryos was used in this study to establish the precise site of agouti gene action within the hair follicle. The pigmentary pattern of hairs formed in the recombination skin grafts was specific for the genotype of the dermal (mesodermal) component of the hair follicle. The genotype of the epidermal (ectodermal) component had no influence on the type of hair pigmentary pattern. These results indicate that future studies on gene mechanisms should focus on the dermis as the determining factor in altering the hair follicle environment.  相似文献   

11.
12.
Methods not only for characterizing but also for quantitating melanin subtypes from the two types of melanin found in hair--eumelanin and pheomelanin--have been established. In relation to testing for drugs of abuse in hair, these methods will allow for correction of drug binding to specific melanin subtypes and will serve to improve drug measurement in hair. 5,6-Dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) make up the majority of the eumelanin polymer while benzothiazene units derived from 2-cysteinyl-S-Dopa (2-CysDopa) and 5-cysteinyl-S-Dopa (5-CysDopa) compose the majority of the pheomelanin polymer. Our results show that: (1) pyrrole-2,3-dicarboxylic acid (PDCA) and pyrrole-2,3,5-tricarboxylic acid (PTCA), markers for DHI and DHICA units, respectively, are produced in 0.37 and 4.8% yields, respectively, when melanins are subjected to alkaline hydrogen peroxide degradation, (2) 3-aminotyrosine (3AT) and 4-amino-3-hydroxyphenylalanine (AHP), markers for 2-CysDopa and 5-CysDopa, respectively, are produced in 16 and 23% yield, respectively, when subjected to hydriodic acid hydrolysis, and (3) that black human hair contains approximately 99% eumelanin and 1% pheomelanin, brown and blond hair contain 95% eumelanin and 5% pheomelanin; and red hair contains 67% eumelanin and 33% pheomelanin. These data will allow deeper investigation into the relationship between melanin composition and drug incorporation into hair.  相似文献   

13.
The color of hair, skin, and eyes in animals mainly depends on the quantity, quality, and distribution of the pigment melanin, which occurs in two types: black to brown eumelanin and yellow to reddish pheomelanin. Microanalytical methods to quantify the amounts of eumelanin and pheomelanin in biological materials were developed in 1985. The methods are based on the chemical degradation of eumelanin to pyrrole‐2,3,5‐tricarboxylic acid and of pheomelanin to aminohydroxyphenylalanine isomers, which can be analyzed and quantitated by high performance liquid chromatography. This review summarizes and compares eumelanin and pheomelanin contents in various pigmented tissues obtained from humans, mice, and other animals. These methods have become valuable tools to study the functions of melanin, the control of melanogenesis, and the actions and interactions of pigmentation genes. The methods have also found applications in many clinical studies. High levels of pheomelanin are found only in yellow to red hairs of mammals and in red feathers of birds. It remains an intriguing question why lower vertebrates such as fishes do not synthesize pheomelanin. Detectable levels of pheomelanin are detected in human skin regardless of race, color, and skin type. However, eumelanin is always the major constituent of epidermal melanin, and the skin color appears to be determined by the quantity of melanin produced but not by the quality.  相似文献   

14.
The color of hair, skin, and eyes in animals mainly depends on the quantity, quality, and distribution of the pigment melanin, which occurs in two types: black to brown eumelanin and yellow to reddish pheomelanin. Microanalytical methods to quantify the amounts of eumelanin and pheomelanin in biological materials were developed in 1985. The methods are based on the chemical degradation of eumelanin to pyrrole-2,3,5-tricarboxylic acid and of pheomelanin to aminohydroxyphenylalanine isomers, which can be analyzed and quantitated by high performance liquid chromatography. This review summarizes and compares eumelanin and pheomelanin contents in various pigmented tissues obtained from humans, mice, and other animals. These methods have become valuable tools to study the functions of melanin, the control of melanogenesis, and the actions and interactions of pigmentation genes. The methods have also found applications in many clinical studies. High levels of pheomelanin are found only in yellow to red hairs of mammals and in red feathers of birds. It remains an intriguing question why lower vertebrates such as fishes do not synthesize pheomelanin. Detectable levels of pheomelanin are detected in human skin regardless of race, color, and skin type. However, eumelanin is always the major constituent of epidermal melanin, and the skin color appears to be determined by the quantity of melanin produced but not by the quality.  相似文献   

