首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: A chronic (14-day) study was initiated to investigate the effects of combined fluoxetine (FLU) and desipramine (DMI) treatment on the densities and affinities of β-adrenergic and 5-hydroxytryptamine2 (5-HT2) receptors. Male Sprague-Dawley rats were administered the following doses using osmotic minipumps: FLU, 10 mg/kg/day; DMI, 5, 10, or 15 mg/kg/day; FLU, 10 mg/kg/day, plus DMI, 5 mg/kg/day; or vehicle (distilled water). After 14 days the cortex was dissected out and used for [3H]-ketanserin (5-HT2) binding, [3H]CGP-12177 (β-adrenergic) binding, and drug level analysis. All animals receiving DMI showed significant down-regulation of 5-HT2 receptors except those receiving FLU in combination. DMI down-regulated β-adrenergic receptors in a dose-dependent manner, with significantly greater down-regulation seen with the combination than with DMI (5 mg/kg/day) alone. This latter effect was apparently the result of greater levels of DMI in cortex with the combination than with DMI (5 mg/kg/day) alone. FLU had no effect on 5-HT2 or β-adrenergic receptors on its own. Coadministration of FLU and DMI resulted in a doubling of levels of FLU and its demethylated metabolite, norfluoxetine (NFLU), and a tripling of DMI levels compared with values observed when FLU (10 mg/kg/day) or DMI (5 mg/kg/day) was administered alone. These results suggest that with the DMI/FLU combination (a) FLU and/or NFLU block the down-regulation of 5-HT2 receptors caused by DMI alone, (b) an important factor determining β-adrenergic receptor density may be the elevated DMI levels relative to those with DMI (5 mg/kg/day) alone, (c) FLU and/or NFLU inhibit the metabolism of DMI, and (d) DMI inhibits the metabolism of FLU.  相似文献   

2.
To examine the stereoselectivity of biliary excretion, the optically pure enantiomers of ketoprofen (KT), ibuprofen (IBU), and flurbiprofen (FLU) were intravenously administered to normal and bile duct-cannulated rats at 10 mg/kg. The recovery of total KT in bile was significantly higher after administration of (S)-KT than after (R)-KT [90.1 ± 3.5% vs 68.8 ± 8.2%, n =3, P < 0.05]. In normal rats the terminal half-life of (R)-KT was significantly shorter than that of (S)-KT after administration of (R)-KT (2.2 ± 0.6 h vs 14.3 ± 4.9 h, n = 3, P < 0.05). The terminal half-life of both enantiomers was significantly shorter in rats with continuous bile drainage as compared to normal rats. No significant differences in pharmacokinetic parameters could be found between both enantiomers in bile duct-cannulated animals. The total amount of IBU in bile was slightly higher after administration of (S)-IBU than after (R)-IBU administration. The percentage of (R)-IBU after (R)-IBU administration, however, was very low [(R)-IBU: 1.5 ± 0.9%, (S)-IBU: 23.4 ± 5.8%]. In normal rats the clearance of (R)-IBU was significantly higher as compared to (S)-IBU. Differences in pharmacokinetic parameters between normal and bile duct-cannulated rats were not statistically significant due to high interindividual variability. The total recovery of FLU, which was excreted in bile to a lower extent than either KT or IBU, also tended to be greater after S-enantiomer administration. Only small amounts of (S)-FLU could be recovered in bile after (R)-FLU administration. The pharmacokinetic parameters did not differ significantly between (R)- and (S)-FLU or between normal and bile duct-cannulated rats due to its low inversion rate and low excretion via bile. © 1993 Wiley-Liss, Inc.  相似文献   

