首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Milk thistle (Silybum marianum) is a medicinal plant; however, lack of consistency in past dormancy studies has hindered propagation of this species from seeds. We tested the germination responses of freshly harvested and after-ripened (stored for 2 and 7 months; 25°C at 50% relative humidity) seeds from three populations (P1, P2 and P3) in Iran at varying constant or alternating temperatures, with or without GA3 and in light and continuous darkness. No germination occurred in freshly harvested seeds incubated at any condition without GA3 application, indicating that all the seeds were dormant. Seeds from P1 and P2, which developed under relatively dry, warm conditions, germinated over a wider range of temperatures after 2 months of dry storage, indicating type 6 of non-deep physiological dormancy (PD). Seeds from P3, which developed under relatively wet, cool conditions, incubated at constant temperatures (especially on GA3), exhibited an increase in maximum temperature for germination, indicating type 1 of non-deep PD. Light improved germination of after-ripened seeds, and GA3 application substituted for the light requirement for germination. This is the first report that environmental conditions during seed development may be correlated with differences in the type of non-deep PD. We conclude that milk thistle seeds are positively photoblastic and photodormant and the germination responses of after-ripened seeds from different populations are different under darkness. Therefore, the impacts of genetic differences and maternal effects on the induction of dormancy during seed development should be considered in attempts to domesticate this medicinal plant.  相似文献   

2.
Seed dormancy and germination characteristics are important factors determining plant reproductive success. In this study, we aimed to explore the characteristics of seed dormancy and germination of two endemic Labiatae species (Lamiophlomis rotata and Marmoritis complanatum) in the Himalaya–Hengduan Mountains. Germination was first tested in the light using freshly matured seeds at 25/15 and 15/5°C, and then again after dry after-ripening. Dried seeds were incubated in the light at a range of constant temperatures (1–35°C). The effects of dark and GA3 on germination were tested at several different temperatures. Base temperature (Tb) and thermal times for 50% final germination (θ50) were calculated. Seeds were also buried at the collection site to test seed persistence in the soil. Increased final germination after dry after-ripening indicated that the seeds of the two species exhibited non-deep physiological dormancy; however, they exhibited different germination characteristics and soil seed bank types. In L. rotata, GA3 only promoted germination at 5°C, producing no significant effect at other temperatures. Dark conditions decreased germination significantly at all temperatures. Tb and θ50 values were 0.6 and 82.7°C d. The soil seed bank of this species was classified as persistent. In M. complanatum, GA3 significantly promoted germination at all temperatures except 15°C. Dark conditions depressed germination significantly at warmer temperatures (20 and 25°C) but had no effect at lower temperatures. Tb and θ50 values were 0.1 and 92.3°C d. The soil seed bank was classified as transient. Our results suggest that the seed dormancy and germination of the two co-existing species share some commonalities but there are also species-specific adaptations to the harsh alpine environment.  相似文献   

3.
Abstract

Light and growth-promoting compounds, such as gibberellic acids (GA3), are among the most important factors that can break physiological seed dormancy. Here, we investigate the effects of GA3 and light on germination of five species of Resedaceae that are known to have different levels of physiological dormancy. Seeds were incubated at 20/30?°C in both 12-hr photoperiod and complete darkness. To study the effect of growth hormone on germination, seeds were soaked for 24?h in different concentrations of GA3 before sowing. The annuals (Reseda aucheri and Oligomeris linifolia) and the perennial Ochradenus arabicus had deep physiological dormancy, and exogenous application of GA3 enhanced their germination in the light, but not in darkness; few or no seeds germinated in the dark in these species. Ochradenus aucheri and O. baccatus had intermediate and non-deep dormancy, respectively, and application of GA3 enhanced their germination in both light and darkness. Germination of the annual species was much slower than that of the shrubby perennials. Overall, these results indicate that conditions under which seed developed, matured and stored on maternal plants as well as incubation conditions should be taken into consideration when assessing germination behavior of the perennial species of Resedaceae.  相似文献   

