首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper documents changes in the floristic composition of Eucalyptus marginata Donn (jarrah) woodlands over 7 years of recovery from continual, intensive livestock grazing. In remnants of native woodland left after agricultural clearing, which have been subjected to livestock grazing, comparisons were made between the floristics of fenced exclosure plots and open plots that continued to be grazed. The vegetation in nearby remnants, which had not been subjected to livestock grazing, was also surveyed. An initial increase in annual exotic pasture species after grazing relief was only temporary and highly influenced by fluctuations in annual climatic patterns, particularly rainfall distribution and abundance. Subsequent years saw a decrease in exotic annuals in exclosure plots and an increase in native perennials, in a trend towards becoming more floristically similar to the ungrazed sites. Germination of overstorey species was observed in the exclosure plots, however, development of seedlings and saplings was sparse. Results indicate that for jarrah woodland in southwestern Australia, natural regeneration is possible after the removal of livestock, with the return (within 6 years) of native species richness to levels similar to those found in ungrazed vegetation. Re‐establishment of cover, however, appears to take longer. The floristic dynamics are described in terms of a nonequilibrium model. Two vegetation states exist, degraded remnants with an understorey dominated by annual species, and ungrazed vegetation with an understorey dominated by perennial shrubs and herbs. The former state is maintained by continual heavy grazing by livestock. Upon relief from grazing, the vegetation undergoes a transition towards floristic similarity to ungrazed vegetation. After 6 years, vegetation change in the exclosure plots appears to be continuing and therefore it is still in transition.  相似文献   

2.
《新西兰生态学杂志》2011,24(2):123-137
Changes in the vegetation of Flat Top Hill, a highly modified conservation area in semi;arid Central Otago, New Zealand, are described four years after the cessation of sheep and rabbit grazing. Unusually moist weather conditions coincide with the four-year period of change in response to the cessation of grazing. Between 1993 and 1997, the average richness and diversity (H') of species increased, and the average proportion of native species decreased significantly. The vegetation was significantly richer in exotic annual and perennial grass species, exotic perennial forbs, exotic woody species and native tussock grasses in 1997 than in 1993. Eight response guilds of species are identified. Most "remnant" native shrubs and forbs were stable, in that they remained restricted to local refugia and showed little change in local frequency. However, taller native grass species increased, some locally, and others over wide environmental ranges. Rare native annual forbs and several native perennial species from "induced" xeric communities decreased, and this may be a consequence of competition from exotic perennial grasses in the absence of grazing. The invasive exotic herb Sedum acre decreased in abundance between 1993 and 1997, but several other prominent exotic species increased substantially in range and local frequency over a wide range of sites. Exotic woody species, and dense, sward-forming grasses are identified as potential threats to native vegetation recovery.  相似文献   

3.
This paper reports on changes induced by the introduction of cattle in a grassland that had remained ungrazed for 9 yr, in comparison with two adjacent grasslands: one that remained enclosed and one that has been continuously subject to grazing. Basal cover was measured on 25 interception lines, each 1 m long, three times during one year. The variables studied were: total cover, cover of grasses and dicots, cover of creeping grasses, floristic composition, and dissimilarity among sites. At the first sampling, 2 yr after cattle re-introduction, the newly grazed site was more similar to the ungrazed than to the grazed site. The newly grazed site had very low cover of dicots; the species of dicots present were different from those found in the continuously grazed area. Creeping grasses had higher cover in the newly grazed site than in the other sites, and continued to increase. At the last sampling, one year later, the newly grazed site had become more similar to the contiuously grazed site. Only after 5 yr of cattle grazing the exotic dicots that were dominant in the continuously grazed site, were recorded in the re-opened site. The absence of propagules of these species or the absence of safe sites may account for this delayed invasion.  相似文献   