3.
The single-dose kinetics of the enantiomers of citalopram (CIT) and its metabolites, demethylcitalopram (DCIT) and didemethylcitalopram (DDCIT), were investigated after administration of 10, 20, or 100 mg/kg (s.c.) rac-CIT to rats. Samples from serum and two brain regions were collected 1, 3, 10, or 20 h postdose for HPLC analysis. In the 100 mg/kg rats, the enantiomeric (S/R) serum concentration ratios of CIT decreased during the study period (0.93 at 1 h vs. 0.59 at 20 h; P < 0.001). In the 10 and 20 mg/kg rats, the decrease in serum S/R CIT ratios was not so evident as in the 100 mg/kg rats. In all three groups the S/R CIT ratio was almost the same in the brain as in serum, although both CIT enantiomer levels in the brain were found to be 5-10 times higher than the levels in serum. The serum and brain metabolite levels were low in the 10 and 20 mg/kg rats, whereas the levels increased during the study period in the 100 mg/kg rats. In conclusion, the CIT enantiomers were shown for the first time to be stereoselectively metabolized after single-dose administration to rats, as previously shown in steady-state dosing studies in humans and rats.  相似文献   

4.
Reboxetine, (RS)-2-[(RS)-α-(2-ethoxyphenoxy)benzyl]morpholine methanesulphonate, is a racemic compound and consists of a mixture of the (R,R)- and (S,S)-enantiomers. In this study, brain and plasma levels of both enantiomers were determined in mice and rats after oral administration of reboxetine at doses (1.1 mg/kg, mouse; 20 mg/kg, rat) twice the respective ED50 values in the antireserpine test. Plasma and brain concentrations of each enantiomer were measured up to 6 h postdosing using an HPLC method with fluorimetric detection after derivatization with a chiral agent (FLEC). In mice and rats, brain and plasma levels of the (R,R)-enantiomer were always higher than those of the (S,S)-enantiomer. After normalization for dose, the mean AUC0-tz values of both the (R,R)- and (S,S)-enantiomers in mouse brain were about 23 and 32 times higher than in rat brain, respectively. In plasma, the corrected mean AUC0-tz values were about 5 (R,R) and 10 (S,S) times higher in mice than in rats. These results provide evidence for the higher bioavailability and/or lower clearance of both enantiomers in mice than in rats, and for a higher penetration of both enantiomers into mouse brain compared to rat brain. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Yoshitake T  Kehr J 《Life sciences》2004,74(23):2865-2875
The effects of (R)- and (S)-optical isomers of 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) and of the racemate (R,S)-8-OH-DPAT on serotonin (5-HT) release in the ventral hippocampus of awake rats and on induction of the whole-body hypothermia were studied. Extracellular 5-HT levels were determined by a newly developed high-sensitive HPLC method based on derivatization with benzylamine and fluorescence detection. The basal levels of 5-HT in 20 min microdialysates from rats perfused with Ringer solution or with Ringer solution containing 1 microM citalopram were 6.3 +/- 1.3 fmol/20 microl and 36.1 +/- 4.2 fmol/20 microl (n=20), respectively. The reduction of hippocampal 5-HT levels induced by subcutaneous (s.c.) administration of (R,S)-8-OH-DPAT (0.3 mg/kg) was significantly attenuated by the presence of 5-HT reuptake inhibitor citalopram in Ringer solution only at its peak value at 40 min (maximal reduction to 60% compared to 46% of control values in Ringer-perfused rats), whereas the overall effects were comparable at both experimental conditions. Injection of (R)-8-OH-DPAT (0.3 mg/kg s.c.) caused further reduction of 5-HT levels, to 49% and 41%, respectively, whereas (S)-8-OH-DPAT (0.3 mg/kg s.c.) caused maximal reduction of 5-HT levels only to 74% of controls in both perfusion groups. Similar pattern and time-courses were observed in rats with hypothermia induced by injection of 8-OH-DPAT enantiomers, where (R,S), (R)-forms were about two-times more potent than the (S)-isomer. It is concluded that the acute systemic dose of (R)-, (S)- and (R,S)-8-OH-DPAT enantiomers exerted enantiomer-specific effects on 5-HT(1A) receptor-mediated function both at the presynaptic and postsynaptic sites as revealed by monitoring hippocampal 5-HT levels and body temperature.  相似文献   