15.
The murine recessive yellow (Mc1r(e)) is a loss-of-function mutation in the receptor for alpha-melanocyte-stimulating hormone, melanocortin receptor 1 (Mc1r) and produces yellow coats by inducing pheomelanin synthesis in hair follicular melanocytes. However, it is not known whether the Mc1r(e) mutation affects the proliferation and differentiation of melanocytes. In this study, the proliferation and differentiation of recessive yellow epidermal melanocytes cultured in dibutyryl cyclic AMP-supplemented serum-free medium were investigated in detail. The melanocytes produced mainly eumelanin in this culture system. The proliferation of recessive yellow melanocytes was decreased compared with that of wild-type at the e-locus, black melanocytes. The differentiation of melanocytes was also delayed and inhibited in recessive yellow mice. Tyrosinase (TYR) activity and TYR-related protein 1 (TRP1) and TRP2 (dopachrome tautomerase, DCT) expressions were decreased and, in addition, the maturation of stage IV melanosomes was inhibited. Excess l-tyrosine (l-Tyr) added to the culture media rescued the reduced activity of proliferation of melanocytes. l-Tyr also stimulated TYR activity and TRP1 and TRP2 expressions as well as the maturation of stage IV melanosomes and pigmentation. These results suggest that the Mc1r(e) mutation affects the proliferation and differentiation of melanocytes and l-Tyr rescues the reduced proliferative and differentiative activities by stimulating TYR activity and TRP1 and TRP2 expressions as well as melanosome maturation.  相似文献   

16.
Ruby laser-assisted hair removal is thought to work via selective photothermolysis, which relies on light reaching the deeper layers of skin, and the absorption of light by the target chromophore, melanin. It is therefore possible that efficacy of treatment is affected by anatomic factors that determine the amount of light reaching the hair bulbs (i.e., skin color, depth of intracutaneous hair, epidermal thickness and dermal density) and the melanin content of hair. To examine this hypothesis, a prospective study was performed. Forty-eight volunteers were treated with the Chromos 694 Depilation Ruby Laser at a single standard fluence of 11 J/cm2. Treatment efficacy was determined by measuring hair density at 3 and 7 months after treatment. Epidermal depth and dermal density were measured from 2-mm biopsies taken before treatment, and the intracutaneous hair length was determined from plucked hair. Skin color was assessed using a spectrophotometer, and melanin content of dissolved hair was assessed using spectrophotometry. Efficacy of treatment for each patient was compared with the patient's age, intracutaneous hair length, epidermal depth, dermal density, skin color, and total melanin content and relative eumelanin content of hair. No correlation was found between the efficacy of treatment and age and the various anatomic factors. Patients with higher eumelanin content in their hair had better long-term results (Spearman rank test, p = 0.00219). The results suggested that the efficacy of treatment did not depend solely on the amount of laser light penetrating the skin but correlated well with the eumelanin content of hair. The clinical implication of this finding is discussed.  相似文献   

17.
Treatment of excessive hair growth is an important issue in both dermatological and cosmetic practice. In contrast to treatments with medication, most physical methods are treatments that focus on the hair follicle. To obtain insight in the failure behavior of the anchorage of hairs, hairs were extracted (in vitro) from pig skin at a speed of 0.1mm/s, one at a time. The pulling force and tweezers displacement were recorded. The extracted hairs were classified with respect to the phase in the growing cycle: anagen (growing phase), telogen (resting phase) or other (catagen phase or unable to determine). The anagen hairs showed a different relation between the tweezers displacement and the pulling force than the telogen hairs. Moreover, the maximum force that could be applied before a hair was extracted proved to be lower for anagen hairs than for telogen hairs (0.36N, 1.8N, respectively). The extracted hair length, defined as the part of the hair that had been embedded in the skin which was extracted, was higher for anagen hairs than for telogen hairs (4.8mm, 3.0mm, respectively). Removing proximal skin tissue and the embedded parts of the anagen hair (root) resulted in a change of the extraction curves. The results indicate that two phenomena play a role in the anchorage of anagen hairs. We have proposed a model for the extraction of an anagen hair that has been based on these results: first the interface between hair and skin that is located around the inner root sheath (IRS) starts to fail, followed by failing of the hair itself in the region where the hair keratinizes.  相似文献   

