首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isbell FI  Wilsey BJ 《Oecologia》2011,165(3):771-781
Species-rich native grasslands are frequently converted to species-poor exotic grasslands or pastures; however, the consequences of these changes for ecosystem functioning remain unclear. Cattle grazing (ungrazed or intensely grazed once), plant species origin (native or exotic), and species richness (4-species mixture or monoculture) treatments were fully crossed and randomly assigned to plots of grassland plants. We tested whether (1) native and exotic plots exhibited different responses to grazing for six ecosystem functions (i.e., aboveground productivity, light interception, fine root biomass, tracer nitrogen uptake, biomass consumption, and aboveground biomass recovery), and (2) biodiversity-ecosystem functioning relationships depended on grazing or species origin. We found that native and exotic species exhibited different responses to grazing for three of the ecosystem functions we considered. Intense grazing decreased fine root biomass by 53% in exotic plots, but had no effect on fine root biomass in native plots. The proportion of standing biomass consumed by cattle was 16% less in exotic than in native grazed plots. Aboveground biomass recovery was 30% less in native than in exotic plots. Intense grazing decreased aboveground productivity by 25%, light interception by 14%, and tracer nitrogen uptake by 54%, and these effects were similar in native and exotic plots. Increasing species richness from one to four species increased aboveground productivity by 42%, and light interception by 44%, in both ungrazed and intensely grazed native plots. In contrast, increasing species richness did not influence biomass production or resource uptake in ungrazed or intensely grazed exotic plots. These results suggest that converting native grasslands to exotic grasslands or pastures changes ecosystem structure and processes, and the relationship between biodiversity and ecosystem functioning.  相似文献   

2.
The Conservation Reserve Program (CRP) is a primary tool for restoring grassland in the United States, in part as wildlife habitat, which has benefited declining grassland bird populations. Among potential mid-contract management practices used to maintain early-successional CRP grasslands, cattle grazing had been prohibited and is currently disincentivized during the primary nesting season for birds (much of the growing season), despite the important role that large herbivores historically played in structuring grassland ecosystems. Conservative grazing of CRP grasslands could increase spatial heterogeneity in vegetation structure and plant diversity, potentially supporting higher densities of some grassland bird species and higher bird diversity. Our objective was to determine the effect of experimental cattle grazing on species-specific relative abundance and occupancy, species diversity, and community dissimilarity of grassland birds on CRP grasslands across the longitudinal extent of Kansas, USA (a 63.5-cm precipitation gradient) during the 2017–2019 avian breeding seasons. Fifty-three of 108 fields were grazed by cattle during the growing seasons of 2017 and 2018 and all fields were rested from grazing in 2019. For all analyses, we examined separate model sets for semiarid western versus more mesic eastern Kansas. Using data from line transect surveys, we modeled relative abundances of 5 songbird species: grasshopper sparrow (Ammodramus savannarum), dickcissel (Spiza americana), eastern meadowlark (Sturnella magna), western meadowlark (Sturnella neglecta), and brown-headed cowbird (Molothrus ater). Grazing had delayed yet positive effects on abundances of grasshopper sparrow in western Kansas, and eastern meadowlark in eastern Kansas, but negative effects on dickcissel abundance in western Kansas and especially on burned fields in eastern Kansas. Somewhat counterintuitively, brown-headed cowbirds in western Kansas were more abundant on ungrazed versus grazed fields in the years after grazing began. In addition, we modeled multi-season occupancy of 3 gamebird species (ring-necked pheasant [Phasianus colcicus], northern bobwhite [Colinus virginianus], mourning dove [Zenaida macroura]) and Henslow's sparrow (Centronyx henslowii); grazing did not affect occupancy of these species. In eastern Kansas, species diversity was highest in grazed, unburned fields. In western Kansas, bird communities in grazed and ungrazed fields were dissimilar, as determined from multivariate analysis. Though regionally variable, conservative stocking of cattle on CRP grasslands during the nesting season as a mid-contract management tool might increase bird species diversity by restructuring habitat that accommodates a greater variety of species and decreasing abundances of species associated with taller, denser stands of vegetation.  相似文献   

