首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The third phase of Wright's shifting-balance theory involves the export of adaptive gene combinations from one subpopulation to another. Previous results have demonstrated that this can occur at very low migration rates, but it has been argued that this simply reflects the ability of migration to overcome selection and fix any (even deleterious) alleles. Here, previous analyses are extended by concentrating on the critical balance between forward and reverse migration rates that still allows phase III to proceed. It is shown that selective advantage, dominance, recombination rate, and the number of loci all affect the ability of a genotype to invade and become fixed in a new subpopulation, but it is unlikely that phase III will occur in the absence of differential migration unless the invading genotype consists of a few dominant loci with a large selection advantage, spreading into a few populations of lower fitness. Therefore, as was envisioned by Wright, differential migration from more to less fit populations will be necessary for phase III to occur under most circumstances.  相似文献   

2.
    
For a quantitative trait under stabilizing selection, the effect of epistasis on its genetic architecture and on the changes of genetic variance caused by bottlenecking were investigated using theory and simulation. Assuming empirical estimates of the rate and effects of mutations and the intensity of selection, we assessed the impact of two‐locus epistasis (synergistic/antagonistic) among linked or unlinked loci on the distribution of effects and frequencies of segregating loci in populations at the mutation‐selection‐drift balance. Strong pervasive epistasis did not modify substantially the genetic properties of the trait and, therefore, the most likely explanation for the low amount of variation usually accounted by the loci detected in genome‐wide association analyses is that many causal loci will pass undetected. We investigated the impact of epistasis on the changes in genetic variance components when large populations were subjected to successive bottlenecks of different sizes, considering the action of genetic drift, operating singly (D), or jointly with mutation (MD) and selection (MSD). An initial increase of the different components of the genetic variance, as well as a dramatic acceleration of the between‐line divergence, were always associated with synergistic epistasis but were strongly constrained by selection.  相似文献   

3.
4.
5.
We explored the extent to which the soil seed bank differed genetically and spatially in comparison to two actively growing stages in a natural population of Plantago lanceolata. All seed-bank seeds, seedlings, and adults of P. lanceolata within eight subunits in a larger population were mapped, subjected to starch gel electrophoresis, and allozyme analysis in 1988. Gel electrophoresis was also used to estimate the mating system in two years, 1986 and 1988. The spatial distributions of seeds, seedlings, and adults were highly coincident. Allele frequencies of the dormant seeds differed significantly from those of the adults for four of the five polymorphic loci. In addition, a comparison of the genotype frequencies of the three life-history stages indicated that the seed bank had an excess of homozygotes. Homozygosity, relative to Hardy-Weinberg expectations, decreased during the life cycle (for seed bank, seedlings, and adults respectively: Fit = 0.19, 0.09, 0.01; Fis = 0.14, 0.04, -0.12). Spatial genetic differentiation increased sixfold during the life cycle: (for seed bank, seedling and adults: Fs1??? = 0.02, 0.05, 0.12). The apparent selfing rate was 0.01 in 1986 and 0.09 in 1988. These selfing rates are not large enough to account for the elevated homozygosity of the seed bank. Inbreeding depression, overdominance for fitness, and a “temporal Wahlund's effect” are discussed as possible mechanisms that could generate high homozygosity in the seed bank, relative to later life-history stages. In Plantago lanceolata, the influence of the mating system and the “genetic memory” of the seed bank are obscured by the time plants reach the reproductive stage.  相似文献   

6.
    
Inbreeding is known to reduce heterozygosity of neutral genetic markers, but its impact on quantitative genetic variation is debated. Theory predicts a linear decline in additive genetic variance (V(A)) with increasing inbreeding coefficient (F) when loci underlying the trait act additively, but a nonlinear hump-shaped relationship when dominance and epistasis are important. Predictions for heritability (h2) are similar, although the exact shape depends on the value of h2 in the absence of inbreeding. We located 22 published studies in which the level of genetic variation in experimentally inbred populations (measured by V(A) or h2) was compared with that in outbred control populations. For life-history traits, the data strongly supported a nonlinear change in genetic variation with increasing F. V(A) and h2 were, respectively, 244% and 50% higher at F = 0.4 than in outbred populations, and dominance plus epistatic variance together exceeded additive variance by a factor of four. For nonfitness traits the decline was linear and estimates of nonadditive variance were small. These results confirm that population bottlenecks frequently increase V(A) in some traits, and imply that life-history traits are underlain by substantial dominance or epistasis. However, the importance of drift-induced genetic variation in conservation or evolutionary biology is questionable, in part because inbreeding depression usually accompanies inbreeding.  相似文献   

