首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the precultivation with different carbon sources on the ability of three different bacterial strains (Sphingomonas sp. strain BA2, Gordona sp. strain BP9, Mycobacterium sp. strain VF1) to grow on phenanthrene. anthracene, pyrene or fluoranthene as the sole source of carbon and energy were studied. The strains were found to maintain their ability to grow on two of the four PAH after 30 serial transfers in liquid nutrient broth medium without selective pressure. The ability to grow on these PAH as the sole carbon and energy source was also maintained after curing experiments with acridine orange. The high stability of the PAH-degradation phenotype suggests that the tested strains carry at least parts of the PAH-degradation pathway genes on the chromosome. The PAH-degradation versatility of the strains was also influenced by the carbon source being used for precultivation. Possible reasons for the particularly good impact of the precultivation on hexadecane on the PAH degradation are discussed in this paper.  相似文献   

2.
High-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs) are pollutants that persist in the environment due to their low solubility in water and their sequestration by soil and sediments. Although several PAH-degrading bacterial species have been isolated, it is not expected that a single isolate would exhibit the ability to degrade completely all PAHs. A consortium composed of different microorganisms can better achieve this. Two-liquid phase (TLP) culture systems have been developed to increase the bioavailability of poorly soluble substrates for uptake and biodegradation by microorganisms. By combining a silicone oil–water TLP system with a microbial consortium capable of degrading HMW PAHs, we previously developed a highly efficient PAH-degrading system. In this report, we characterized the bacterial diversity of the consortium with a combination of culture-dependent and culture-independent methods. Polymerase chain reaction (PCR) of part of the 16S ribosomal RNA gene (rDNA) sequences combined with denaturing gradient gel electrophoresis was used to monitor the bacterial population changes during PAH degradation of the consortium when pyrene, chrysene, and benzo[a]pyrene were provided together or separately in the TLP cultures. No substantial changes in bacterial profiles occurred during biodegradation of pyrene and chrysene in these cultures. However, the addition of the low-molecular-weight PAHs phenanthrene or naphthalene in the system favored one bacterial species related to Sphingobium yanoikuyae. Eleven bacterial strains were isolated from the consortium but, interestingly, only one—IAFILS9 affiliated to Novosphingobium pentaromativorans—was capable of growing on pyrene and chrysene as sole source of carbon. A 16S rDNA library was derived from the consortium to identify noncultured bacteria. Among 86 clones screened, 20 were affiliated to different bacterial species–genera. Only three strains were represented in the screened clones. Eighty-five percent of clones and strains were affiliated to Alphaproteobacteria and Betaproteobacteria; among them, several were affiliated to bacterial species known for their PAH degradation activities such as those belonging to the Sphingomonadaceae. Finally, three genes involved in the degradation of aromatic molecules were detected in the consortium and two in IAFILS9. This study provides information on the bacterial composition of a HWM PAH-degrading consortium and its dynamics in a TLP biosystem during PAH degradation.  相似文献   

3.
Aims: To characterize polycyclic aromatic hydrocarbon (PAH)‐degrading bacteria from sediments of the Bizerte lagoon, and to determine their ability to resist other pollutants such as antibiotics and heavy metals. Methods and Results: More than 100 strains were isolated for their ability to use fluoranthene as the sole carbon and energy source. Most of them showed antibiotic and heavy metal resistance; 20 representative strains were selected for further analysis. 16S rRNA coding sequences analysis showed that the majority of the selected bacteria (75%) were affiliated to the Gammaproteobacteria. The selected strains also utilized high molecular weight PAHs containing up to four benzene rings and showed different profiles of PAH substrate usage suggesting different PAH degradation pathways. These results are consistent with the fact that nah‐like genes and idoA‐like genes, involved in PAH degradation, were detected in 6 and 1 strains respectively. Conclusions: The Bizerte lagoon, polluted by many human activities, leads to the co‐selection of strains able to cope with multiple contaminants. Significance and Impact of the Study: Polluted areas are often characterized by the concomitant presence of organic pollutants, heavy metals and antibiotics. This study is one of the first showing bacterial strains adapted to multiple contaminants, a promising potential for the development of bioremediation processes.  相似文献   

4.
5.
To investigate the effects of physiological properties on polycyclic aromatic compound (PAH) degradation, the surface tension and emulsification activities, and cell surface hydrophobicity of five PAH-degrading yeast isolates were compared to Saccharomyces cerevisiae from cultures grown with glucose, hexadecane, or naphthalene as carbon sources. The cell surface hydrophobicity values for the five yeast strains were significantly higher than for S. cerevisiae for all culture conditions, although these were highest with hexadecane and naphthalene. Strains with higher hydrophobicity showed higher rates of naphthalene and phenanthrene degradation, indicating that increased cell hydrophobicity might be an important strategy in PAH degradation for the five strains. Emulsification activities increased for all five yeast strains with naphthalene culturing, although no relationship existed between emulsification activity and PAH degradation rate. Surface tensions were not markedly reduced with naphthalene culturing.  相似文献   