4.
The aim of the experiments was to study the effects of gibberellic acid (GAs) on the germination of Calluna vulgaris L., Ledum palustre L. and Rhododendron lapponicum (L.) Wahlenb. seeds under different environmental conditions. Under continuous light from white fluorescense tubes (3000 lux), untreated seeds of Calluna were partly dormant at all temperatures studied (9, 15, 21, 27, 27/9, 8/16 hours). Percentage of dormant seeds increased, however, with decreasing temperature, and it varied also from seed lot to seed lot. Untreated seeds of Ledum were dormant in light at 9° and 15°C but not at higher temperatures. Untreated seeds of Rhododendron were completely dormant in light at temperatures from 13° to 24°C. Seeds of all species were completely dormant in darkness both at 15° and 27°C. GA3 stimulated greatly the germination of all species under all studied environmental conditions. The used concentrations (0.2–3.2 mM) gave nearly 100% germination in most cases. At 9°C the dormancy in some seed lots of Calluna and Ledum was only partly broken by the used concentrations of GA3.  相似文献   

5.
Desert annual Suaeda acuminata produces two morphologically distinct types of seeds on the same plant. The main aims of our study were to compare germination characteristics of the dimorphic seeds, ascertain their dormancy types and give the hormonal explanation. The two seed types of S. acuminata absorbed water at different rates with brown seeds imbibing water faster. Germination percentages of brown seeds were significantly higher than those of black seeds in all temperature and light regimes tested. Eight weeks of cold stratification did not break dormancy of black seeds, whereas exogenous GA3 promoted germination. Excised embryos of untreated black seeds produced normal seedlings. Contents of ZR, GA3 and ABA of brown seeds were significantly higher than that of black seeds; while contents of IAA of black seeds were significantly higher than that of brown seeds. Brown seeds of S. acuminata are non-dormant, whereas black seeds have intermediate physiological dormancy (PD). Interaction among ZR, ABA and GA3 may play an important role in dormancy status of both seed types. This is the first report of non-dormancy and intermediate PD in a heteromorphic species.  相似文献   

6.
The genus Jeffersonia, which contains only two species, has a trans‐Atlantic disjunct distribution. The aims of this study were to determine the requirements for breaking dormancy and germination of J. dubia seeds and to compare its dormancy characteristics with those of the congener in eastern North America. Ripe seeds of J. dubia contain an underdeveloped embryo and were permeable to water. In nature, seeds were dispersed in May, while embryos began to grow in September, and were fully elongated by late November. Germination started in March of the next year, and seeds emerged as seedlings soon after germination. In laboratory experiments, incubation at high temperatures (25 °C, 25/15 °C) for at least 8 weeks was required to initiate embryo growth, while a transfer to moderate temperatures (20/10 °C, 15/6 °C) was needed for the completion of embryo growth. At least 8 weeks at 5 °C was effective in overcoming physiological dormancy and for germination in seeds after the embryos had fully elongated. Thus, both high and low temperatures were essential to break dormancy. Gibberellic acid (GA3) treatment could substitute for the high temperature requirement, but not for the low temperature requirement. Based on the dormancy‐breaking requirements, it is confirmed that the seeds have deep simple morphophysiological dormancy. This dormancy type is similar to that of seeds of the eastern North American species J. diphylla. Although seeds require 10–11 months from seed dispersal to germination in nature, under controlled conditions they required only 3 months after treatment with 1000 mg·l?1 GA3, followed by incubation at 15/6 °C. This represents practical knowledge for propagation of these plants from seed.  相似文献   

