首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The monoamine oxidase inhibitor pargyline (N-benzyl-N-methyl-2-propynylamine) is known to undergo extensive in vitro microsomal N-oxidation, thought to be mediated predominantly by the flavin-containing monooxygenase (FMO) enzyme system. Formation of the pargyline N-oxide (PNO) metabolite creates a chiral nitrogen centre and thus asymmetric oxidation is possible. This study describes a reverse-phase high-performance liquid chromatographic (HPLC) method for the quantitation of PNO and a chiral-phase HPLC method for the determination of the enantiomeric ratio of PNO. In vitro microsomal N-oxidation of pargyline was found to be highly steroselective in a number of species, with the (+)-enantiomer being formed preferentially. This metabolic transformation was stereospecific when purified porcine hepatic FMO was used as the enzyme source. © 1994 Wiley-Liss, Inc.  相似文献   

2.
    
The prochiral tertiary amine N-ethyl-N-methylaniline (EMA) is known to be stereoselectively N-oxygenated in the presence of hepatic microsomal preparations. This biotransformation is thought to be mediated predominantly by the flavin-containing monooxygenase (FMO) enzyme system. In order to characterise this reaction further, the in vitro metabolism of EMA in the presence of hepatic microsomal preparations derived from a number of laboratory species has been examined. EMA N-oxide formation was stereoselective with respect to the (−)-S-enantiomer in the presence of microsomal preparations from all species examined, with the degree of selectivity decreasing in the order of rabbit > rat ∼ LACA mouse ∼ DBA/2Ha mouse > guinea-pig > dog. The enantiomeric composition of the metabolically derived EMA N-oxide appeared to be determined solely by the differential rate of formation of the two enantiomers as opposed to any differences in affinities for the substrate in its pro-R and pro-S conformations. The use of enzyme inhibitors, activators and inducers indicated that EMA N-oxide formation was predominantly mediated by FMO in the presence of rabbit hepatic microsomes and that these agents did not generally affect the stereochemical outcome of the biotransformation. © 1996 Wiley-Liss, Inc.  相似文献   

3.

Background

Nanosized particles of gold are widely used as advanced materials for enzyme catalysis investigations. In some bioanalytical methods these nanoparticles can be exploited to increase the sensitivity by enhancing electron transfer to the biological component i.e. redox enzymes such as drug metabolizing enzymes.

Methods

In this work, we describe the characterization of human flavin-containing monooxygenase 3 (hFMO3) in a nanoelectrode system based on AuNPs stabilized with didodecyldimethylammonium bromide (DDAB) on glassy carbon electrodes. Once confirmed by FTIR spectroscopy that in the presence of DDAB-AuNPs the structural integrity of hFMO3 is preserved, the influence of AuNPs on the electrochemistry of the enzyme was studied by cyclic voltammetry and square wave voltammetry.

Results

Our results show that AuNPs improve the electrochemical performance of hFMO3 on glassy carbon electrodes by enhancing the electron transfer rate and the current signal-to-noise ratio. Moreover, the electrocatalytic activity of hFMO3-DDAB-AuNP electrodes which was investigated in the presence of two well known substrates, benzydamine and sulindac sulfide, resulted in KM values of 52 μM and 27 μM, with Vmax of 8 nmol min− 1 mg− 1 and 4 nmol min− 1 mg− 1, respectively, which are in agreement with data obtained with the microsomal enzyme.

Conclusions

The immobilization of hFMO3 protein in DDAB stabilized AuNP electrodes improves the bioelectrochemical performance of this important phase I drug metabolizing enzyme.