6.
Bacterial strains were enriched from building rubble contaminated with polycyclic aromatic hydrocarbons (PAHs). These strains were studied as an inoculum in bioremediation processes with contaminated building rubble. The selection criteria for the bacteria were broad profiles in PAH degradation, stable expression of the traits and tolerance to alkaline conditions. Various strains of Micrococcus sp., Dietzia sp., Rhodococcus sp. and Pseudomonas sp. met the selection criteria. In general, degradative activity was limited at higher pH values. Strains of Micrococcus were suitable for practical use as complete degradation of various PAHs was observed at pH values exceeding 10. Strains of Dietzia sp. showed broad PAH degradation profile, but in some cases degradation came to a halt leaving some of the PAHs unutilized. With Dietzia sp. this could be due to inhibitory effects from the accumulation of toxic PAH metabolic products and/or growth‐limiting media conditions.  相似文献   

7.
Abstract If predators select for or against contaminant-degrading bacteria, it will affect bacterial survival and has important implications for bioremediation. Protozoa are important predators of bacteria. In order to determine whether protozoa preyed differentially on bacteria with different degradation abilities, two ciliates (Euplotes sp. and Cyclidium sp.) and three strains of PAH-degrading bacteria (Vibrio spp., degrading naphthalene, anthracene, or phenanthrene) were isolated from sediment from New York/New Jersey Harbor. By manipulating growth conditions, bacterial strains with different PAH-degradation abilities and different cell properties were produced. Stepwise regression models were used to analyze how clearance rates on suspended bacteria and grazing rates on bacteria attached to particles were affected by bacterial size, hydrophobicity, C:N ratio, protein content, and PAH-degradation ability. Clearance rates ranged from 0 to 49 nl ciliate−1 h−1 for Euplotes sp. and from 0 to 1.7 nl ciliate−1 h−1 for Cyclidium sp. Clearance rates of both ciliates were positively correlated with bacterial size, hydrophobicity, and protein content, and negatively correlated with C:N ratio. PAH degradation ability had no (for Euplotes sp.) or small (for Cyclidium sp.) effects on clearance rates. The models accounted for 63–75% of the variation in clearance rates on different bacteria. Only Euplotes sp. grazed on attached bacteria, at rates from 3 to 176 bacteria ciliate−1 h−1. A regression model with only C:N ratio and protein content explained 45% of the variation in grazing rates. These models indicate that multiple properties of bacteria affect their susceptibility to predation by ciliates, but PAH-degradation ability per se has little effect. Received: 5 May 1998; Accepted: 14 September 1998  相似文献   

8.
Summary Bacterial mixed cultures able to degrade the polycyclic aromatic hydrocarbons (PAH) phenanthrene, fluorene and fluoranthene, were obtained from soil using conventional enrichment techniques. From these mixed cultures three pure strains were isolated:Pseudomonas paucimobilis degrading phenanthrene;P. vesicularis degrading fluorene andAlcaligenes denitrificans degrading fluoranthene. The maximum rates of PAH degradation ranged from 1.0 mg phenanthrene/ml per day to 0.3 mg fluoranthene/ml per day at doubling times of 12 h to 35 h for growth on PAH as sole carbon source. The protein yield during PAH degradation was about 0.25 mg/mg C for all strains. Maximum PAH oxidation rates and optimum specific bacterial growth were obtained near pH 7.0 and 30°C. After growth entered the stationary phase, no dead end-products of PAH degradation could be detected in the culture fluid.  相似文献   

9.
Abstract

Conventional completely mixed anaerobic treatment systems limit the chances of the different species of bacteria to spatially group together according to their mutual cooperation and as a result, show a lower efficiency and vulnerability towards shock situations. It is interesting to know about the stratification of the different bacterial species participating in the degradation process and the intermediates that they produce. In this study, we established and optimized a two-phase anaerobic packed bed biofilm reactor system (AnPBR) with porous PVA gel beads used as bio-carriers and ran the reactor system in a steady state to observe the VFAs produced along with the microbial diversity of the predominant species at different stages of the reactor system. We observed that acetate and butyrate were the predominant intermediate VFAs while concentrations of other VFAs such that propionic acid were low. Acetobacterium and Clostridium were found to be the most abundant bacterial species in acidogenic reactor while methanogenic reactor was highly enriched with Methanobacterium and Methanosarcina. Apart from the above, syntrophic populations such as Syntrophobactor wolinii were also observed to be dominant in both the reactors – especially towards the end of acidogenic reactor and the initial part of the methanogenic reactor.  相似文献   