4.
Abstract. A regional vegetation survey of the temperate grassy woodlands (temperate savanna) in Australia was designed to assess the effects of clearing and grazing on the composition of vegetation remnants and the adjacent pasture matrix. Vegetation was sampled across a range of habitats using 77 0.1024‐ha quadrats; the relative abundance of species was recorded. Classification analysis clustered the sites into three main groups that corresponded to intensity of grazing/clearing followed by groups based on underlying lithology (basalt, metasediment, granites). Using Canonical Correspondence Analysis, exogenous disturbance and environmental variables were related to the relative abundance of species; grazing intensity had the highest eigenvalue (0.27) followed by tree canopy cover (0.25), lithology (0.18), altitude (0.17) and slope (0.10). Based on two‐dimensional ordination scores, six species response groups were defined relating to intensity of pastoralism and nutrient status of the landscape. Abundance and dominance of native shrubs, sub‐shrubs, twiners and geophytes were strongly associated with areas of less‐intense pastoralism on low‐nutrient soils. The strongest effects on species richness were grazing followed by canopy cover. Continuously grazed sites had lower native species richness across all growth forms except native grasses. There was no indication that intermediate grazing intensities enhanced forb richness as a result of competitive release. Species richness for all native plants was lowest where trees were absent especially under grazed conditions. Canopy cover in ungrazed sites appeared to promote the co‐existence of shrubs with the herbaceous layer. Predicted declines in forb richness in treeless, ungrazed, sites were not detected. The lack of a disturbance‐mediated enhancement of the herbaceous layer was attributed to habitat heterogeneity at 0.1 ha sampling scale.  相似文献   

5.
Long-Term Effects of Reclamation Treatments on Plant Succession in Iceland   总被引:3,自引:0,他引:3  
The long‐term effects (20–45 years) of reclamation treatments on plant succession are examined at two localities in Iceland that were fertilized and seeded from 1954 to 1979 with perennial grasses or annual grasses, or left untreated. The areas that underwent reclamation treatments had significantly higher total plant cover (7–100%) than the untreated control plots (<5%), and floristic composition was usually significantly different between treated and untreated plots. Dwarf‐shrubs (Calluna vulgaris and Empetrum nigrum), bryophytes, biological soil crust, grasses, and shrubs characterized the vegetation in the treated plots, but low‐growing herbs that have negligible effects on the environment, such as Cardaminopsis petraea and Minuartia rubella, and grasses characterized the control plots. The seeded grass species had declined (<10%, the perennials) or disappeared (the annuals) but acted as nurse species that facilitated the colonization of native plants. It seems that by seeding, some factors that limit plant colonization were overcome. Soil nutrients, vegetation cover, litter, and biological soil crust were greater in the treated areas than the control plots. This may have enhanced colonization through an increase in soil stability and fertility, increased availability of safe microsites, increased moisture, and the capture of wind‐blown seeds. This study demonstrates the importance of looking at the long‐term effects of reclamation treatments to understand their impact on vegetation succession.  相似文献   

6.
Abstract The effects of an unusual high frequency mowing regime, which involved the removal of slash, were compared to moderate grazing through the method of paired quadrats across a fenceline, which was orthogonal to a weak environmental gradient. The mown plots proved superior in their conservation characteristics to the moderately grazed plots. The mowing regime produced greater cover of rare or threatened species, greater native cover and lesser exotic grass cover. It thus presents an opportunity for maintaining or improving the condition of previously grazed remnants in reserves without resorting to the use of stock or fire for biomass reduction.  相似文献   

7.
Question: What are the effects of fire in native shrubland communities and in pine plantations established in these shrublands? Location: Northern Patagonia, Argentina. Methods: We surveyed four sites in Chall‐Huaco valley, located in northwest Patagonia. Each site was a vegetation mosaic composed of an unburned Pinus ponderosa plantation, a plantation burned in 1996, and an unburned matorral and a matorral burned by the same fire. We recorded the cover of all vascular plant species. We also analysed species richness, total cover, proportion of exotic species, abundance of woody species and herb species, cover of exotic species, abundance of woody and herb species and differences in composition of species. For both shrubs and tree species we recorded the main strategy of regeneration (by resprouting or by seed). Results: We found that fire had different effects on native matorral and pine plantations. Five years after fire, plantations came to be dominated by herbs and exotic species, showing differences in floristic composition. In contrast, matorral communities remained very similar to unburned matorral in terms of species richness, proportion of woody species, and herb species and proportion of exotics. Also, pine plantations were primarily colonized by seedlings, while matorrals were primarily colonized by resprouting. Conclusions: Matorrals are highly fire resilient communities, and the practice of establishing plantations on matorrals produces a strong reduction in the capacity of matorral to return to its original state. The elimination of shrubs owing to the effect of plantations can hinder regeneration of native ecosystems. Burned plantations may slowly develop into ecosystems similar to the native ones, or they may produce a new ecosystem dominated by exotic herbs. This study shows that plantations of exotic conifers affect native vegetation even after they have been removed, as in this case by fire.  相似文献   