General significance

This bio-analytical method can be considered as a promising advance in the development of new techniques suitable for the screening of novel hFMO3 metabolized pharmaceuticals.  相似文献   

4.
Pregnancy related changes in oxidative metabolism of model substrates were examined in CD1 mice. As compared to nonpregnant females, a significant decrease in the hepatic microsomal aminopyrine-but not in dimethylaniline-N-demethylase activity was observed in pregnant mice. The rates of microsomal flavin-containing monooxygenase-catalyzed N-oxidation of dimethylaniline remained relatively unchanged during pregnancy in the liver, lung, kidney, and uterus. In contrast to this, N-oxidase activity of placental microsomes was increased nearly 5-fold when measured at day 12 and 18 of gestation.  相似文献   

5.
A major improvement in the purification of the oxygenase protein (component A) of the methane monooxygenase has been effected. By employing high-pressure gel permeation chromatography several purification steps may be omitted from the previously published scheme. Furthermore the yield of the protein is enhanced and more importantly the recovered protein displays an increased specific activity, unlike that purified by other techniques.  相似文献   

6.
The FAD-containing monooxygenase (FMO) has been purified from both mouse and pig liver microsomes by similar purification procedures. Characterization of the enzyme from these two sources has revealed significant differences in catalytic and immunological properties. The pH optimum of mouse FMO is slightly higher than that of pig FMO (9.2 vs. 8.7) and, while pig FMO is activated 2-fold by n-octylamine, mouse FMO is activated less than 20%. Compounds, including primary, secondary and tertiary amines, sulfides, sulfoxides, thiols, thioureas and mercaptoimidazoles were tested as substrates for both the mouse and pig liver FMO. Km- and Vmax-values were determined for substrates representative of each of these groups. In general, the mouse FMO had higher Km-values for all of the amines and disulfides tested. Mouse FMO had Km-values similar to those of pig FMO for sulfides, mercaptoimidazoles, thioureas, thiobenzamide and cysteamine. Vmax-values for mouse FMO with most substrates was approximately equal, indicating that as with pig FMO, breakdown of the hydroxyflavin is the rate limiting step in the reaction mechanism. Either NADPH or NADH will serve as an electron donor for FMO, however, NADPH is the preferred donor. Pig and mouse FMOs have similar affinity for NADPH (Km = 0.97 and 1.1 microM, respectively) and for NADH (Km = 48 and 73 microM, respectively). An antibody, prepared by immunizing rabbits with purified pig liver FMO, reacts with purified pig liver FMO but not with mouse liver FMO, indicating structural differences between these two enzymes. This antibody inhibited pig FMO activity up to 60%.  相似文献   

7.
A sensitive and convenient method for the simultaneous determination of d- and l-aspartic acid in amino acid mixtures is described. The method involves derivatization of the mixture with a chiral fluorogen, followed by high-performance liquid chromatography on a reverse-phase column. The fluorogen used is an adduct of o-phthaldialdehyde with an optically active thiol, N-acetyl-l-cysteine. The sensitivity and accuracy of this method is similar to that using adducts of o-pthaldialdehyde with the achiral thiol, 2-mercaptoethanol. Five picomoles of d-aspartate can be accurately detected in the presence of a 100-fold excess of l-aspartate with a total analysis time (including derivatization) of 10 min.  相似文献   

8.
2-(Phenoxy)propionate derivatives were separated on three chiral columns, OD, OK, and chiral-2 columns. The chlorine substitution in the phenyl ring and the alcohol moiety of the ester groups of the derivatives had great influence for separation on the OD and OK columns, but little effect on the chiral-2 column.  相似文献   