7.
Relating geographic variation in quantitative traits to underlying population structure is crucial for understanding processes driving population differentiation, isolation and ultimately speciation. Our study represents a comprehensive population genetic survey of the yellow dung fly Scathophaga stercoraria, an important model organism for evolutionary and ecological studies, over a broad geographic scale across Europe (10 populations from the Swiss Alps to Iceland). We simultaneously assessed differentiation in five quantitative traits (body size, development time, growth rate, proportion of diapausing individuals and duration of diapause), to compare differentiation in neutral marker loci (F(ST)) to that of quantitative traits (Q(ST)). Despite long distances and uninhabitable areas between sampled populations, population structuring was very low but significant (F(ST) = 0.007, 13 microsatellite markers; F(ST) = 0.012, three allozyme markers; F(ST) = 0.007, markers combined). However, only two populations (Iceland and Sweden) showed significant allelic differentiation to all other populations. We estimated high levels of gene flow [effective number of migrants (Nm) = 6.2], there was no isolation by distance, and no indication of past genetic bottlenecks (i.e. founder events) and associated loss of genetic diversity in any northern or island population. In contrast to the low population structure, quantitative traits were strongly genetically differentiated among populations, following latitudinal clines, suggesting that selection is responsible for life history differentiation in yellow dung flies across Europe.  相似文献   

8.
    
Interdemic selection by the differential migration of individuals out from demes of high fitness and into demes of low fitness (Phase III) is one of the most controversial aspects of Wright's Shifting Balance Theory. I derive a relationship between Phase III migration and the interdemic selection differential, S, and show its potential effect on FST. The relationship reveals a diversifying effect of interdemic selection by Phase III migration on the genetic structure of a metapopulation. Using experimental metapopulations, I explored the effect of Phase III migration on FST by comparing the genetic variance among demes for two different patterns of migration: (1) island model migration and (2) Wright's Phase III migration. Although mean migration rates were the same, I found that the variance among demes in migration rate was significantly higher with Phase III than with island model migration. As a result, FST for the frequency of a neutral marker locus was higher with Phase III than it was with island model migration. By increasing FST, Phase III enhanced the genetic differentiation among demes for traits not subject to interdemic selection. This feature makes Wright's process different from individual selection which, by reducing effective population size, decreases the genetic variance within demes for all other traits. I discussed this finding in relation to the efficacy of Phase III and random migration for effecting peak shifts, and the contribution of genes with indirect effects to among‐deme variation.  相似文献   

9.
We apply new analytical methods to understand the consequences of population bottlenecks for expected additive genetic variance. We analyze essentially all models for multilocus epistasis that have been numerically simulated to demonstrate increased additive variance. We conclude that for biologically plausible models, large increases in expected additive variance--attributable to epistasis rather than dominance--are unlikely. Naciri-Graven and Goudet (2003) found that as the number of epistatically interacting loci increases, additive variance tends to be inflated more after a bottleneck. We argue that this result reflects biologically unrealistic aspects of their models. Specifically, as the number of loci increases, higher-order epistatic interactions become increasingly important in these models, with an increasing fraction of the genetic variance becoming nonadditive, contrary to empirical observations. As shown by Barton and Turelli (2004), without dominance, conversion of nonadditive to additive variance depends only on the variance components and not on the number of loci per se. Numerical results indicating that more inbreeding is needed to produce maximal release of additive variance with more loci follow directly from our analytical results, which show that high levels of inbreeding (F > 0.5) are needed for significant conversion of higher-order components. We discuss alternative approaches to modeling multilocus epistasis and understanding its consequences.  相似文献   

10.
    