8.
Question: Can managing disturbance regimes alone or in combination with seeding native species serve to shift the balance from exotic towards native species? Location: Central coast of California, USA. Methods: We measured vegetation composition for 10 yr in a manipulative experiment replicated at three sites. Treatments included no disturbance, grazing and clipping at three frequencies with and without litter removal. We seeded eight native species into clipped plots and compared cover in comparable plots with no seeding. Results: Regardless of frequency, clipping generally shifted community dominance from exotic annual grasses to exotic annual forbs, rather than consistently favoring native species. At one site, perennial grass cover decreased in no‐disturbance plots, but only after 4 yr. Litter removal had minimal impact on litter depth and plant community composition. Grazing had a highly variable effect on the abundance of different plant guilds across sites and years. Seeding increased abundance of only two of eight native species. Conclusions: Managing disturbance regimes alone is insufficient to restore native species guilds in highly‐invaded grasslands and seeding native species has highly variable success.  相似文献   

9.
Effect of grazing on plant patterns in arid ecosystems of Patagonian Monte   总被引:2,自引:0,他引:2  
Our objective was to assess the relationship between the spatial patterning of perennial grasses (total, grazed, and non‐grazed) and shrub patches in rangelands under different grazing pressures of the Patagonian Monte. We selected three grazed paddocks with the usual stocking rate for the area, where previous studies showed that a piosphere formation is common. At each paddock, we analysed the grain of heterogeneity at sites located at two distances from the single watering point (near, far), using high‐resolution aerial photographs. At these sites, we also assessed in the field the density, size, cover, and spatial patterning of grazed and non‐grazed perennial grasses and shrub patches. The grain of heterogeneity of shrub patches was coarser in sites near the watering point than in those distant from it, as a consequence of the increase in size of both, bare soil and shrub patches. Field sampling showed that a coarse grain of heterogeneity relative to fine‐grained sites resulted from changes in species composition, increased bare soil areas and reduced perennial grass cover. In coarse‐grained sites, lower perennial grass cover resulted from lower density and/or smaller size of grass bunches than in fine‐grained sites. We did not find significant differences among sites in the proportion of perennial grazed grasses. Since the density and cover of perennial grasses was higher in fine‐ than in coarse‐grained sites, we suggested that fine‐grained sites are more important as feeding stations than coarse‐grained sites. The consequences of this differential use could lead to degradation of fine‐grained sites and to higher homogeneity in spatial plant structure and floristic composition within paddocks with respect to the condition observed at present, increasing the size of the highly degraded zone within the piosphere. At the patch level, we found that at about one third of the sampled transects, both total and non‐grazed perennial grasses were spatially aggregated with shrub patches. However, in most transects grazed perennial grasses were indifferently distributed in relation with shrub patches, showing that grazers display high selectivity of foraging sites at macro level (i.e. high and low grazing pressure sites at the paddock level), but random occupancy of vegetation units (randomness in the distribution of grazed perennial grasses at the patch level). The intensity of the positive association between non‐grazed grasses and shrub patches was higher in fine‐grained than in coarse‐grained sites and may be attributed to higher protection against herbivores associated to denser shrub patches in fine‐ relative to coarse‐grained sites. We concluded that a feedback exists between the spatial distribution of species preferred by grazers and the spatial patterning of use of these species.  相似文献   