7.
Flixweed is one of the most abundant weeds in North America and China, and causes a reduction in crop yields. Dormancy of flixweed seeds is deep at maturity and is maintained in soil for several months. To identify regulators of seed dormancy and germination of flixweed, the effect of environmental and hormonal signals were examined using dormant and non-dormant seeds. The level of dormancy was decreased during after-ripening and stratification, but long imbibition (over 5 days) at 4 °C in the dark resulted in the introduction of secondary dormancy. The strict requirement of duration of cold treatment for the break of dormancy may play a role in the seasonal regulation of germination. The germination of non-dormant flixweed seeds was critically regulated by red (R) and far-red (FR) light in a photoreversible manner. Sodium nitroprusside, a donor of nitric oxide (NO), promoted germination of half-dormant seeds, suggesting that NO reduced the level of seed dormancy. As has been shown in other related species, light elevated sensitivity to GA4 in dark-imbibied flixweed seeds, but cold treatment did not affect GA4-sensitivity unlike in Arabidopsis. Taken together, our results indicate that seed germination in flixweed and its close relative Arabidopsis is controlled by similar as well as distinct mechanisms in response to various endogenous and environmental signals.  相似文献   

8.
Ribes sardoum, the most threatened endemic plant of Sardinia, is included in the Habitats Directive (92/43/EEC) and it was considered Critically Endangered in the global IUCN Red Lists. This species has been reported to have an extremely low fertility, scarce fruit production, low seed viability and a general inability to reproduce sexually. Fruits were collected for the first time from the remnant population, and the requirements for seed germination were investigated in the laboratory. Seeds were incubated at different temperatures (10, 15, and 20°C) and, in addition, they were exposed to a warm stratification (W) or a move-along treatment characterized by three cold temperature regimes (CCC). Seeds were also sown on the surface of 1% agar water with 250 mg·L?1 of GA3. At maturity, seeds have a linear underdeveloped embryo. Germination percentage between 35% and 65% were detected in the control and W groups. A low germination percentage occurred after CCC and during GA3 treatment. W treatment speeds up seed germination. Our results demonstrate that fruits of R. sardoum produce viable seeds, that are able to germinate under controlled conditions, with the assumption that the seeds have morphophysiological dormancy (MPD), and that propagation from the seeds is possible. Although the ability of seed germination was demonstrated, the lack of seedlings in the natural population seems to be a consequence of unfavourable climatic conditions for recruitment. However, our results indicate that seedlings obtained under controlled conditions could be useful for future translocation reducing and/or mitigating the extinction likelihood of this highly threatened plant.  相似文献   

9.
Summary One of the foremost technical issues addressed in reintroduction and restoration projects is the feasibility of establishing living plants. To advance the recovery process, the germination requirements of 201 threatened Western Australian seed‐bearing taxa representing a range of life forms, families and ecophysiological characteristics were studied. Procedures used to stimulate germination in otherwise dormant seed involved pretreatment using thermal shock, scarification, seed coat removal, soaking in an aqueous smoke solution and/or additions of the growth hormone gibberellic acid (GA3). Sixty‐one taxa germinated under the basic trial conditions of light (12‐ h photoperiod), temperature (constant 15°C) and moisture, without additional pretreatments. These taxa were generally those with canopy‐stored seeds in the families Proteaceae and Casuarinaceae, and small‐seeded taxa in Myrtaceae. Taxa with soil‐stored seeds required single or multiple cues to stimulate germination. Seeds in the families Fabaceae and Mimosaceae were dependent on cracking of the seed coat, mechanically through nicking of the testa or through thermal shock, as were several non‐leguminous species of the Sterculiaceae and Liliaceae. Complete or partial removal of seed coats, in conjunction with GA3 enhanced germination percentage in some taxa of the Myoporaceae, Lamiaceae and Myrtaceae. Application of GA3 also enhanced germination percentage in members of the Epacridaceae. Several taxa previously stimulated by aqueous smoke solutions were equally responsive to additions of GA3 after complete seed coat removal. In general, species with seed weights greater than 10 mg germinated better under a range of conditions than those with lighter seeds. There was no difference in germinability between resprouter and seeder species, and no obvious relationship between seed weight and germination rate. In the light of previous studies these results indicate that the relationship between germination requirements and ecophysiological characteristics is similar for both threatened and common species. These data will enable better prediction of likely dormancy breaking cues for other related species and will greatly assist the process of recovery and restoration work for mining operations and community bushland regeneration as well as single species reintroductions.  相似文献   