18.
Hair cortisol concentration (HCC) is used as an indicator of long-term stress or pathologies in humans and increasingly in animals. Although the main mechanism for the incorporation of cortisol into the hair shaft is by diffusion from blood, cortisol may also be incorporated from external sources by contamination of the hair surface. In farm animals under conventional husbandry conditions and trapped animals, contamination of hair with cortisol-containing body fluids, especially with urine, was shown to be a considerable confounding factor when studying HCCs. We recently found that cattle and pigs exhibit elevated HCCs in distal hair segments and assume that the incorporation of external cortisol is facilitated in these older hair segments. Therefore, the aim of this study was to investigate the effects of urine contamination on HCC in different hair segments of pigs and cattle, and to determine whether different cleaning protocols can prevent contamination effects. In an in vivo experiment in pigs (n = 18) and an in vitro experiment in cattle (n = 12), hairs were repeatedly contaminated with urine of the respective species and then shaved or cut in segments. Cortisol concentrations in hair segments were analysed by enzyme immunoassay after washing with isopropanol and extraction with methanol. Results were compared with HCCs in untreated hairs or hairs treated with water. Moreover, additional bovine hair samples contaminated with urine were subjected to two further cleaning procedures. Contamination with urine generally increased HCCs, and it was demonstrated for the first time that this effect is more pronounced in distal compared to proximal hair segments in both species. The immersion of bovine hair in vitro in water caused a washout of cortisol, which was also more pronounced in distal hair segments. In general, the different cleaning protocols for cattle hair did not prevent contamination effects, so we assume that external cortisol not only adheres but is incorporated into the hair shaft. Structural damage of older, distal hair segments may facilitate permeability of the hair matrix and diffusion of cortisol from and into aqueous solutions. Thus, the validity of HCC as a marker of stress is compromised in animals where soiling of hair with body fluids is a risk factor. Therefore, hair samples should be collected from clean body regions and, if possible, using proximal hair segments.  相似文献   

19.
Establishing structure-function relationships for eumelanin   总被引:3,自引:0,他引:3  
The aggregation-dependent optical properties of eumelanin from human hair are examined. When aggregation is increased, the absorption spectrum extends to lower energy. The absorption spectra of oligomers isolated from black human hair and Sepia officinalis are comparable and are in quantitative agreement with the reported action spectra for photoinduced oxygen consumption and free-radical generation by eumelanin. The agreement between the optical properties of human hair and squid eumelanins suggests the fundamental molecular constituents of the pigments are similar and aggregation-dependent photophysical behavior is a general feature of all eumelanins.  相似文献   

20.
We have studied the structural alteration of melanosomes in the melanocytes of agouti mice whose genetic characteristic is to produce eumelanin and phaeomelanin alternately in a single hair bulb. Melanocytes of hair bulbs from 1 to 2 day old mice of the black phase were observed to contain rod-shaped melanosomes of the eumelanin type (eumelanosome). In the melanocytes of the hair bulbs from 4 to 6-day old skin, which exclusively contain phaeomelanin, spherical melanosomes (phaeomelanosomes) were seen. On the other hand, the mice of the transitional phase from black to yellow possessed melanocytes that contained both eumelanosomes and phaeomelanosomes within a single cell. This result indicates that the shift from the eumelanin formation to the phaeomelanin formation or vice versa in agouti hair occurs within a single melanocyte.We observed multivesicular bodies in both the agouti melanocytes of the yellow phase and the genotypically yellow melanocytes. These bodies are considered to be the precursor of the phaeomelanin-containing melanosome. They are sometimes observed to have continuity with E. R. suggesting that the melanosomes are derived from E. R. in the phaeomelanin-forming melanocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号