6.
Stereoselective disposition of ibuprofen and flurbiprofen in rats   总被引:1,自引:0,他引:1  
(R)-2-Arylpropionates are often inverted to the pharmacologically active S-enantiomers in vivo, although there is significant interspecies variability in inversion. In order to provide a basis for determining the biochemical consequences of this unique process using rats as a model, it was important to establish the pharmacokinetic disposition of the enantiomers of ibuprofen, a drug well inverted in man and flurbiprofen, a drug apparently poorly inverted in man. Rats were dosed i.v. with a single dose of (R)- or (S)-ibuprofen (20 mg/kg), (R,S)-ibuprofen (40 mg/kg), (R)- or (S)-flurbiprofen (10 mg/kg), or (R,S)-flurbiprofen (20 mg/kg). Each treatment group consisted of six animals. Serial blood samples were withdrawn over a period of 6 h for ibuprofen and 10 h for flurbiprofen. These drugs were assayed in plasma by a stereospecific HPLC assay. The pharmacokinetics of the ibuprofen and flurbiprofen enantiomers were evaluated using a two-compartment open model with conversion of the R- to S-enantiomers in the central compartment. There was 50 +/- 4% inversion of (R)-ibuprofen, a figure similar to that observed in man and (R)-ibuprofen had a higher clearance (12.6 +/- 1.3 ml/min/kg) than (S)-ibuprofen (7.7 +/- 0.7 ml/min/kg; P less than 0.01). The clearance of (R)-flurbiprofen after racemate (2.3 +/- 0.1 ml/min/kg) was higher than its clearance when administered alone (1.7 +/- 0.2 ml/min/kg; P less than 0.01), indicating a pharmacokinetic interaction between the enantiomers (most probably at plasma protein binding sites). A corresponding difference was not observed for ibuprofen. There was a small amount of inversion of (R)-flurbiprofen as determined by area analysis (4.5 +/- 1.6%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The significance of disturbances of lipid metabolism caused by xenobiotic acyl-CoAs as possible causes of peroxisomal proliferation has been studied with the enantiomers of 2-phenylpropionic acid (2-PPA), the (R)-enantiomer of which is converted to the acyl-CoA in rats while its (S)-antipode is not. rac-2-PPA (250 mg/kg/day ip × 3) was shown to be an hepatic peroxisomal proliferator in male Sprague–Dawley rats on the basis of increases in microsomal cytochrome P-450 content and lauric acid hydroxylation and hepatic CN?-insensitive palmitoyl-CoA oxidation, a peroxisomal marker activity, while electron microscopy revealed a rise in the peroxisome/mitochondria ratio in hepatocytes. Further studies established the dose–response relationships for these biochemical changes. The (R)- and (S)-enantiomers were administered at a dose of 50 mg/kg/day ip × 3 and both were peroxisome proliferators of very similar potency. The effects of 100 mg/kg/day ip × 3 of the racemate, a dose giving ca. 75% of maximal response, were essentially additive of those of 50 mg/kg/day ip × 3 of its two component isomers. The stereoselectivity of acyl-CoA formation from the enantiomers of 2-PPA was confirmed by their differential inhibition of microsomal palmitoyl-CoA synthesis. Taken together, these data indicate that it is very unlikely that the acyl-CoA of 2-PPA plays any role in the peroxisomal proliferation which this compound causes in the rat. © 1994 Wiley-Liss, Inc.  相似文献   

8.
To determine the stereospecific pharmacokinetics and gastrointestinal permeability (GI) changes (surrogate measures of toxicity) in the rat following oral administration of S, R, and racemic ketorolac (KT), optically pure enantiomers (S and R 2.5 mg/kg), and racemic KT (5 mg/kg) were administered orally to male Sprague-Dawley rats and plasma samples were collected for 6 h post-dose for pharmacokinetic assessments. KT-induced changes in GI permeability were assessed using sucrose and 51Cr-EDTA as markers of gastroduodenal and distal intestinal permeability, respectively. After the racemate, R-KT was predominant in plasma (AUC S/R, 0.45). No significant differences in pharmacokinetic indices were evident following administration of the racemate as compared with individual enantiomers. In plasma, there was only negligible S-KT after administration of R-KT. After S-KT, on the other hand, AUC of R-KT was found to be 6.7% of that of S-KT. Both permeability markers showed considerable interanimal variability. Gastroduodenal permeability was significantly increased from baseline by the racemate but not by either of the two enantiomers administered alone. Permeability to 51Cr-EDTA was not significantly increased above baseline for any of the treatments. The plasma concentration of R-KT found after administration of S-KT may be from the < 2% chiral impurity which appears magnified due to its slower clearance as compared with its antipode. There is no evidence of a pharmacokinetic interaction between the enantiomers. Since 2.5 mg/kg S-KT is somewhat less toxic on the gastroduodenum than 5 mg/kg racemate, it may be a safer alternative to the latter, at least in the rat model.  相似文献   