10.
Grappin P  Bouinot D  Sotta B  Miginiac E  Jullien M 《Planta》2000,210(2):279-285
The physiological characteristics of seed dormancy in Nicotiana plumbaginifolia Viv. are described. The level of seed dormancy is defined by the delay in seed germination (i.e the time required prior to germination) under favourable environmental conditions. A wild-type line shows a clear primary dormancy, which is suppressed by afterripening, whereas an abscisic acid (ABA)-deficient mutant shows a non-dormant phenotype. We have investigated the role of ABA and gibberellic acid (GA3) in the control of dormancy maintenance or breakage during imbibition in suitable conditions. It was found that fluridone, a carotenoid biosynthesis inhibitor, is almost as efficient as GA3 in breaking dormancy. Dry dormant seeds contained more ABA than dry afterripened seeds and, during early imbibition, there was an accumulation of ABA in dormant seeds, but not in afterripened seeds. In addition, fluridone and exogenous GA3 inhibited the accumulation of ABA in imbibed dormant seeds. This reveals an important role for ABA synthesis in dormancy maintenance in imbibed seeds. Received: 31 December 1998 / Accepted: 9 July 1999  相似文献   

11.

Background and Aims

Lomatium dissectum (Apiaceae) is a perennial, herbaceous plant of wide distribution in Western North America. At the time of dispersal, L. dissectum seeds are dormant and have under-developed embryos. The aims of this work were to determine the requirements for dormancy break and germination, to characterize the type of seed dormancy, and to determine the effect of dehydration after embryo growth on seed viability and secondary dormancy.

Methods

The temperature requirements for embryo growth and germination were investigated under growth chamber and field conditions. The effect of GA3 on embryo growth was also analysed to determine the specific type of seed dormancy. The effect of dehydration on seed viability and induction of secondary dormancy were tested in seeds where embryos had elongated about 4-fold their initial length. Most experiments examining the nature of seed dormancy were conducted with seeds collected at one site in two different years. To characterize the degree of variation in dormancy-breaking requirements among seed populations, the stratification requirements of seeds collected at eight different sites were compared.

Key Results

Embryo growth prior to and during germination occurred at temperatures between 3 and 6 °C and was negligible at stratification temperatures of 0·5 and 9·1 °C. Seeds buried in the field and exposed to natural winter conditions showed similar trends. Interruption of the cold stratification period by 8 weeks of dehydration decreased seed viability by about 30 % and induced secondary dormancy in the remaining viable seeds. Comparison of the cold stratification requirements of different seed populations indicates that seeds collected from moist habitats have longer cold stratification requirements that those from semiarid environments.

Conclusions

Seeds of L. dissectum have deep complex morphophysiological dormancy. The requirements for dormancy break and germination reflect an adaptation to trigger germination in late winter.Key words: Apiaceae, cold stratification, Lomatium dissectum, morphophysiological dormancy, secondary dormancy, seed germination  相似文献   

12.
Bubon macedonicum L. is a chasmophytic species of south-eastern Europe. In Italy, it has been detected only in Rocca Monforte (Campobasso, central Italy). This rare species is included in the IUCN Red Lists of Critically Endangered Italian Flora, and there are no studies relating to B. macedonicum biology. The seed germination dynamics of this species was studied with the aim of building up an appropriate germination protocol to be used in ex situ conservation. On the basis of an ISTA protocol, about 3,000 seeds were collected from Rocca Monforte in August 2013. Fifty seeds were measured. The considered parameters were seed length, width, thickness, seed surface, volume, density, surface/mass ratio and eccentricity index. The morphometric parameters examined showed morphological dormancy, where a short warm period is necessary for embryo growth and seed germination. The results showed high germination percentages under the different conditions of temperature, pH, GA3 and photoperiod. Only at 5 °C was there no germination. Finally, the seeds maintain high germination percentages from the seed storage process after 130 and 390 days. This factor can be considered of great importance for the conservation of B. macedonicum over the medium and long term.  相似文献   