3.
Aim To determine how responses of an established velvet mesquite (Prosopis velutina Woot.) population to a 2002 wildfire were shaped by grazing and non‐native herbaceous species invasions, both of which influenced fire behaviour. Location The study was conducted on contiguous ranches (one actively grazed by cattle, one that had not been grazed since 1968) in the Sonoita Valley of southern Arizona. Plant communities on both ranches were comprised of Chihuahuan semi‐desert grassland, savanna, and Madrean evergreen woodland ecosystems, but large areas were dominated by Lehmann and Boer lovegrass, African grass species that were introduced more than 50 years ago. Methods We selected 243 individuals that had been defoliated and bark scorched during the fire using a stratified random design based on pre‐fire grazing status and dominant grass cover. After the start of the 2003 growing season, we recorded individual tree characteristics, fire damage, and measures of post‐fire response, and tested for relationships among classes of: grazing status, bark damage, dominant grass cover type, abundance of live and dead aboveground branches, flowering status, and sprout number and size. Analyses of fire damage and post‐fire response were interpreted with respect to values of fireline intensity, scorch height and energy release that were projected by a fire behaviour model, nexus . Results Nearly all of the trees on grazed areas suffered low levels of fire damage, while a majority on ungrazed areas suffered moderate to severe damage. Trees on grazed areas consequently had significantly more leaf‐bearing twigs and branches in 2003 but a very low number of root sprouts, while individuals on ungrazed areas had a greater density of root sprouts but little post‐fire dead branching and almost no living branches. Among the ungrazed grassland types, more than 75% of the trees on Boer lovegrass plots suffered moderate to severe damage, while a similar percentage of trees in native grass areas suffered low damage. These differences were: (1) attributed to variations in fire characteristics that were caused by differences in litter production and removal, and (2) ecologically significant because trees in the severe damage class showed almost no aboveground post‐fire branching, either live or dead in 2003, while trees in the low damage class exhibited a greater amount of both. Main conclusions Our results affirm the notion that effective management of western grasslands where mesquite encroachment has or will become a problem requires a better understanding of how interactions among key ecosystem influences (e.g. fire, grazing, non‐native species) affect not only mesquite seedlings and saplings but also larger, established individuals and thereby the long‐term structure and functioning of semi‐desert grassland ecosystems. As managers shift their focus from eradication to management of mesquite in western grasslands and savannas, our results provide insights into how prescribed fires (and their effects on mesquite populations) differ from wildfires and how such effects may be mediated by the altered land uses and ecosystem characteristics that now exist in many western ecosystems.  相似文献   

4.
Alpine grasslands in the Southern Carpathian Mts, Romania, harbour an extraordinarily high diversity of plants and invertebrates, including Carpathic endemics. In the past decades, intensive sheep grazing has caused a dramatic decrease in biodiversity and even led to eroded soils at many places in the Carpathians. Because of limited food resources, sheep are increasingly forced to graze on steep slopes, which were formerly not grazed by livestock and are considered as local biodiversity hotspots. We examined species richness, abundance and number of endemic vascular plants and terrestrial gastropods on steep slopes that were either grazed by sheep or ungrazed by livestock in two areas of the Southern Carpathians. On calcareous soils in the Bucegi Mts, a total of 177 vascular plant and 19 gastropod species were recorded. Twelve plant species (6.8%) and three gastropod species (15.8%) were endemic to the Carpathians. Grazed sites had lower plant and gastropod species richness than ungrazed sites. Furthermore, grazed sites harboured fewer gastropod species endemic to the Carpathians than ungrazed sites. On acid soils in the Fagaras Mts, a total of 96 vascular plant and nine gastropod species were found. In this mountain area, however, grazed and ungrazed sites did not differ in species richness, abundance and number of endemic plant and gastropod species. Our findings confirm the high biodiversity of grasslands on steep slopes in the Southern Carpathian Mts and caution against increasing grazing pressure in these refuges for relic plants and gastropods as well as for other invertebrates.  相似文献   