10.
Summary Fencing remnant native vegetation has become a widespread activity for arresting declines in biodiversity in agricultural landscapes. However, few data are available on the effectiveness of this approach. The present study investigated the short-term effects of fencing to exclude livestock on dominant tree and shrub recruitment, plant species cover, litter and soil characteristics in remnant grassy woodlands in southern NSW. Vegetation and soil surveys were undertaken at 47 sites fenced by Greening Australia (NSW) for 2–4 years. Fenced and unfenced areas at each site were compared using split-plot sampling. Woodlands sampled were dominated by Yellow Box/Blakely's Red Gum ( Eucalyptus melliodora/Eucalyptus blakelyi ), Grey Box ( Eucalyptus microcarpa ) or White Cypress-pine ( Callitris glaucophylla ). Significantly higher numbers of tree recruits were found in the fenced sites, with tree recruitment found in 59% of fenced sites compared with 13% of unfenced sites. Fenced sites also had significantly greater cover of native perennial grasses, less cover of exotic annual species and less soil surface compaction. However, outcomes varied among woodland ecosystems and individual sites. Where tree recruitment occurred, there was significantly more tree recruitment where there was greater perennial grass cover and less regeneration where exotic annual grass cover or overstorey crown cover was dense. Few shrubs recruited in fenced or unfenced areas, reflecting the lack of mature shrubs in most sites. Fencing is an important first step for conserving threatened grassy woodlands, but more active management may be needed to enhance woodland recovery, particularly in sites where few or no recruits were found.
Key words bush regeneration, fencing, grazing exclusion, rehabilitation, woodland restoration.  相似文献   

11.
Cumberland Plain grassy woodland in western Sydney has been reduced to less than 12% of its pre‐settlement distribution; efforts to restore it on cleared and grazed sites within its former distribution have met with mixed success. Elevated soil nitrate levels, coupled with propagule and establishment limitation, have been identified as barriers to restoration in other grasslands. Our study used a factorial combination of carbon addition, fire and native seed addition to test whether these barriers operated on a former Cumberland plain woodland site dominated by exotic perennial grasses. Replicate field plots were established in November 2004; fire plots were burnt in December 2004; carbon was then added as sugar every 3 months until September 2005; and seeds of five native grasses were added in January 2005. Carbon addition significantly reduced soil nitrate, the effect appearing in October 2005. Carbon addition and fire each reduced the total abundance of exotics; when combined, they halved the abundance of the two dominant exotic grasses. Total abundance of native species responded positively to carbon and seed addition, but significant responses to carbon were not detected for individual species. Abundance of two native grasses responded positively to fire; after treatment the native proportion of total abundance rose from 26% on controls to 44–65% on carbon and/or fire plots. Exotic species richness was decreased independently by carbon addition and fire. Native species richness was increased independently by fire and seed addition. All five native grasses established sporadically, but only on carbon and/or fire plots. The three treatments each significantly and independently affected species composition, which showed the greatest change when all three were applied. The three treatments collectively increased the proportion of natives in measures of both plant abundance and species richness. The study confirmed that elevated soil nitrate, plus propagule and recruitment limitation are barriers to restoring this grassy woodland on cleared and grazed sites.  相似文献   

12.
Summary Fencing incentive programmes have been widely used throughout Australia to assist landholders to fence remnant woodland vegetation, to control grazing and improve native vegetation condition. This study investigated vegetation and soil condition in remnant woodlands fenced for 7–9 years in the Murray catchment area in southern New South Wales. Surveys were undertaken at 42 sites, where vegetation condition was assessed in paired fenced and unfenced sites. Semi‐structured interviews were also conducted with landholders to gather management information. Woodlands surveyed were Yellow Box/Blakely's Red Gum (Eucalyptus melliodora/E. blakelyi, 15 sites), Grey Box (E. microcarpa, 13 sites) and White Cypress Pine (Callitris glaucophylla, 14 sites). Fencing resulted in a range of responses which were highly variable between sites and vegetation types. In general, fenced sites had greater tree regeneration, cover of native perennial grasses, less cover of exotic annual grasses and weeds, and less soil compaction than unfenced sites. However, there was greater tree recruitment in remnants to the west of the study area, and tree recruitment was positively correlated with time since fencing. Within sites, tree recruitment tended to occur in more open areas with a good cover of native perennial grasses, as compared to sites with a dense tree canopy, or dominated by exotic annuals grasses or weeds. Forty‐eight per cent of fenced sites had no tree regeneration. There was a significant decline in native perennial grasses, and increase of several unpalatable weeds in many fenced areas, suggesting certain ecological barriers may be preventing further recovery. However, drought conditions and associated grazing are the most likely cause of this trend. A range of grazing strategies was implemented in fenced sites which require further research as a conservation management tool. Continued long‐term monitoring is essential to detect key threats to endangered woodland remnants.  相似文献   