13.
Studying seed dormancy and its consequent effect can provide important information for vegetation restoration and management. The present study investigated seed dormancy, seedling emergence and seed survival in the soil seed bank of Stipa bungeana, a grass species used in restoration of degraded land on the Loess Plateau in northwest China. Dormancy of fresh seeds was determined by incubation of seeds over a range of temperatures in both light and dark. Seed germination was evaluated after mechanical removal of palea and lemma (hulls), chemical scarification and dry storage. Fresh and one-year-stored seeds were sown in the field, and seedling emergence was monitored weekly for 8 weeks. Furthermore, seeds were buried at different soil depths, and then retrieved every 1 or 2 months to determine seed dormancy and seed viability in the laboratory. Fresh seeds (caryopses enclosed by palea and lemma) had non-deep physiological dormancy. Removal of palea and lemma, chemical scarification, dry storage (afterripening), gibberellin (GA3) and potassium nitrate (KNO3) significantly improved germination. Dormancy was completely released by removal of the hulls, but seeds on which hulls were put back to their original position germinated to only 46%. Pretreatment of seeds with a 30% NaOH solution for 60 min increased germination from 25% to 82%. Speed of seedling emergence from fresh seeds was significantly lower than that of seeds stored for 1 year. However, final percentage of seedling emergence did not differ significantly for seeds sown at depths of 0 and 1 cm. Most fresh seeds of S. bungeana buried in the field in early July either had germinated or lost viability by September. All seeds buried at a depth of 5 cm had lost viability after 5 months, whereas 12% and 4% seeds of those sown on the soil surface were viable after 5 and 12 months, respectively.  相似文献   

14.
We tested the hypothesis that seeds of the monocarpic perennial Ferula gummosa from the Mediterranean area and central Asia have deep complex morphophysiological dormancy. We determined the water permeability of seeds, embryo morphology, temperature requirements for embryo growth and seed germination and responses of seeds to warm and cold stratification and to different concentrations of GA3. The embryo has differentiated organs, but it is small (underdeveloped) and must grow inside the seed, reaching a critical embryo length, seed length ratio of 0.65–0.7, before the seed can germinate. Seeds required 9 weeks of cold stratification at <10°C for embryo growth, dormancy break and germination to occur. Thus, seeds have morphophysiological dormancy (MPD). Furthermore, GA3 improved the germination percentage and rate at 5°C and promoted 20 and 5% germination of seeds incubated at 15 and 20°C, respectively. Thus, about 20% of the seeds had intermediate complex MPD. For the other seeds in the seed lot, cold stratification (5°C) was the only requirement for dormancy break and germination and GA3 could not substitute for cold stratification. Thus, about 80% of the seeds had deep complex MPD.  相似文献   

15.
Two seed lots of Calluna vulgaris were obtainedfrom English Nature (seed of Cornish provenance) (EN) and John ChambersWildflower Seeds (JCWS). In laboratory tests, under continuous light untreatedseeds of both seed lots were partially dormant at temperatures between14–35 °C, but JCWS seeds were more deeply dormant thanENseeds. The optimum temperature for germination for both lots was ca 18°C. Germination of EN seeds was much lower in the dark than inthe light at all temperatures; JCWS seeds did not germinate in the dark. In thelight at 22 °C, dormancy of both seed lots was broken whenseeds were incubated in GA4/7 solution(2×10–4 M). Dormancy ofJCWSseeds at 22 °C in the light was broken when seeds wereincubated in four different smoke solutions but more so when used incombinationwith GA4/7. Soaking seeds for 4h insmoke/GA4/7solutions before sowing improved both the speed andpercentage germination in pot experiments on a mist bench in the glasshouse byat least 10-fold. Soaking with GA4/7 alone produced a 5-fold increasein germination but seedlings were more etiolated than with thesmoke/GA4/7 mixtures. A seed advancement treatment modified from thatused commercially on sugar beet seeds also promoted germination in bothlaboratory and glasshouse tests. This entailed soaking seeds in 0.2% thiramsuspension for 4h followed by incubation in excess solution at 22°C for 4 days. This treatment was not as effective as thesmoke/GA4/7 seed soaks.  相似文献   