5.
In northwestern Costa Rica, cattle are being used as a "management tool" to reduce the amount of combustible material, mainly dominated by Hyparrhenia rufa, an African grass. This project is being developed within Parque Nacional Palo Verde and Reserva Biológica Lomas Barbudal, both of which form part of the only remaining tropical dry forests in Mesoamerica. To determine the short-term effects of cattle grazing on the natural vegetation, we compared the floristic composition within Palo Verde in an area under intermittent cattle grazing with an area that has not been grazed. There were significantly fewer plant species in the area with intermittent cattle grazing compared to the area with no grazing. Floristic composition of these two habitats was different as reflected by both Fisher's alpha values and the Shannon index of diversity, both of which were significantly higher in the ungrazed site. The ungrazed area contained more plant species and was more similar to mature forest. The structure of the vegetation was significantly different between the intermittently grazed and ungrazed sites with more small stems (1-5 cm dbh) and fewer large stems (> 5 cm dbh) in the intermittently grazed habitat. These results indicate that cattle grazing has an impact on the dry forest by reducing the relative abundance and density of larger tree species and by changing the species composition and structure of the community. The current management plan implemented in Palo Verde and Lomas Barbudal is not appropriate because of the impact that cattle have on the structure of the natural vegetation and should not be considered a viable alternative in other protected areas of dry forest in the Neotropics. We suggest that alternative fire prevention measures be evaluated including hand-cutting H. rufa, the creation of more frequent and larger fire breaks, and the development of green breaks.  相似文献   

6.
Bird populations in grasslands have experienced declines coinciding with loss and fragmentation of prairies. The United States Department of Agriculture (USDA)-administered Conservation Reserve Program (CRP) is the most extensive grassland restoration program in North America and it has especially benefitted grassland birds. Grazing by domestic cattle has been restricted in CRP during avian nesting seasons despite the potential improvements in structuring habitat for a greater diversity of grassland bird species. Potential negative consequences of grazing in CRP grasslands include trampling of nests by cattle, reductions in nest concealment from predators, and attraction of brood-parasitic brown-headed cowbirds (Molothrus ater). We designed an experiment to test for effects of cattle grazing in CRP fields during the nesting season on nest survival and brood parasitism of 5 bird species that commonly nest in CRP grasslands: mourning dove (Zenaida macroura), grasshopper sparrow (Ammodramus savannarum), dickcissel (Spiza americana), and eastern (Sturnella magna) and western (S. neglecta) meadowlarks. Grazing was implemented during summers 2017 and 2018 on 17 of 36 fields followed by a year of rest on all fields in 2019. Of the 879 nests on grazed fields, only 4 were likely trampled by cattle (vs. 54% of all nests estimated as failing because of depredation). Experimental grazing (grazed vs. ungrazed fields) had variable effects on nest survival and cowbird parasitism among the bird species analyzed. Negative effects of grazing on daily nest survival of dickcissel and meadowlarks were apparent, at least in some years. We found no direct effects of grazing on nest survival of mourning dove or grasshopper sparrow. Probability and intensity (cowbird offspring/nest) of cowbird parasitism in dickcissel nests was higher on grazed versus ungrazed sites but only in conservation practice (CP) CP2 (vs. CP25 fields). Parasitism probability of grasshopper sparrow nests by cowbirds was higher on grazed fields in the 2 years after introduction of cattle in 2017. Greater vegetative concealment around nest sites was associated with reduced cowbird parasitism of meadowlark and grasshopper sparrow nests and higher nest survival for grasshopper sparrows. Reductions in vegetative height caused by longer-term or high-intensity grazing might therefore have negative consequences for some grassland birds by increasing nest site visibility and exposure to cowbird parasitism. Our results indicate that cattle grazing in CRP fields during the nesting season might have some negative effects on reproductive success of some grassland bird species, at least in the short term; however, the potential improvements of structuring habitat to accommodate more grassland bird species and increasing landowner participation in the CRP are considerable.  相似文献   