Inbreeding depression resulting from partially recessive deleterious alleles is thought to be the main genetic factor preventing self-fertilizing mutants from spreading in outcrossing hermaphroditic populations. However, deleterious alleles may also generate an advantage to selfers in terms of more efficient purging, while the effects of epistasis among those alleles on inbreeding depression and mating system evolution remain little explored. In this article, we use a general model of selection to disentangle the effects of different forms of epistasis (additive-by-additive, additive-by-dominance, and dominance-by-dominance) on inbreeding depression and on the strength of selection for selfing. Models with fixed epistasis across loci, and models of stabilizing selection acting on quantitative traits (generating distributions of epistasis) are considered as special cases. Besides its effects on inbreeding depression, epistasis may increase the purging advantage associated with selfing (when it is negative on average), while the variance in epistasis favors selfing through the generation of linkage disequilibria that increase mean fitness. Approximations for the strengths of these effects are derived, and compared with individual-based simulation results.  相似文献   

11.
This work presents a new approach to Muller's ratchet, where Haigh's model is approximately mapped into a simpler model that describes the behaviour of a population after a click of the ratchet, i.e., after loss of what was the fittest class. This new model predicts the distribution of times to the next click of the ratchet and is equivalent to a Wright-Fisher model for a population of haploid asexual individuals with one locus and two alleles. Within this model, the fittest members of a population correspond to carriers of one allele, while all other individuals have suboptimal fitness and are represented as carriers of the other allele. In this way, all suboptimal fitness individuals are amalgamated into a single “mutant” class.The approach presented here has some limitations and the potential for improvement. However, it does lead to results for the rate of the ratchet that, over a wide range of parameters, are accurate within one order of magnitude of simulation results. This contrasts with existing approaches, which are designed for only one or other of the two different parameter regimes known for the ratchet and are more accurate only in the parameter regime they were designed for.Numerical results are presented for the mean time between clicks of the ratchet for (i) the Wright-Fisher model, (ii) a diffusion approximation of this model and (iii) individually based simulations of a full model. The diffusion approximation is validated over a wide range of parameters by its close agreement with the Wright-Fisher model.The present work predicts that: (a) the time between clicks of the ratchet is insensitive to the value of the selection coefficient when the genomic mutation rate is large compared with the selection coefficient against a deleterious mutation, (b) the time interval between clicks of the ratchet has, approximately, an exponential distribution (or its discrete analogue). It is thus possible to determine the variance in times between clicks, given the expected time between clicks. Evidence for both (a) and (b) is seen in simulations.  相似文献   

12.
Seed banks are an important component of many plant populations, but few empirical studies have investigated the genetic relationship between soil seeds and surface plants. We compared the genetic structure of soil seeds and surface plants of the desert mustard Lesquerella fendleri within and among five ecologically diverse populations at the Sevilleta National Wildlife Refuge in Central New Mexico. At each site, 40 Lesquerella surface plants and 40 samples of soil seeds were mapped and genetically analyzed using starch gel electrophoresis. Overall allele frequencies of soil seeds and surface plants showed significant differences across the five populations and within three of the five individual populations. Surface plants had significantly greater amounts of single and multilocus heterozygosity, and mean surface plant heterozygosity was also greater at the total population level and in four of the five individual populations. Overall soil seed (bot not surface plant) homozygosity was significantly greater than predicted by Hardy-Weinberg expectations at the total and individual population levels. Although F-alpha estimates revealed similarly small but significant genetic divergence within each life-history stage, estimates of coancestry showed that fine-scale (0.5-2 m) genetic correlations among the surface plant genotypes were roughly twice those of soil seed genotypes. An unweighted pair group method with arithrnetic mean cluster analysis indicated that in the two geographically closest sites, the surface plants were slightly more genetically similar to each other than to their own respective seed banks. We also found weak and/or negative demographic associations between Lesquerella soil seed and surface plant densities within each of the five sites. We discuss the difficulties involved with sampling and genetically comparing these two life-history stages.  相似文献   

13.
    
Effective population size is a fundamental parameter in population genetics, evolutionary biology, and conservation biology, yet its estimation can be fraught with difficulties. Several methods to estimate Ne from genetic data have been developed that take advantage of various approaches for inferring Ne. The ability of these methods to accurately estimate Ne, however, has not been comprehensively examined. In this study, we employ seven of the most cited methods for estimating Ne from genetic data (Colony2, CoNe, Estim, MLNe, ONeSAMP, TMVP, and NeEstimator including LDNe) across simulated datasets with populations experiencing migration or no migration. The simulated population demographies are an isolated population with no immigration, an island model metapopulation with a sink population receiving immigrants, and an isolation by distance stepping stone model of populations. We find considerable variance in performance of these methods, both within and across demographic scenarios, with some methods performing very poorly. The most accurate estimates of Ne can be obtained by using LDNe, MLNe, or TMVP; however each of these approaches is outperformed by another in a differing demographic scenario. Knowledge of the approximate demography of population as well as the availability of temporal data largely improves Ne estimates.  相似文献   

14.
    