10.
In our experiments the effect of different plants on microbial activities resulting in degradation and PCB removal from long-term contaminated soil was evaluated. Total bacteria and bacteria representing the dominating microflora within rhizosphere of individual plant species – tobacco (Nicotiana tabacum), black nightshade (Solanum nigrum), horseradish (Armoracia rusticana) and goat willow (Salix caprea) planted in PCB contaminated soil as well as from the same, but non-vegetated PCBs soil, were isolated and biochemically characterized. PCB bacterial degraders, stimulated by root exudates of individual plants, were detected after isolation from rhizosphere soil and precultivation on minimal medium with biphenyl as the sole carbon source. Detection of BphA1 gene (first gene of bacterial aerobic PCB degradative pathway) in genomes of rhizosphere microorganisms was performed by nested PCR technique using previously designed specific primers. Rhizosphere of individual plants contained different bacterial species, mostly gram-negative non-fermenting bacteria of Pseudomonas, Agrobacterium, Ochrobactrum and other species. Gene BphA1 was identified in genome of only several of them. From tested species, S. caprea and A. rusticana have shown to be promising candidates for rhizoremediation purposes.  相似文献   

11.
Inoculation of plants with pollutant-degrading and plant growth-promoting microorganisms is a simple strategy to enhance phytoremediation activity. The objective of this study was to determine the effect of inoculation of different bacterial strains, possessing alkane-degradation and 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase activity, on plant growth and phytoremediation activity. Carpet grass (Axonopus affinis) was planted in soil spiked with diesel (1% w/w) for 90 days and inoculated with different bacterial strains, Pseudomonas sp. ITRH25, Pantoea sp. BTRH79 and Burkholderia sp. PsJN, individually and in combination. Generally, bacterial application increased total numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere of carpet grass, plant biomass production, hydrocarbon degradation and reduced genotoxicity. Bacterial strains possessing different beneficial traits affect plant growth and phytoremediation activity in different ways. Maximum bacterial population, plant biomass production and hydrocarbon degradation were achieved when carpet grass was inoculated with a consortium of three strains. Enhanced plant biomass production and hydrocarbon degradation were associated with increased numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere of carpet grass. The present study revealed that the combined use of different bacterial strains, exhibiting different beneficial traits, is a highly effective strategy to improve plant growth and phytoremediation activity.  相似文献   

12.
The distributions of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. grown in soils contaminated with different levels of polycyclic aromatic hydrocarbons (PAHs) were investigated with polymerase chain reaction followed by denaturing gradient gel electrophoresis technology (PCR-DGGE) and cultivation methods. Twelve types of PAHs, at concentrations varying from 0.16 to 180 mg·kg−1, were observed in the roots and shoots of the two plants. The total PAH concentrations in Alopecurus aequalis Sobol obtained from three different PAH-contaminated stations were 184, 197, and 304 mg·kg−1, and the total PAH concentrations in Oxalis corniculata L. were 251, 346, and 600 mg·kg−1, respectively. The PCR-DGGE results showed that the endophytic bacterial communities in the roots and shoots of the two plants were quite different, although most bacteria belonged to Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. A total of 68 endophytic bacterial strains were isolated from different tissues of the two plants and classified into three phyla: Firmicutes, Proteobacteria and Bacteroidetes. In both plants, Bacillus spp. and Pseudomonas spp. were the dominant cultivable populations. With an increase in the PAH pollution level, the diversity and distribution of endophytic bacteria in the two plants changed correspondingly, and the number of cultivable endophytic bacterial strains decreased rapidly. Testing of the isolated endophytic bacteria for tolerance to each type of PAH showed that most isolates could grow well on Luria-Bertani media in the presence of different PAHs, and some isolates were able to grow rapidly on a mineral salt medium with a single PAH as the sole carbon and energy source, indicating that these strains may have the potential to degrade PAHs in plants. This research provides the first insight into the characteristics of endophytic bacterial populations under different PAH pollution levels and provides a species resource for the isolation of PAH-degrading endophytic bacteria.  相似文献   