9.
Reboxetine, (RS)-2-[(RS)-α-(2-ethoxyphenoxy)benzyl]morpholine methanesulphonate, is a racemic compound and consists of a mixture of the (R,R)- and (S,S)-enantiomers. The pharmacokinetics of reboxetine enantiomers were determined in a crossover study in three male beagle dogs. Each animal received the following oral treatments, separated by 1-week washout period: 10 mg/kg reboxetine, 5 mg/kg (R,R)- and 5 mg/kg (S,S)-. Plasma and urinary levels of the reboxetine enantiomers were monitored up to 48 h post-dosing using an enantiospecific HPLC method with fluorimetric detection (LOQ: 1.1 ng/ml in plasma and 5 ng/ml in urine for each enantiomer). After reboxetine administration mean tmax was about 1 h for both enantiomers. Cmax and AUC were about 1.5 times higher for the (R,R)- than for the (S,S)-enantiomer, mean values ± SD being 704 ± 330 and 427 ± 175 ng/ml for Cmax and 2,876 ± 1,354 and 1,998 ± 848 ng.h/ml for AUC, respectively. No differences between the (R,R)- and (S,S)-enantiomers were observed in t½ (3.9 h). Total recovery of the two enantiomers in urine was similar, the Ae (0–48 h) being 1.3 ± 0.7 and 1.1 ± 0.7% of the enantiomer dose for the (R,R)- and the (S,S)-enantiomers, respectively. No marked differences in the main plasma pharmacokinetic parameters were found for either enantiomer on administration of the single enantiomers or reboxetine. No chiral inversion was observed after administration of the separate enantiomers, as already observed in humans. Chirality 9:303–306, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
In order to evaluate the biochemical modifications induced by hormonal treatments on human prostatic tissue, the intracellular distribution of tissue DHT and AR were investigated in BPH patients untreated and treated (25-30 days before surgery) with the association of cyproterone acetate (CPA), 100 mg p.o./day plus tamoxifen (TAM), 100 mg p.o./day, or with flutamide (FLU) alone, 750 mg p.o./day. Dextran-coated charcoal and exchange assay in the presence of sodium molybdates (0.2 M) were used for AR determination, employing methyltrienolone as radioligand in the presence of triamcinolone acetonide. Endogenous DHT was measured by RIA, after ether extraction and purification on celite microcolumns. The treatment with CPA plus TAM led to a detection of cytosol AR (ARc) in 50% of the specimens, while nuclear AR (ARn) were never measurable. The FLU treatment did not modify the incidence of ARc, while ARn was not detectable. The cytosolic and nuclear compartmentalization of DHT was scarcely affected by the combined CPA plus TAM treatment, while FLU treatment induced a prevalent cytosolic localization of DHT (DHTc = 283.2 +/- 24.6 S.E. and DHTn = 1138.4 +/- 98.7 S.E. pg/mg DNA in untreated patients; DHTc = 350.4 +/- 97.7 S.E. and DHTn = 589.7 +/- 154.4 S.E. pg/mg DNA in CPA plus TAM treated patients; DHTc = 1101.7 +/- 165.7 S.E. and DHTn = 733.0 +/- 93.9 S.E. pg/mg DNA in FLU treated patients). Both medical treatments, therefore, were able to reduce prostatic growth on account of the reduced value of nuclear DHT content.  相似文献   