We study the evolutionary dynamics of an asexual population of nonmutators and mutators on a class of epistatic fitness landscapes. We consider the situation in which all mutations are deleterious and mutators are produced from nonmutators continually at a constant rate. We find that in an infinitely large population, a minimum nonmutator‐to‐mutator conversion rate is required to fix the mutators but an arbitrarily small conversion rate results in the fixation of mutators in a finite population. We calculate analytical expressions for the mutator fraction at mutation‐selection balance and fixation time for mutators in a finite population when the difference between the mutation rate for mutator and nonmutator is smaller (regime I) and larger (regime II) than the selection coefficient. Our main result is that in regime I, the mutator fraction and the fixation time are independent of epistasis but in regime II, mutators are rarer and take longer to fix when the decrease in fitness with the number of deleterious mutations occurs at an accelerating rate (synergistic epistasis) than at a diminishing rate (antagonistic epistasis). Our analytical results are compared with numerics and their implications are discussed.  相似文献   

15.
    
Sexual antagonism (SA) occurs when an allele that is beneficial to one sex, is detrimental to the other. This conflict can result in balancing, directional, or disruptive selection acting on SA alleles. A body of theory predicts the conditions under which sexually antagonistic mutants will invade and be maintained in stable polymorphism under balancing selection. There remains, however, considerable debate over the distribution of SA genetic variation across autosomes and sex chromosomes, with contradictory evidence coming from data and theory. In this article, we investigate how the interplay between selection and genetic drift will affect the genomic distribution of sexually antagonistic alleles. The effective population sizes can differ between the autosomes and the sex chromosomes due to a number of ecological factors and, consequently, the distribution of SA genetic variation in genomes. In general, we predict the interplay of SA selection and genetic drift should lead to the accumulation of SA alleles on the X in male heterogametic (XY) species and, on the autosomes in female heterogametic (ZW) species, especially when sexual competition is strong among males.  相似文献   

16.
    
Loss and fragmentation of the native prairies in the Midwestern United States have resulted in isolated and smaller habitats and populations. The populations remaining in these prairies are expected to show a decline in the extent of genetic variation and an increase in genetic drift load (accumulation of deleterious recessive alleles due to genetic drift) in fitness‐related traits. Using complementary greenhouse experiments, we tested whether these expected changes have occurred in the native annual prairie plant Chamaecrista fasciculata. In the first experiment, open pollinated C. fasciculata seeds from 12 prairie fragments representing a range in area of habitat were grown in competition with Schizachyrium scoparium to determine if there are changes in plant vigour with changes in fragment size and corresponding changes in population size. Plants from smaller prairie fragments exhibited a slight but significant decline in biomass, suggesting an increase in genetic drift load. In the second experiment, a formal genetic crossing design of four prairie fragment populations was used to estimate quantitative genetic diversity and genetic drift load. We did not find extensive quantitative genetic variation, but we did find a strong effect of genetic drift load on five traits in this experiment. Our overall conclusion is that a decline in relative‐fitness traits in smaller prairie fragments is probably associated with fixation of deleterious alleles due to more isolated and smaller populations, i.e. genetic drift load. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

17.
1. Habitat fragmentation of stream ecosystems often results in decreased connectivity between populations and lower population sizes. Hence, understanding how habitat fragmentation affects genetic erosion is important for the preservation of freshwater biodiversity, in particular, as small populations suffer from loss of genetic diversity through genetic drift and loss of fitness because of inbreeding, increasing the risk of extinction. 2. Here, we assess the impact of demographic factors on population differentiation in the endangered freshwater crayfish Austropotamobius pallipes by analysing population genetic structure, estimating effective population sizes and comparing levels of polymorphism at five microsatellite loci with density estimates of 10 populations within a small French catchment that has become progressively confined to headwaters over the last six decades. 3. Levels of expected heterozygosity and allelic richness per population were relatively low (0.214–0.396 and 1.6–2.6, respectively). We found strong genetic differentiation between these geographically close populations (FST = 0.283), with weak statistical evidence for a pattern of isolation by distance. Estimates of effective population size were low (<150) in most populations, but potentially reached several thousands in three populations. 4. Population density and allelic richness were strongly positively correlated. A robust relationship between population density and heterozygosity values was also noted, but only after discarding two populations for which significant genetic signatures of a recent bottleneck were found; these two populations displayed high expected heterozygosity compared with a very low density. Populations with the highest densities of individuals had the highest effective population size estimates and vice versa. 5. Our results clearly show the importance of demographic factors and genetic drift on A. pallipes populations. Furthermore, analysis of genetic and population density data is a pragmatic and efficient approach to corroborate inferences from genetic data and can be particularly useful in the identification of populations experiencing a bottleneck and therefore in conservation genetics studies aiming at identifying priority populations for conservation.  相似文献   

18.
    