7.
森林放牧是中国东北虎豹国家公园内影响最广泛且强度最大的人类干扰之一。研究放牧对有蹄类动物食物资源的影响,是估算当前状态下东北虎和东北豹主要猎物承载力的关键,可以为国家公园的管理提供有效的科学依据。本研究于2016年在中国东北虎豹国家公园东部的牧场和非牧场区域分层抽取50个林下样地设置围栏对照实验,于2017年生长季进行灌草层植被调查 (每个样地的围栏与对照各随机调查3个1m×1m的样方,共调查300个植物样方) ,并应用红外相机技术获取对照样地内有蹄类动物丰富度和活动情况,研究放牧对研究区灌草层植物及动物的影响。研究结果显示:在生长季内,森林放牧显著降低林下灌草层植物生物量 (减少约24%),牧场样地的嫩枝叶显著降低。除禾草外,牧场样地中其他类别植物的氮含量均显著高于非牧场样地 (平均超出非牧场样地25 %)。非牧场样地梅花鹿的相 对丰富度指数 (RAI) 显著高于牧场样地,而狍与野猪的相对丰富度指数 (RAI) 在这两类样地之间没有显著差别。研究结果表明,东北虎豹国家公园东部森林放牧,减少了有蹄类动物灌草层食物资源,降低了有蹄类动物的多度。建议停止森林放牧,恢复有蹄类动物栖息地。  相似文献   

8.
Restoration of semi-natural grasslands by cattle grazing is among the most practical options for reversing the decline of northern European floristic diversity, but no studies on this subject are available. In this work the success of restoration of abandoned, privately owned mesic semi-natural grasslands by farmers receiving support from the EU agri-environmental support scheme was studied in southwestern Finland. Three kinds of grasslands were compared: old (continuously cattle grazed), new (cattle grazing restarted 3–8 years ago) and abandoned pastures (grazing terminated >10 years ago). Plant species composition of the three pasture types was floristically different in multivariate analyses (non-metric multidimensional scaling). Total species richness, richness of grassland plants, indicator plants and rare plants were highest in old and lowest in abandoned pastures in all studied spatial scales (0.25–0.8 ha, 1 and 0.01 m2). The results were congruent with different scales and species list definitions, suggesting that species density scale (1 m2) can be used as a partial surrogate for large scale species richness. Species richness of new pastures was 20% higher on 0.25–0.8 ha, 40–50% higher on 1 m2 and 30% higher on the 0.01 m2 scale compared to abandoned grasslands. Rare species showed insignificant response to resumed grazing. Despite problems in management quality, this study showed promising results of restoration of abandoned grasslands by cattle grazing on private farms. However, populations of several rare grassland plants may not recover with present cattle grazing regimes. Management regulations in the agri-environmental support scheme need to be defined more precisely for successful restoration.  相似文献   

9.
Livestock grazing can have a strong impact on herbivore abundance, distribution and community. However, not all species of herbivores respond the same way to livestock grazing, and we still have a poor understanding of the underlying mechanisms driving these differential responses. Here, we investigate the effect of light intensity cattle grazing on the abundance of two grasshoppers (Euchorthippus cheui and E. unicolor) that co-occur in the same grasslands and feed on the same food plant (the dominant grass Leymus chinensis). The two grasshopper species differ in phenology so that their peak abundances are separated into early- and late-growing seasons. We used an exclosure experiment to monitor grasshopper abundance and food quality in the field under grazed and ungrazed conditions, and performed feeding trials to examine grasshopper preference for grazed or ungrazed food plants in the laboratory. We found that the nitrogen content of L. chinensis leaves continuously declined in the ungrazed areas, but was significantly enhanced by cattle grazing over the growing season. Cattle grazing facilitated the early-season grasshopper E. cheui, whereas it suppressed the late-season grasshopper E. unicolor. Moreover, feeding trials showed that E. cheui preferred L. chinensis from grazed plots, while E. unicolor preferred the leaves from ungrazed plots. We conclude that livestock grazing has opposite effects on the two grasshopper species, and that these effects may be driven by grazing-induced changes in plant nutrient content and the unique nutritional niches of the grasshoppers. These results suggest that insects that belong to the same guild can have opposite nutrient requirements, related to their distinct phenologies, and that this can ultimately affect their response to cattle grazing. Our results show that phenology may link insect physiological needs to local resource availabilities, and should be given more attention in future work on interactions between large herbivores and insects.  相似文献   