16.
Freshly harvested, dormant seeds of Amaranthus retroflexus were unable to germinate at 25 and 35 °C. To release their dormancy at the above temperatures, the seeds were stratified at a constant temperature (4 °C) under laboratory conditions or at fluctuating temperatures in soil or by outdoor burial in soil. Fully dormant, or seeds stratified or buried (2006/2007 and 2007/2008) for various periods were treated with exogenous gibberellic acid (GA3), ethephon and abscisic acid (ABA). Likewise, the effects of these regulators, applied during stratification, on seed germination were determined. The results indicate that A. retroflexus seed dormancy can be released either by stratification or by autumn–winter burial. The effect of GA3 and ethylene, liberated from ethephon, applied after various periods of stratification or during stratification, depends on dormancy level. GA3 did not affect or only slightly stimulated the germination of non-stratified, fully dormant seeds at 25 and 35 °C respectively. Ethylene increased germination at both temperatures. Seed response to GA3 and ethylene at 25 °C was increased when dormancy was partially removed by stratification at constant or fluctuating temperatures or autumn–winter burial. The response to GA3 and ethylene increased with increasing time of stratification. The presence of GA3 and ethephon during stratification may stimulate germination at 35 °C. Thus, both GA3 and ethylene can partially substitute the requirement for stratification or autumn–winter burial. Both hormones may also stimulate germination of secondary dormant seeds, exhumed in September. The response to ABA decreased in parallel with an increasing time of stratification and burial up to May 2007 or March 2008. Endogenous GAn, ethylene and ABA may be involved in the control of dormancy state and germination of A. retroflexus. It is possible that releasing dormancy by stratification or partial burial is associated with changes in ABA/GA and ethylene balance and/or sensitivity to these hormones.  相似文献   

17.
  • The relationship between the phytohormones, gibberellin (GA) and abscisic acid (ABA) and light and temperature on seed germination is still not well understood. We aimed to investigate the role of the ABA and GA on seed germination of Vellozia caruncularis, V. intermedia and V. alutacea in response to light/dark conditions on different temperature.
  • Seeds were incubated in GA (GA3 or GA4) or ABA and their respective biosynthesis inhibitors (paclobutrazol – PAC, and fluridone – FLU) solutions at two contrasting temperatures (25 and 40 °C). Furthermore, endogenous concentrations of active GAs and those of ABA were measured in seeds of V. intermedia and V. alutacea during imbibition/germination.
  • Exogenous ABA inhibited the germination of Vellozia species under all conditions tested. GA, FLU and FLU + GA3 stimulated germination in the dark at 25 °C (GA4 being more effective than GA3). PAC reduced seed germination in V. caruncularis and V. alutacea, but did not affect germination of V. intermedia at 40 °C either under light or dark conditions. During imbibition in the dark, levels of active GAs decreased in the seeds of V. intermedia, but were not altered in those of V. alutacea. Incubation at 40 °C decreased ABA levels during imbibition in both V. caruncularis and V. alutacea.
  • We conclude that the seeds of Vellozia species studied here require light or high temperature to germinate and ABA has a major role in the regulation of Vellozia seed germination in response to light and temperature.
  相似文献   