11.
Studies to characterize the pharmacokinetics of the enantiomers of MDMA were conducted in rats using the iliac arterial cannulation. Two routes of administration, intravenous and subcutaneous, were evaluated at two dose levels for each route [20 and 40 mg/kg (+/-)-MDMA for subcutaneous, 10 and 20 mg/kg (+/-)-MDMA for intravenous administrations]. The average half-life (+/- SD) for all dosing groups was 2.5 +/- 0.8 h for (-)-(R)-MDMA and 2.2 +/- 0.8 h for (+)-(S)-MDMA. The more rapid clearance of (+)-(S)-MDMA compared with (-)-(R)-MDMA is consistent with the area under the curve (AUC) data of the parent drug and its primary metabolite MDA. The mean (+/- SD) AUC S/R ratios of MDMA and MDA were 0.70 +/- 0.05 and 3.1 +/- 0.8, respectively. Following a 20 mg/kg dose of racemic MDMA iv the mean (+/- SD) of the percent dose excreted as (-)-(R)-MDMA, (+)-(S)-MDMA, (-)-(R)-MDA, and (+)-(S)-MDA were 20 +/- 10, 12 +/- 6, 3 +/- 1, and 6 +/- 2, respectively.  相似文献   

12.
Sodium valproate(VPA), ethosuximide(ESM), 200 mg/kg ip and flunarizine (FLU) 5 or 10 mg/kg ip were first administered independently to rats in order to study their effects on behavioural and EEG aspects of spike and wave discharges (SWDs) induced by y- hydroxybutyrate (GHB,100 mg/kg ip). GHB treated rats show behavioural changes and concomitant repetitive EEG episodes of 7 to 9 Hz SWDs, mimicking human absence seizures (AS), and can be used as a pharmacological model. The number and duration of SWDs were calculated for 1 hr from the EEG and were parameters for drug evaluation. VPA and ESM at 200 mg/kg, significantly reduced SWD number and duration/hr, while FLU showed significant reduction only at 10 but not at 5 mg/kg. Combination of FLU, 10 mg/kg with either VPA or ESM showed significant reduction of SWD number and duration, suggesting an additive effect of the anti-absence agents with the calcium channel blocker, FLU, on experimental absence seizures in rats.  相似文献   

13.
We recently reported that the ED50 value for (R,S)-2,3-dimethoxypropionamide (1) in the maximal electroshock (MES)-induced seizure test in mice was 30 mg/kg (Choi, D.; Stables, J.P., Kohn, H. Bioorg. Med. Chem. 1996, 4, 2105). This value is comparable to that observed for phenobarbital (ED50 = 22 mg/kg). Compound 1 is structurally similar to a class of MES-selective anticonvulsant agents, termed functionalized amino acids (2), that were developed in our laboratory. The distinguishing feature of 2 is the differential activities observed for enantiomers. In this study, we asked whether comparable differences in activities were observed in the MES-induced seizure test for (R)- and (S)-1. We developed stereospecific syntheses for these enantiomers and showed that both compounds exhibit nearly equal anticonvulsant activity in mice (i.p.) (MES ED50 = 79-111 mg/kg). The surprisingly high ED50 values for (R)- and (S)-1 required our redetermining the ED50 value for (R,S)-1. We revised this value to 79 mg/kg. A limited structure-activity relationship study for 1 was conducted. Special attention was given to the C(2) methoxy unit in 1. We found that replacement of this moiety led to only modest differences in the MES activities upon ip administration to mice. Significantly, we observed an enhancement in the anticonvulsant activity for (R,S)-N-benzyl 2-hydroxy-3-methoxypropionamide ((R,S)-6) upon oral administration to rats ((R,S)-6: mice (i.p.) ED50 > 100, < 300 mg/kg; rat (oral) ED50 = 62 mg/kg). The activities of 3-methoxypropionamides, functionalized amino acids, and related compounds are discussed.  相似文献   

14.
Citalopram (CITA) is available as a racemic mixture and as a pure enantiomer. Its antidepressive action is related to the (+)-(S)-CITA and to the metabolite (+)-(S)-demethylcitalopram (DCITA). In the present investigation, a method for the analysis of CITA and DCITA enantiomers in human and rat plasma was developed and applied to the study of pharmacokinetics. Plasma samples (1 ml) were extracted at pH 9.0 with toluene:isoamyl alcohol (9:1, v/v). The CITA and DCITA enantiomers were analyzed by LC-MS/MS on a Chiralcel OD-R column. Recovery was higher than 70% for both enantiomers. The quantification limit was 0.1 ng/ml, and linearity was observed up to 500 ng/ml plasma for each CITA and DCITA enantiomer. The method was applied to the study of the kinetic disposition of CITA administered in a single oral dose of 20 mg to a healthy volunteer and in a single dose of 20 mg/kg (by gavage) to Wistar rats (n = 6 for each time). The results showed a higher proportion of the (-)-(R)-CITA in human and rat plasma, with S/R AUC ratios for CITA of 0.28 and 0.44, respectively. S/R AUC ratios of DCITA were 0.48 for rats and 1.04 for the healthy volunteer.  相似文献   