13.
Invasive plants have often been shown to possess novel traits such as the ability to fix nitrogen, access unused resource pools, or the ability to exude allelopathic chemicals. We describe a case of a successful invasion where the native and non-native species are very similar in most life-history characteristics including their growth forms, lifespan, and degree of summertime activity. Data from permanent transects suggest that exotic perennial grass invaders can establish into intact native-dominated grasslands, achieving cover values from 6 to 71% over several years. We also established a 4-year competition experiment to test the effect of each group—the native and non-native perennial grasses—on the other. Competitive interactions were found to consistently favor the non-native grasses: native perennial grass productivity was significantly lower in plots with exotic perennial grasses as compared to plots without exotic perennial grasses. By contrast, productivity of the exotic perennial grasses was not reduced by the presence of the native perennial grasses. These results suggest that competitive ability, rather than a unique trait, has contributed to the success of the exotic perennial grasses in our system. Management tools to control exotic perennial grass invasions are likely to negatively influence native perennial grass populations, as strategies that succeed against the invasive species may kill or reduce the native species as well.  相似文献   

14.
Worldwide, savanna remnants are losing acreage due to species replacement with shade-tolerant midstory forest species as a response to decades of fire suppression. Because canopy closes grasses and other easily ignitable fuels decline, therefore, fire, when reintroduced after years of absence, is not always effective at restoring the open structure original to these communities. Our study sought to determine if managed grazing is an alternative tool for reducing shrub densities and restoring savanna structure without the impacts on soils and native vegetation observed with unmanaged grazing. We compared effects of fire and managed grazing on shrub and herb composition within degraded oak savanna and tallgrass prairie of the U.S. Upper Midwest using a randomized complete block design. The vegetation response to treatments differed by species and by vegetation type. Total shrub stem densities declined 44% in grazed and 68% in burned paddocks within savanna and by 33% for both treatments within prairie. Within savanna, cattle reduced stem densities of Rubus spp. 97%, whereas fire reduced Ribes missouriense stems 96%. Both fire and grazing were effective at reducing stem numbers for several other shrub species but not to the same degree. Native forbs were suppressed in grazed savanna paddocks, as were native grasses in grazed prairie paddocks along with a minor increase of exotic forbs. We did not observe changes in soil bulk density. We conclude that managed grazing can serve as a valuable supplement but not as a replacement to fire for controlling shrubs in these systems.  相似文献   

15.
Abstract. Sheep grazing was investigated as an alternative to traditional management of meadows in the Krkono?e Mts. Until the second World War these meadows were mown in mid‐summer and grazed by cattle for the rest of the season. Subsequent abandonment of the meadows has resulted in decreasing species richness. Degradation phases of the former communities have been replacing the original species‐rich vegetation. Significant changes were apparent six years after the introduction of sheep grazing. In grazed plots the proportion of dominant herbs (Polygonum bistorta and Hypericum maculatum) decreased and grasses (Deschampsia cespitosa, Festuca rubra, Agrostis capillaris, Anthoxanthum alpinum) increased. The increase in grasses was positively correlated with an increase in several herbs. The proportion of some herbs increased despite being selectively grazed (Adenostyles alliariae, Melandrium rubrum, Veratrum lobelianum). Any losses caused by grazing of mature plants were probably compensated by successful seedling establishment. Cessation of grazing resulted in significant changes in vegetation within three years. The cover of nitrophilous tall herbs and grasses (e.g. Rumex alpestris, Holcus mollis, Deschampsia cespitosa, Geranium sylvaticum) increased in the abandoned plots. In the plots grazed for nine years cover of species‐rich mountain meadow species increased (e.g. fine‐leaved grasses, Campanula bohemica, Potentilla aurea, Viola lutea, Silene vulgaris). The main conservation risk is the expansion of a competitive species with low palatability, Deschampsia cespitosa. This species can be suppressed by a combination of grazing and mowing. In order for grazing to be effective, the number of sheep should be proportional to meadow production. This may be difficult to maintain as production is variable and is impossible to predict at the beginning of a growing season. A large part of the biomass may thus remain intact in some years. Negative effects of grazing may be, at least partly, eliminated by a combination of cutting and grazing.  相似文献   