10.
Reindeer Rangifer tarandus L. grazing shapes forest vegetation, microclimate, and soil respiration in Lapland, especially due to grazing on lichens (Cladina). We studied how these changes and their magnitude affect ground‐dwelling species of beetle families Carabidae (predators) and Curculionidae (herbivores), by using pitfall traps to collect invertebrates from pairs of grazed and ungrazed study plots over a wide range of site types. Changes in abundance, composition, richness and diversity of beetle assemblage were tested in relation to magnitude of the impacts on vegetation. The species compositions of Carabidae and Curculionidae differed between grazed and ungrazed plots in all sites. The relative difference between grazed and ungrazed plots in the number of individuals increased linearly with the impact of reindeer on vegetation cover. Carabid beetles, as a family, were more common in grazed plots in all sites. Curculionid beetles were more common in ungrazed plots in the birch dominated sites. This difference was mainly due to the species that feeds on deciduous leaves. In the pine dominated sites with high Cladina cover and more changes in ground vegetation, the number of curculionids feeding on conifers was higher in grazed plots. Species richness and diversity (H’) of both families were higher in grazed plots. Of the total 27 species, 11 were found only in grazed plots, while not a single species was found only in ungrazed plots. The relative difference between plots in diversity and evennes (H’/H'max) had humped response to the difference in Cladina cover. The diversity values were greater in grazed plots at the intermediate levels of grazing impact, and only in sites with very low or extremely high Cladina cover difference was the diversity higher in ungrazed plots. The response of beetle diversity resembled the hypotheses suggested for the relationship between grazing and vegetation diversity: greatest positive effect at intermediate grazing intensity and negative effects at unproductive sites.  相似文献   

11.
In grassland reserves, managed disturbance is often necessary to maintain plant species diversity. We carried out experiments to determine the impact of fire, kangaroo grazing, mowing and disc ploughing on grassland species richness and composition in a nature reserve in semi‐arid eastern Australia. Vegetation response was influenced by winter–spring drought after establishment of the experiments, but moderate rainfall followed in late summer–autumn. Species composition varied greatly between sampling times, and the variability due to rainfall differences between seasons and years was greater than the effects of fire, kangaroo grazing, mowing or disc ploughing. In the fire experiment, species richness and composition recovered more rapidly after spring than autumn burning. Species richness and composition were similar to control sites within 12 months of burning and mowing, suggesting that removal of the dominant grass canopy is unnecessary to enhance plant diversity. Two fires (separated by 3 years) and post‐fire kangaroo grazing had only minor influence on species richness and composition. Even disc ploughing caused only a small reduction in native richness. The minor impact of ploughing was explained by the small areas that were ploughed, the once‐off nature of the treatment, and the high degree of natural movement and cracking in these shrink‐swell soils. Recovery of the composition and richness of these grasslands was rapid because of the high proportion of perennial species that resprout vegetatively after fire and mowing. There appears to be little conservation benefit from fire, mowing or ploughing ungrazed areas, as we could identify no native plant species dependent on frequent disturbance for persistence in this grassland community. However, the ability of the Astrebla‐ and Dichanthium‐dominated grasslands to recover quickly after disturbance, given favourable seasonal conditions, suggests that they are well adapted to natural disturbances (e.g. droughts, fire, flooding and native grazing).  相似文献   

12.
Extensively managed pastures are of crucial importance in sustaining biodiversity both in local- and landscape-level. Thus, re-introduction of traditional grazing management is a crucial issue in grassland conservation actions worldwide. Traditional grazing with robust cattle breeds in low stocking rates is considered to be especially useful to mimic natural grazing regimes, but well documented case-studies are surprisingly rare on this topic. Our goal was to evaluate the effectiveness of traditional Hungarian Grey cattle grazing as a conservation action in a mosaic alkali landscape. We asked the following questions: (i) How does cattle grazing affect species composition and diversity of the grasslands? (ii) What are the effects of grazing on short-lived and perennial noxious species? (iii) Are there distinct effects of grazing in dry-, mesophilous- and wet grassland types? Vegetation of fenced and grazed plots in a 200-ha sized habitat complex (secondary dry grasslands and pristine mesophilous- and wet alkali grasslands) was sampled from 2006–2009 in East-Hungary. We found higher diversity scores in grazed plots compared to fenced ones in mesophilous- and wet grasslands. Higher cover of noxious species was typical in fenced plots compared to their grazed counterparts in the last year in every studied grassland type. We found an increasing effect of grazing from the dry- towards the wet grassland types. The year-to-year differences also followed similar pattern: the site-dependent effects were the lowest in the dry grassland and an increasing effect was detected along the moisture gradient. We found that extensive Hungarian Grey cattle grazing is an effective tool to suppress noxious species and to create a mosaic vegetation structure, which enables to maintain high species richness in the landscape. Hungarian Grey cattle can feed in open habitats along long moisture gradient, thus in highly mosaic landscapes this breed can be the most suitable livestock type.  相似文献   