15.
The effect of a drug-specific antibody on desipramine (DMI) cardiotoxicity was studied in rats. Animals were pretreated i.v. with 4.2 g/kg of a monoclonal antibody (anti-TCA) followed by DMI HCl 30 mg/kg i.p. (molar ratio of anti-TCA binding sites to DMI = 0.56). Peak QRS complex prolongation was substantially lower after pretreatment with anti-TCA than after control antibody (70 +/- 14 v. 21 +/- 4%, p less than 0.001). Time to peak toxicity was the same in both groups. Binding of DMI by anti-TCA was demonstrated by a higher serum total DMI concentration and increased DMI binding in serum after anti-TCA compared to controls. The DMI concentration in anti-TCA treated animals was lower in some organs (brain, lung, liver, spleen), but not in others (heart, muscle, kidney, fat). The calculated fraction of the DMI dose bound by anti-TCA was 19.9%. The steepness of the DMI dose-response curve was examined by administering DMI alone (without antibody) at various doses to rats. Compared to 30 mg/kg DMI, a dose reduction of 30-50% was needed to reduce QRS duration to the same extent as anti-TCA pretreatment. We conclude that DMI cardiotoxicity was markedly reduced by the binding of a relative small fraction of the DMI body burden to anti-TCA. This disproportionate effect of DMI binding was not due to the steepness of the DMI dose-response curve, nor to slowing of the rate of DMI distribution to tissues.  相似文献   

16.
Conscious male Wistar SPF Riv:TOX rats were dosed intravenously with 2.5, 5, or 10 mg/kg rac-propranolol·HCl, or with 5 mg/kg of either (-)-(S)- or (+)-(R)-propranolol·HCl. Disposition of (-)-(S)- and (+)-(R)-propranolol after dosing of rac-propranolol was linear in the dose range examined. Total plasma clearance was not changed in animals dosed with the individual enantiomers compared to the animals that were dosed with rac-propranolol. However, for (-)-(S)-propranolol both volume of distribution and elimination half-life decreased, whereas for (+)-(R)-propranolol increases were observed for these characteristics, in animals dosed with the individual enantiomers. Our observations suggest that the (+)-(R)-enantiomer competes with (-)-(S)-propranolol for plasma protein binding sites, resulting in lower plasma protein binding of the (-)-(S)-enantiomer when the racemate is administered. From recent toxicological experiments, it was concluded that rac-propranolol is more toxic than the individual enantiomers in the rat, when dosed iv at the same total mass. It is concluded that the observed potentiation of toxic effects of propranolol enantiomers when administered as a racemate can at least partly be explained by a pharmacokinetic interaction. © 1995 Wiley-Liss, Inc.  相似文献   

17.
A practical asymmetric synthesis of both enantiomers of the immunosuppressive FTY720-phosphate (2) was accomplished, and the enantiomers were pharmacologically evaluated. Several lipases showed considerable activity and enantioselectivity for O-acylation of N-acetyl FTY720 (3) or N-benzyloxycarbonyl FTY720 (7) in combination with vinyl acetate or benzyl vinyl carbonate as the acyl donors. The synthesis using the lipase-catalyzed acylation as the key step produced the enantiomerically pure (>99.5% ee) enantiomers of 2 in multigram quantities. (S)-Isomer of 2 had more potent binding affinities to S1P(1,3,4,5) and inhibitory activity on lymphocyte migration toward S1P than (R)-2, suggesting that (S)-isomer of 2 is responsible for the immunosuppressive activity after administration of 1. Severe bradycardia was observed in anesthetized rats when (S)-2 was administered intravenously, while (R)-2 had no clear effect on heart rate up to 0.3 mg/kg.  相似文献   