16.
Question: How is grazing intensity associated with species and morpho‐functional traits (MFTs) composition, productivity and richness of annual dominated grasslands? Have native and exotic species similar associations to this gradient? Location: Anthropogenic grassland in the Espinal vegetation in the sub‐humid area of the mediterranean type climate region of Chile (35°58’ S, 72°17’ W). Methods: Data were obtained from a long‐term (eight years) experiment with six stocking rates (1 to 3.5 sheep/ha). Detrended Correspondence Analysis (DCA) and regression analysis were used to determinate the relationship between grazing intensity and biomass, richness, abundance and traits of the species. Results: The first DCA axis was related to grazing intensity and explained most of the floristic variation (69.3%); the abundance of some non‐native species, e.g. Vulpia megalura were highly correlated with this axis. In the DCA for MFTs the first axis explained 87% of the variance and was also related to grazing intensity; the abundance of small size plants and shallow roots increased with grazing intensity. The relative abundance of grasses and composites, but not of legumes, changed with stocking rate: as grazing intensity increased composites became the predominant species to the detriment of grasses. The above‐ground biomass measured in exclusion cages declined with increasing grazing pressure. The richness of exotic species was greater compared to native ones at low stocking rates, but they converge to similar values at higher stocking rates. However, the relative abundance of exotic species was greater than 75% in all stocking rates. Conclusions: Grazing intensification has large effects in the structure of grassland in central Chile. With grazing intensities greater than 1 sheep/ha species characteristics change; evolving in a few years (6–8) towards a similar community regardless of the stocking rate. The overgrazed community has more native than exotic species richness, possibly due to greater defence traits against herbivory of this group of species.  相似文献   

17.
Isbell FI  Wilsey BJ 《Oecologia》2011,165(3):771-781
Species-rich native grasslands are frequently converted to species-poor exotic grasslands or pastures; however, the consequences of these changes for ecosystem functioning remain unclear. Cattle grazing (ungrazed or intensely grazed once), plant species origin (native or exotic), and species richness (4-species mixture or monoculture) treatments were fully crossed and randomly assigned to plots of grassland plants. We tested whether (1) native and exotic plots exhibited different responses to grazing for six ecosystem functions (i.e., aboveground productivity, light interception, fine root biomass, tracer nitrogen uptake, biomass consumption, and aboveground biomass recovery), and (2) biodiversity-ecosystem functioning relationships depended on grazing or species origin. We found that native and exotic species exhibited different responses to grazing for three of the ecosystem functions we considered. Intense grazing decreased fine root biomass by 53% in exotic plots, but had no effect on fine root biomass in native plots. The proportion of standing biomass consumed by cattle was 16% less in exotic than in native grazed plots. Aboveground biomass recovery was 30% less in native than in exotic plots. Intense grazing decreased aboveground productivity by 25%, light interception by 14%, and tracer nitrogen uptake by 54%, and these effects were similar in native and exotic plots. Increasing species richness from one to four species increased aboveground productivity by 42%, and light interception by 44%, in both ungrazed and intensely grazed native plots. In contrast, increasing species richness did not influence biomass production or resource uptake in ungrazed or intensely grazed exotic plots. These results suggest that converting native grasslands to exotic grasslands or pastures changes ecosystem structure and processes, and the relationship between biodiversity and ecosystem functioning.  相似文献   