13.
Question: Does grazing by large herbivores affect species composition or community‐wide variation in plant functional traits? Location: Dune grasslands at the Belgian coast. Methods: Plant cover and soil data were collected in 146 plots that were randomly selected at 26 grazed and ungrazed grassland sites. Plant community composition was assessed by Detrended Correspondence Analysis and mean values of plant trait categories were calculated across the plots. Results: Differentiation of plant composition and community‐wide plant trait characteristics was largely determined by grazing, soil acidity and their interaction. In ungrazed situations, a clear floristic distinction appears between acidic (non‐calcareous) and alkaline (calcareous) grasslands. In grazed situations, these floristic differences largely disappeared, indicating that grazing results in a decrease of natural variation in species composition. At higher soil pH, a larger difference in plant community composition and community‐wide plant traits was observed between grazed and ungrazed plots. In ungrazed situations, shifts in plant functional traits along the acidity gradient were observed. Conclusions: Grazing is responsible for shifts in plant community composition, and hence a decrease in plant diversity among grasslands at opposing acidity conditions in coastal dune grasslands. Therefore, care should be taken when introducing grazing as a system approach for nature conservation in dune grasslands as it may eliminate part of the natural variation in plant diversity along existing abiotic gradients.  相似文献   

14.
Abundance and diversity of small mammals are usually affected strongly by grazing either due to decreased food availability or quality, decreased suitability of soil for building burrow systems due to trampling and/or due to increased predation risk in the structurally simpler grazed areas. We estimated the effects of grazing-induced changes in vegetation and soil and of increased predation on small mammals in a Mediterranean grassland landscape. We measured vegetation structure, soil compaction and small mammal abundance and species composition in 22 plots of 8 Sherman live traps each, arranged according to an unbalanced two-way ANOVA design with two grazing levels (grazed areas and cattle exclosures) and two predator abundance levels (increased densities of Eurasian kestrels Falco tinnunculus by means of nest boxes and control). Plots were sampled during 2 consecutive years in early summer and early fall. Exclosure from cattle increased significantly vegetation height and volume and decreased soil compaction. Grazing-induced changes in vegetation height and volume and in soil compaction produced strong effects on small mammal abundance and species richness. Increased kestrel densities did not have significant additive or interactive effects, with the effects of grazing-induced vegetation and soil gradients on abundance or richness of small mammals. Our results suggest that the effects of grazing on small mammal communities in Mediterranean montane grasslands were mainly due to reduced food availability and by negative effects of trampling on the suitability of soils for building burrow systems. Decreased food quality and increased predation in grazed areas seemed to play a minor role, if any. Reductions in stock densities would then favor generalist predator populations in Mediterranean grasslands through the expected positive effects of such reductions on the availability of food and burrows for small mammals.  相似文献   

15.
The response of grassland soil bacterial community characteristics to different grazing intensities is central ecological topics. However, the underlying mechanisms between bacterial abundance, diversity index, and grazing intensity remain unclear. We measured alpine meadow soil bacterial gene richness and diversity index under four grazing intensities using 16S rDNA sequence analysis on the Tibetan Plateau. The results suggest that extreme grazing significantly decreased alpine meadow both bacterial gene abundance and diversity index (p < .05). The lowest operational taxonomic unit numbers were 3,012 ± 447 copies under heavy grazing in the growing season. It was significantly lower than heavy grazing with approximately 3,958 ± 119 copies (p < .05). The Shannon index for medium and high grazing grassland bacterial diversity was slightly higher than for light grazing in the growing season. Furthermore, the lowest index was approximately 9.20 ± 0.50 for extreme grazing of grassland in the growing season. The average bacterial gene abundance and diversity index in the dormancy period were slightly higher than that in the growing season. Soil bulk density, pH, ammonium, and nitrate nitrogen were the main positive factors driving grazed grassland bacterial communities. Our study provides insight into the response of alpine meadows to grazing intensity, demonstrating that moderate grazing increases bacterial community diversity in grazed grasslands.  相似文献   