18.
The intravenous (0.5 mg/kg) and oral (5 mg/kg) dose kinetics of verapamil were studied in 6 dogs during steady-state oral verapamil dosing (5 mg/kg every 8 h for 3 days). Racemic verapamil and norverapamil, a metabolite of verapamil, were quantitated in plasma by HPLC-fluorescence detection. The verapamil peaks eluting off the column were collected and rechromatographed on an Ultron-OVM column, which resolved the two verapamil enantiomers. After intravenous administration, the systemic clearance and apparent volume of distribution of (?)-(S)-verapamil were nearly twice that of the (+)-(R)-isomer. There was no difference in the elimination half-lives between the two isomers. After oral administration, the oral clearance of (?)-(S)-verapamil was 20 times that of the (+)-(R)-isomer. The apparent bioavailability of (+)-(R)-verapamil was over 14 times that of (?)-(S)-verapamil. The plasma protein binding of the (+)-(R)-isomer was slightly higher by 5% than (?)-(S)-verapamil; however, this effect was not enough to account for the difference between the apparent volume of distribution of the enantiomers, indicating that the tissue binding of (?)-(S)-verapamil was greater than that of the (+)-(R)-isomer. This data on the disposition of the enantiomers of verapamil in the dog is similar to that reported for man and demonstrates that the dog may be an appropriate animal model for man in future studies on the disposition of the enantiomers of verapamil. © 1993 Wiley-Liss, Inc.  相似文献   

19.
The enantioselective pharmacokinetics of TJ0711 hydrochloride were studied in rats given different doses of rac‐TJ0711 hydrochloride via intravenous and oral routes. R‐ and S‐TJ0711 hydrochloride were both rapidly absorbed, and the average AUC0‐∞ of R‐TJ0711 hydrochloride was greater than that of S‐TJ0711 hydrochloride after intragastric administration, with an R/S AUC ratio 1.11 and 1.35 for 30 and 50 mg/kg dose group, respectively. In contrast, the average AUC0‐∞ of R‐TJ0711 hydrochloride was smaller than that of S‐TJ0711 hydrochloride after intravenous injection, with an R/S AUC ratio 0.57 and 0.73 for 10 and 20 mg/kg dose group, respectively. R‐TJ0711 hydrochloride plasma half‐lives were shorter than those of S‐TJ0711 hydrochloride for all groups. AUC0‐4h and Cmax between the two enantiomers were significantly different after oral administration of 50 mg/kg dose of the racemate, while no significant differences between the two enantiomers were found for all the pharmacokinetic parameters of the 30 mg/kg dose group. Significant differences between the two enantiomers were detected for nearly all the pharmacokinetic parameters after intravenous administration, except for the VZ of 20 mg/kg dose group. This study suggests that dose and route of administration will influence the enantioselectivity in the pharmacokinetics of TJ0711 hydrochloride in rats. Chirality 27:53–57, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
S J Liu  R I Wang 《Life sciences》1985,36(8):745-751
Rats given 2-day oral administration of methadone (15 mg/kg, twice on day 1 and once on day 2) by gastric tube developed dispositional tolerance to methadone analgesia as demonstrated by a decrease in analgesic response and by an increase in methadone metabolism. The increased metabolism of methadone was evidenced by a decrease in brain concentration of 14C-methadone and increases in the percentages of total 14C in liver or urine as 14C-water-soluble metabolites (14C-WSM) after the rats were challenged with a test dose of 14C-methadone. Two-day pretreatment with a combination of desipramine (DMI) (10 mg/kg, ip) and methadone (15 mg/kg, po) enhanced the development of dispositional tolerance to methadone analgesia which was evidenced by a greater decrease in the brain concentration of methadone and a greater increase in methadone metabolism as compared to those changes in rats pretreated with only methadone. Repeated treatment with DMI alone neither decreased the analgesic effect of methadone nor stimulated methadone metabolism. It is suggested that DMI given together with methadone promoted the induction of methadone metabolism in the liver by prolonging the enzyme-stimulating state of methadone, thus enhancing the development of dispositional tolerance to methadone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号