13.
Pyrene is a regulated pollutant at sites contaminated with polycyclic aromatic hydrocarbons (PAH). It is mineralized by some bacteria but is also transformed to nonmineral products by a variety of other PAH-degrading bacteria. We examined the formation of such products by four bacterial strains and identified and further characterized the most apparently significant of these metabolites. Pseudomonas stutzeri strain P16 and Bacillus cereus strain P21 transformed pyrene primarily to cis-4,5-dihydro-4,5-dihydroxypyrene (PYRdHD), the first intermediate in the known pathway for aerobic bacterial mineralization of pyrene. Sphingomonas yanoikuyae strain R1 transformed pyrene to PYRdHD and pyrene-4,5-dione (PYRQ). Both strain R1 and Pseudomonas saccharophila strain P15 transform PYRdHD to PYRQ nearly stoichiometrically, suggesting that PYRQ is formed by oxidation of PYRdHD to 4,5-dihydroxypyrene and subsequent autoxidation of this metabolite. A pyrene-mineralizing organism, Mycobacterium strain PYR-1, also transforms PYRdHD to PYRQ at high initial concentrations of PYRdHD. However, strain PYR-1 is able to use both PYRdHD and PYRQ as growth substrates. PYRdHD strongly inhibited phenanthrene degradation by strains P15 and R1 but had only a minor effect on strains P16 and P21. At their aqueous saturation concentrations, both PYRdHD and PYRQ severely inhibited benzo[a]pyrene mineralization by strains P15 and R1. Collectively, these findings suggest that products derived from pyrene transformation have the potential to accumulate in PAH-contaminated systems and that such products can significantly influence the removal of other PAH. However, these products may be susceptible to subsequent degradation by organisms able to metabolize pyrene more extensively if such organisms are present in the system.  相似文献   

14.
Analysis of the bacterial population of soil surface samples from a creosote-contaminated site showed that up to 50% of the culturable micro-organisms detected were able to utilise a mixture of cresols. From fifty different microbial isolates fourteen that could utilise more than one cresol isomer were selected and identified by 16S rRNA analysis. Eight isolates were Rhodococcus strains and six were Pseudomonas strains. In general, the Rhodococcus strains exhibited a broader growth substrate range than the Pseudomonas strains. The distribution of various extradiol dioxygenase (edo) genes, previously associated with aromatic compound degradation in rhodococci, was determined for the Rhodococcus strains by PCR detection and Southern-blot hybridization. One strain, Rhodococcus sp. I1 exhibited the broadest growth substrate range and possessed five different edogenes. Gene disruption experiments indicated that two genes (edoC and edoD) were associated with isopropylbenzene and naphthalene catabolism respectively. The other Rhodococcus strains also possessed some of the edo genes and one (edoB) was present in all of the Rhodococcus strains analysed. None of the rhodococcal edo genes analysed were present in the Pseudomonas strains isolated from the site. It was concluded that individual strains of Rhodococcus possess a wide degradative ability and may be very important in the degradation of complex mixtures of substrates found in creosote.  相似文献   

15.
16.
Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in the environment is often limited due to unfavorable nutrient conditions for the bacteria that use these PAHs as sole source of carbon and energy. Mycobacterium and Sphingomonas are 2 PAH-degrading specialists commonly present in PAH-polluted soil, but not much is known about their specific nutrient requirements. By adding different inorganic supplements of nitrogen (N) and phosphorus (P), affecting the overall carbon/nitrogen/phosphorus ratio of soil in soil slurry degradation tests, we investigated the impact of soil inorganic N and P nutrient conditions on PAH degradation by PAH-degrading Sphingomonas and Mycobacterium strains. The general theoretically calculated C/N/P ratio of 100/10/1 (expressed in moles) allowed rapid PAH metabolization by Sphingomonas and Mycobacterium strains without limitation. In addition, PAH-degradation rate and extent was not affected when ca. ten times lower concentrations of N and P were provided, indicating that Sphingomonas and Mycobacterium strains are capable of metabolizing PAHs under low nutrient conditions. Nor does PAH-degradation seem to be affected by excesses of N and P creating an imbalanced C/N/P ratio. However, supplements of N and P salts increased the salinity of soil slurry solutions and seriously limited or even completely blocked biodegradation.  相似文献   