Most evolutionarily and agriculturally important traits are affected by many genes (quantitative trait loci, or QTL) of relatively small effect. Usually the genetics of these traits are examined by indirect statistical analysis of the covariance among relatives, rather than by direct analyses. We use new analytical and molecular techniques to examine nonadditive interactions of microsatellite markers and estimated QTL that influence adult body weight in mice. Offspring of a cross between a large inbred mouse strain (LG/J) and a small inbred strain (SM/J) were intercrossed to form a segregating F2 generation. Using 76 microsatellite markers and 19 estimated QTL, we estimate gene-level epistasis and population-level epistasis for body weight at 10 weeks for 534 F2 mice. Significant epistasis was found for large numbers of the two locus comparisons using both markers and previously detected QTL. There are many genes segregating for adult body weight in this cross and many of these genes appear to interact epistatically. The discovery of potentially extensive epistasis has important implications for evolutionary models.  相似文献   

19.
Temporal changes at 17 allozyme loci in the Diplodus sargus population of Banyuls sur Mer (Mediterranean Sea, France) were monitored within a single population among ten year‐classes (cohorts) sampled over a 6‐month period. The genetic survey was combined with evaluation of the demographic structure of the population by determining variation of abundance between cohorts. The population showed variation in abundance among cohorts ranging from 16 to 214 individuals. Significant divergences in genetic structure were observed between cohorts (P < 0.0001) despite very low values of FST (multilocus FST over all cohorts = 0.0018). The heterozygosity of each cohort, as well as the FIS values, was significantly correlated with the abundance of each cohort, with abundant cohorts showing lower heterozygosity and a significant deficit of heterozygotes (positive FIS values). Finally, multilocus temporal genetic variance (Fk) computed between successive cohorts was higher in low abundance cohorts. Change of heterozygosity between cohorts, distribution of year‐class genetic structure, and change in the genetic structure within a cohort appear to be affected mostly by the abundance of the cohort and are therefore driven by genetic drift. We propose that the Diplodus sargus cohorts are built up from the mixing of families during the pelagic stage or later during recruitment, and that the decrease in heterozygosity leading to a deficit of heterozygotes is characteristic of a Wahlund effect. Such a Wahlund effect would derive from the mixing of the progeny of families made up of few individuals, but exhibiting high fecundity and high variability of reproductive success. Therefore, although cohorts derived from poor recruitment would only group a few families and would exhibit limited deficit of heterozygotes (higher heterozygosity values), they would lead to high genetic drift and appear more divergent (higher mean temporal genetic variance) than cohorts with high abundance. While not demonstrating directly the family structure of marine populations, our survey provides evidence of highly structured populations. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 76 , 9–20.  相似文献   

20.
    
We analyzed a model to determine the factors that facilitate or limit rapid polygenic adaptation. This model includes population genetic terms of mutation and both directional and stabilizing selection on a highly polygenic trait in a diploid population of finite size. First, we derived the equilibrium distribution of the allele frequencies of the multilocus model by diffusion approximation. This formula describing the equilibrium allele frequencies as a mutation‐selection‐drift balance was examined by computer simulation using parameter values inferred for human height, a well‐studied polygenic trait. Second, assuming that a sudden environmental shift of the fitness optimum occurs while the population is in equilibrium, we analyzed the adaptation of the trait to the new optimum. The speed at which the trait mean approaches the new optimum increases with the equilibrium genetic variance. Thus, large population size and/or large mutation rate may facilitate rapid adaptation. Third, the contribution of an individual locus i to polygenic adaptation depends on the compound parameter , where is the effect size, the equilibrium frequency of the trait‐increasing allele of this locus, and . Thus, only loci with large values of this parameter contribute coherently to polygenic adaptation. Given that mutation rates are relatively small, this is more likely in large populations, in which the effects of drift are limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号