18.
Seed dormancy induction and alleviation in the winter‐flowering, moist temperate woodland species Galanthus nivalis and Narcissus pseudonarcissus are complex and poorly understood. Temperature, light and desiccation were investigated to elucidate their role in the germination ecophysiology of these species. The effect of different seasonal temperatures, seasonal durations, temperature fluctuations, the presence of light during different seasons and intermittent drying (during the summer period) over several ‘years’ on seed germination was investigated with outdoor and laboratory experiments. Warm summer‐like temperatures (20 °C) were necessary for germination at subsequent cooler autumn‐like temperatures (greatest at 15 °C in G. nivalis and 10 °C in N. pseudonarcissus). As the warm temperature duration increased, so did germination at subsequent cooler temperatures; further germination occurred in subsequent ‘years’ at cooler temperatures following a second, and also third, warm period. Germination was significantly greater in darkness, particularly in G. nivalis. Dormancy increased with seed maturation period in G. nivalis, because seeds extracted from green capsules germinated more readily than those from yellow capsules. Desiccation increased dormancy in an increasing proportion of N. pseudonarcissus seeds the later they were dried in ‘summer’. Seed viability was only slightly reduced by desiccation in N. pseudonarcissus, but was poor and variable in G. nivalis. Shoot formation occurred both at the temperature at which germination was greatest and also if 5 °C cooler. In summary, continuous hydration of seeds of both species during warm summer‐like temperatures results in the gradual release of seed dormancy; thereafter, darkness and cooler temperatures promote germination. Cold temperatures, increased seed maturity (G. nivalis) and desiccation (N. pseudonarcissus) increase dormancy, and light inhibits germination. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 246–262.  相似文献   

19.
Allium stracheyi Baker (Alliaceae, 2600–3000 m asl), an endangered species of Central Himalaya, India, has low seed germination in its natural habitat. This study is an attempt to improve seed germination by determining the seed viability with a low mean germination time (MGT) and germination index (GI) under optimum temperature, light, and pre-soaking treatments. The seeds were pre-soaked in hot water (80°C), cold water (10°C), and gibberellic acid (GA3 at 50 and 100 mg/l) for 24 h and subjected to light (12 h light and 12 h dark) and continuous dark (24 h) conditions with different temperature regimes (10, 15, 20, 25, and 30°C). The viability varied between 66.0% and 69.67% and declined rapidly after 12 months of storage. Our studies suggest that the 100 mg/l GA3 treatment was beneficial for seed germination and seedling growth. Pre-soaking in a 100 mg/l GA3 solution and incubation at 20°C under light conditions enhanced the germination significantly (p < 0.05) and resulted in the highest (97.3%) germination with the lowest MGT = 5.7 days, with GI = 8.11. The recommendations of this study support the conservation of alpine A. stracheyi via simple and cost-effective techniques for optimal seed germination.  相似文献   

20.
  • Fruiting season of many Sri Lankan tropical montane species is not synchronised and may not occur when conditions are favourable for seedling establishment. We hypothesised that species with different fruiting seasons have different seed dormancy mechanisms to synchronise timing of germination with a favourable season for establishment. Using six species with different fruiting seasons, we tested this hypothesis.
  • Germination and imbibition of intact and manually scarified seeds were studied. Effect of GA3 on germination was examined. Embryo length:seed length (E:S) ratio of freshly matured seeds and of those with a split seed coat was determined. Time taken for radicle and plumule emergence and morphological changes of the embryos were recorded.
  • The radicle emerged from Ardisia missionis, Bheza nitidissima and Gaetnera walkeri seeds within 30 days, whereas it took >30 days in other species. Embryos grew in seeds of B. nitidissima and G. walkeri prior to radicle emergence but not in Microtropis wallichiana, Nothapodytes nimmoniana and Symplocos cochinchinensis. A considerable delay was observed between radicle and plumule emergence in all six species. Warm stratification and/or GA3 promoted germination of all species.
  • All the tested species have epicotyl dormancy. Seeds of B. nitidissima and G. walkeri have non‐deep simple morphophysiological epicotyl dormancy, and the other four species have non‐deep physiological epicotyl dormancy. Differences in radicle and epicotyl dormancy promote synchronisation of germination to a favourable time for seedling development. Therefore, information on dormancy‐breaking and germination requirements of both radicle and epicotyl are needed to determine the kind of dormancy of a particular species.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号