17.
Indigenous bacteria with the capability to degrade polycyclic aromatic hydrocarbons (PAH) were isolated from polluted sediment samples recovered from Caleta Cordova by using selective enrichment cultures supplemented with phenanthrene. Bacterial communities were evaluated by denaturing gradient gel electrophoresis (DGGE) in order to detect changes along enrichment culture and relationships with the representative strains subsequently isolated. Members of these communities included marine bacteria such as Lutibacter, Polaribacter, Arcobacter and Olleya, whose degradation pathway of PAH has not been studied yet. However, isolated bacteria obtained from this enrichment comprised the genus Pseudomonas, Marinobacter, Salinibacterium and Brevibacterium. The ability of isolates to grow and degrade naphthalene, phenanthrene and pyrene was demonstrated by detection of the residual substrate by HPLC. Archetypical naphthalene and catechol dioxygenase genes were found in two isolates belonging to genus Pseudomonas (Pseudomonas monteilii P26 and Pseudomonas xanthomarina N12), suggesting biodegradation potential in these sediments. The successful bacterial isolation with the ability to degrade PAH in pure culture suggest the possibility to study and further consider strategies like growth stimulation in situ, in order to increase the intrinsic bioremediation opportunities in the polluted Caleta Cordova harbor.  相似文献   

18.
Summary A co-culture, consisting of five defined bacteria [e.g., T. Thurnheer, T. Köhler, A. M. Cook, and T. Leisinger: J Gen Microbiol 132:1215–1220], was able to degrade at least seven substituted benzenesulfonic acids in continuous culture. HPLC, total organic carbon analyses and colourimetric analyses showed that the sulfonated compounds could be completely degraded to biomass, SO 4 2- , NH 4 + and CO2. The maximum observed degradation rate was 138 mg of C/h·1. The five organisms were Alcaligenes sp. strain 0–1 (substrates benzenesulfonic acid, 4-methylbenzenesulfonic acid and 2-aminobenzenesulfonic acid), two Pseudomonas spp., strains T-2 (substrates 4-methylbenzenesulfonic acid and 4-sulfobenzoic acid) and PSB-4 (substrate 4-sulfobenzoic acid) and two unidentified rods, strains M-1 (substrates benzenesulfonic acid, 4-methylbenzenesulfonic acid and 3-aminobenzenesulfonic acid) and S-1 (substrates 4-aminobenzenesulfonic acid and 4-hydroxybenzenesulfonic acid). The system was operated for over 18 months with five sulfonates, and no competition was detected amongst the four organisms present, because all organisms were still present (100% of the population after 7 months, 55% after 18 months). Many bacteria isolated from the continuous culture after 18 months showed substrate ranges different from those of the original strains. The most common occurrence (33% of the population) was the appearance of organisms which could degrade 2-aminobenzenesulfonic acid and 4-sulfobenzoic acid. Several cases of the loss of a character were seen but only rarely (1%) was a net gain of characters observed. After 30 months, only two (of five) parents were present (35% of the population) and some isolates could utilize all seven substrates on solid media.  相似文献   

19.
Degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of bacteria in soil was investigated by applying different inoculation protocols. The soil was inoculated with Sphingomonas paucimobilis BA 2 and strain BP 9, which are able to degrade anthracene and pyrene, respectively. CFU of soil bacteria and of the introduced bacteria were monitored in native and sterilized soil at different pHs. Introduction with mineral medium inhibited PAH degradation by the autochthonous microflora and by the strains tested. After introduction with water (without increase of the pore water salinity), no inhibition of the autochthonous microflora was observed and both strains exhibited PAH degradation.  相似文献   

20.
To determine whether the diversity of phenanthrene‐degrading bacteria in an aged polycyclic aromatic hydrocarbon (PAH) contaminated soil is affected by the addition of plant root exudates, DNA stable isotope probing (SIP) was used. Microcosms of soil with and without addition of ryegrass exudates and with 13C‐labelled phenanthrene (PHE) were monitored over 12 days. PHE degradation was slightly delayed in the presence of added exudate after 4 days of incubation. After 12 days, 68% of added PHE disappeared both with and without exudate. Carbon balance using isotopic analyses indicated that a part of the 13C‐PHE was not totally mineralized as 13CO2 but unidentified 13C‐compounds (i.e. 13C‐PHE or 13C‐labelled metabolites) were trapped into the soil matrix. Temporal thermal gradient gel electrophoresis (TTGE) analyses of 16S rRNA genes were performed on recovered 13C‐enriched DNA fractions. 16S rRNA gene banding showed the impact of root exudates on diversity of PHE‐degrading bacteria. With PHE as a fresh sole carbon source, Pseudoxanthomonas sp. and Microbacterium sp. were the major PHE degraders, while in the presence of exudates, Pseudomonas sp. and Arthrobacter sp. were favoured. These two different PHE‐degrading bacterial populations were also distinguished through detection of PAH‐ring hydroxylating dioxygenase (PAH‐RHDα) genes by real‐time PCR. Root exudates favoured the development of a higher diversity of bacteria and increased the abundance of bacteria containing known PAH‐RHDα genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号