16.
Vegetation dynamics were studied from 1940 to 1978 in two grazed pastures and associated exclosures in sand sagebrush (Artemisia filifolia) dominated grassland, western Oklahoma, USA. In both pastures and one exclosure, pattern of vegetation change reflected fluctuation rather than succession. In the other exclosure, the grassland exhibited a directional change from annual grasses and forbs to dominance by perennial grasses. Rate of change was consistent during the 39 year period. Cover of grasses increased more in grazed than ungrazed areas. Grass cover was negatively correlated with high air temperatures early in the growing season. Forb cover remained relatively constant over time and shrub cover peaked during the 1960s. Abundance of annuals and cool season species was positively correlated with rainfall early in the growing season.Species diversity and richness were lowest in the ungrazed areas, as a result of increased dominance by perennial grasses such as Schizachyrium scoparium. In pastures and exclosures, richness was positively correlated with growing season precipitation. Cover of the common species differed among sample areas within years and fluctuated between years. Few general patterns emerged from correlations of environmental variables with cover of individual species. In general, vegetation dynamics in these sand sagebrush grasslands reflect a tradeoff in that total cover changes little over time because the loss of some species is compensated for by increased growth of others. Such trade-offs reflect the individualistic response of the component species within each pasture or exclosure. Although changes in growth form composition were related to climatic fluctuation, broad-scale climatic variables could not successfully predict small-scale patterns of change by individual species over time.  相似文献   

17.
Abstract ‘Alpine grazing reduces blazing’ is a widely and strongly held view concerning the effects of livestock grazing on fuels, and therefore fire behaviour and impact, in Australia's high country landscapes. As a test of this hypothesis, we examined the patterns of burning across the alpine (treeless) landscapes of the Bogong High Plains in Victoria, following the extensive fires of January 2003. Data were collected from multiple transects, each 3–5 km long, with survey points located randomly at either 50, 200 or 500 m intervals. The transects traversed the major regions of the Bogong High Plains, both grazed and ungrazed. At each point, we recorded whether the point was burnt or unburnt, the vegetation type (closed‐heath, open‐heath, grassland or herbfield), the estimated prefire shrub cover, slope, aspect, and a GPS location. At burnt heathland sites, we recorded the minimum twig diameter (an a posteriori measure of fire severity) in a sample of common shrubs. In total, there were 108 km of transect lines, 419 survey points and 4050 twig measurements, with sample points equally distributed across grazed and ungrazed country. The occurrence of fire (i.e. burnt or unburnt) in grazed and ungrazed areas was analysed by logistic regression; the variation in twig diameters by anova . Approximately half of all points were burnt. There was no statistically significant difference between grazed and ungrazed areas in the proportion of points burnt. Fire occurrence was determined primarily by vegetation type, with the proportion burnt being 0.87 for closed‐heath, 0.59 for open‐heath, and 0.13 for grassland and all snow‐patch herbfield points unburnt. In both closed‐heath and open‐heath, grazing did not significantly lower the severity of fire, as measured by the diameter of burnt twigs. We interpret the lack of a grazing effect in terms of shrub dynamics (little or no grazing effect on long‐term cover of taller shrubs), diet and behaviour of cattle (herbs and dwarf shrubs eaten; tall shrubs not eaten and closed‐heath vegetation generally avoided), and fuel flammability (shrubs more flammable than grass). Whatever effects livestock grazing may have on vegetation cover, and therefore fuels in alpine landscapes, they are likely to be highly localized, with such effects unlikely to translate into landscape‐scale reduction of fire occurrence or severity. The use of livestock grazing in Australian alpine environments as a fire abatement practice is not justified on scientific grounds.  相似文献   