18.
Kotiluoto  Riitta 《Plant Ecology》1998,136(1):53-67
In the Turku Archipelago of SW Finland the traditional animal husbandry dramatically decreased in 1950s after which the unused semi-natural pastures and meadows began to develop into less species rich shrub and tree communities. Restoration of some semi-natural meadows and pastures started in the late 1970s. Removing trees and shrubs, grazing, mowing, and pollarding deciduous trees were used as restoration of practises. Vegetation changes were followed from forty-one permanent sample plots established on restored areas. In this paper the data before restoration and 7–8 years after the first monitoring was analysed with parametric tests. The sample plots were divided into three restoration groups where the main restoration practises were: group 1. grazing, group 2. thinning (clearing plots from shrubs and removing some trees), group 3. thinning, mowing, and grazing (old wooded meadows). The results showed that: (1) The vegetation changed during analysed time. The number of species increased in all restored areas even though the changes were more pronounced in grazed areas and wooded meadows than in thinned areas. During restoration many common herb and grass species immigrated into the sample plots, but very few new indicator species of meadows were recorded. Most of the new species were found in few numbers in a sample plot which led to the significant increase in the number of sparse species (percentage cover < 1) in all restoration groups. The grasses benefited more from the restoration than herbs increasing their percentage cover significantly in grazed areas and in wooded meadows. In thinned areas the total percentage cover of the ten most dominant herb and grass species increased significantly. (2) The different restoration groups changed vegetation quite similarly. In grazed areas and in wooded meadows significant changes were slightly more numerous than in thinned areas. (3) The differences between the islands in vegetation changes were not pronounced. The added variance components among islands increased during restoration which probably indicated that the restoration practises as well as the species pool of the islands influenced the success of restoration.  相似文献   

19.
The effects of stock grazing on native grassy ecosystems in temperate southern Australia are well documented. However, less is known about the potential of ecosystems to recover after a long history of stock grazing and, in particular, whether the removal of stock will have positive, negative or neutral impacts on biodiversity. We examined the response of understorey vegetation to the removal of sheep grazing in a herb‐rich Eucalyptus camaldulensis (red gum) woodland in western Victoria. Using a space‐for‐time chronosequence, woodlands were stratified into groups based on their time‐since‐grazing removal; these were long‐ungrazed (>20 years), intermediate‐time‐since‐grazing (9–14 years), recently ungrazed (5 years) and continuously grazed. We found significantly higher species density in long‐ungrazed sites relative to sites with a more recent grazing history. No differences were found in species density between continuously grazed sites and those ungrazed in the previous 14 years. Species composition differed with time‐since‐grazing removal and indicator species analysis detected several native species (including tall native geophytes and herbs) associated with long‐ungrazed sites that were absent or in low abundance in the more recently grazed sites. Seven of the eight species significantly associated with continuously grazed sites were exotic. Removal of sheep grazing in red gum woodlands can have positive benefits for understorey diversity but it is likely that recovery of key indicators such as native species will be slow.  相似文献   

20.
Species composition, number of emerging seedlings, species diversity and functional group of the soil seed banks, and the influence of grazing on the similarity between the soil seed banks and aboveground vegetation, were studied in 2008 and 2009 in a semi‐arid savanna of Ethiopia. We tested whether the availability of persistent seeds in the soil could drive the transition from a degraded system under heavy grazing to healthy vegetation with ample perennial grasses. A total of 77 species emerged from the soil seed bank samples: 21 annual grasses, 12 perennial grasses, 4 herbaceous legumes, 39 forbs, and 1 woody species. Perennial grass species dominated the lightly grazed sites, whereas the heavily grazed sites were dominated by annual forbs. Heavy grazing reduced the number of seeds that can germinate in the seed bank. Species richness in the seed bank was, however, not affected by grazing. With increasing soil depth, the seed density and its species richness declined. There was a higher similarity in species composition between the soil seed bank and aboveground vegetation at the lightly grazed sites compared with the heavily grazed sites. The mean similarity between the seed banks and aboveground vegetation was relatively low, indicating the effect of heavy grazing. Moreover, seeds of perennial grasses were less abundant in the soil seed banks under heavy grazing. We concluded that restoration of grass and woody species from the soil seed banks in the heavily grazed areas could not be successful in semi‐arid savannas of Ethiopia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号