18.
This study evaluates the hypothesis that biological grazing refuges have an important role in plant-grazer interactions of grasslands with a long history of grazing. We assessed the hypothesis that clumps of the spiny cactus Opuntia polyacantha provide biological refuges from cattle grazing, affecting cover and seedhead production of associated vascular plants in the shortgrass steppe of the North America. The study was based on sampling inside and outside Opuntia clumps in eight long-term moderately grazed pastures established 60 yr ago and their respective ungrazed controls. Opuntia clumps provided a refuge for seedhead production of the dominant grass ( Bouteloua gracilis ) and for cover and seedhead production of many plant groups. Clumps were also a refuge for species sensitive to grazing (species that decrease with grazing) and barrel-cacti, but not for species preferred by cattle (species with greater proportion in the diet than in the field), exotics or weeds. Our results suggest that these effects were mainly through changes in the microenvironmental conditions resulting from protection effects, even though all potential microenvironmental effects could not be measured. Cacti promoted some negative effects on other plant groups, probably due to the space occupied by cladodes inside cactus clumps. The refuge effects observed at the group level did not translate into strong community level effects. Species diversity ( H' ) was greater in cactus clumps due to lower dominance rather than greater richness. The presence of Opuntia clumps increased landscape-scale diversity. This ecological role of Opuntia clumps as refuge from cattle grazing should be taken into consideration in management practices aimed at cactus eradication in order to increase forage availability for livestock. We discuss the potential role of plant community productivity and grazing history with regard to the importance of natural refuges in structuring grassland communities.  相似文献   

19.
植物-传粉者相互作用面临人类活动的威胁。在青藏高原地区,放牧是一项主要的人类活动干扰,过度放牧导致高寒草甸植被严重退化。然而在该区域放牧如何影响植物-传粉者相互作用网络还不得而知。在青藏高原东部的高寒草甸选取了两个研究样点,每个样点包括一块禁牧样地(生长季禁牧)和放牧样地(全年放牧)。在2016年至2018年每年的生长季(7月和8月)进行了连续3年观测,共构建16个传粉网络。结果发现,在研究区域的高寒草甸生态系统中,传粉者群落的物种组成以双翅目昆虫为主。放牧后双翅目、鳞翅目以及鞘翅目传粉者的种类数减少,但膜翅目传粉者的种类数未受到放牧的影响。放牧干扰显著降低了群落中植物、传粉者以及它们之间相互作用的多样性,但对传粉网络的嵌套性和特化程度(H2'')没有显著影响,说明网络的稳定性和恢复力没有受到放牧的影响。探讨了放牧对传粉网络的影响,发现区域放牧强度过大,降低了传粉昆虫和传粉网络的多样性。未来需要进一步深入研究高寒草甸生态系统中放牧强度对传粉网络的影响模式,以期为合理的放牧制度模式提供理论依据。  相似文献   

20.
Anthropogenic nutrient enrichment of mountain grasslands has boosted grasses and fast‐growing unpalatable plants at the expense of slow‐growing species, resulting in a significant loss in biodiversity. A potential tool to reduce nutrient availability and aboveground productivity without destroying the perennial vegetation is carbon (C) addition. However, little is known about its suitability under severe climatic conditions. Here, we report the results of a 3‐year field study assessing the effects of sawdust addition on soil nutrients, aboveground productivity, and vegetational composition of 10 grazed and ungrazed mountain grasslands. Of particular interest was the effect of C addition on grasses and on the tall unpalatable weed Veratrum album. After 3 years, soil pH, ammonium, and plant‐available phosphorus were not altered by sawdust application, and nitrate concentrations were marginally higher in treatment plots. However, the biomass of grasses and forbs (without V. album) was 20–25% lower in sawdust‐amended plots, whereas the biomass of V. album was marginally higher. Sawdust addition reduced the cover of grasses but did not affect evenness, vegetation diversity, or plant species richness, although species richness generally increased with decreasing biomass at our sites. Our results suggest that sawdust addition is a potent tool to reduce within a relatively short time the aboveground productivity and grass cover in both grazed and ungrazed mountain grasslands as long as they are not dominated by tall unpalatable weeds. The technique has the advantage that it preserves the topsoil and the perennial soil seed bank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号