9.
A series of enantiomeric amides have been chromatographed on three amylose-based chiral stationary phases (CSPs): amylose tris(3,5-dimethylphenylcarbamate) (AD-CSP), amylose tris (S-phenylethylcarbamate) (AS-CSP), and amylose tris(R-phenylethyl-carbamate) (AR-CSP). The relative retentions and enantioselectives of the solutes on the three CSPs were compared and basic structure-retention relationships developed to describe the chromatographic results. The data indicate that for these solutes the observed elution order was a function of the chirality of the amylose backbone, while the magnitude of the enantioselective separations was affected by the chirality of the carbamate side chain. Chirality 9:173–177, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Cyclohexanone monooxygenase (CMO) is a member of the flavin monooxygenase superfamily of enzymes that catalyze both nucleophilic and electrophilic reactions involving a common C4a hydroperoxide intermediate. To begin to probe structure-function relationships for these enzymes, we investigated the roles of histidine residues in CMO derived from Acinetobacter NCIB 9871, with particular emphasis on the wholly conserved residue, His163 (H163). CMO activity was readily inactivated by diethyl pyrocarbonate (DEPC), a selective chemical modifier of histidine residues. Each of the seven histidines in CMO was then individually mutated to glutamine and the mutants expressed and purified from Escherichia coli. Only the H59Q mutant failed to express at significant levels. The H96Q enzyme was found to have a greatly reduced flavin adenine dinucleotide (FAD) content, indicative of compromised cofactor retention. The only significant effect on kcat occurred with the H163Q mutant, which exhibited an approximately 10-fold lower turnover of the prototypical substrate, cyclohexanone. This was accompanied by a doubling in the Km [NADPH] compared to the wild-type enzyme, suggesting that the functional decrement in H163Q is probably not solely a reflection of impaired NADPH binding. These data establish a critical role for H163 in CMO catalysis and prompt the hypothesis that this conserved residue plays a similarly important functional role across the flavin monooxygenase family of enzymes.  相似文献   

11.
Asymmetrical hybrid hemoglobins formed from mixtures of two structurally different hemoglobins were found to be readily separated by cation-exchange high-performance liquid chromatography under anaerobic conditions. When oxyhemoglobins A and S were mixed and deoxygenated, the resulting HPLC chromatogram showed three peaks. The distribution of the three components follow the binomial expansion a2 + 2 ab + b2 = 1, where a and b are the initial fractions of parent hemoglobins. The middle peak was collected in a test tube saturated with CO gas and reanalyzed under the same experimental conditions. This middle component gave two peaks of equal areas with retention times identical to those of the CO-form of the parent hemoglobins without the appearance of the hybrid hemoglobin band. No intermediate peak was observed in solutions of mixtures of liganded hemoglobins under aerobic conditions. Hybrid hemoglobins AC and SC were also formed when oxyhemoglobins A and C, S and C were mixed, respectively. The separation and the identification of hemoglobins and hybrid hemoglobin employing cation-exchange HPLC can be achieved within 30 min by gradient elution. In addition, the ability to isolate hybrid hemoglobins may be a valuable tool for the study of physical and chemical properties of hybrid hemoglobins.  相似文献   

12.
Phenacetin is mutagenic in Salmonella typhimurium TA 100 when liver 9,000 X g supernatant fractions from PCB-treated hamsters instead of rats are used. A mechanism of the species difference in phenacetin mutagenicity was investigated. By high-performance liquid chromatography analysis, it was found that phenacetin is activated to direct-acting mutagens through N-hydroxylation and deacetylation by hamster liver microsomes. Although no significant species difference was observed in N-hydroxylation, rates of deacetylation were 9 to 150 times higher in hamsters than in rats. The results indicate that the marked species difference in phenacetin mutagenicity is due to the difference in deacetylation activity between rat and hamster liver microsomes.  相似文献   

13.
The cytochrome P450 RauA from Rhodococcus erythropolis JCM 6824 catalyzes the hydroxylation of a nitrogen atom in the quinolone ring of aurachin, thereby conferring strong antibiotic activity on the aurachin alkaloid. Here, we report the crystal structure of RauA in complex with its substrate, a biosynthetic intermediate of aurachin RE. Clear electron density showed that the quinolone ring is oriented parallel to the porphyrin plane of the heme cofactor, while the farnesyl chain curls into a U-shape topology and is buried inside the solvent-inaccessible hydrophobic interior of RauA. The nearest atom from the heme iron is the quinolone nitrogen (4.3 Å), which is consistent with RauA catalyzing the N-hydroxylation of the quinolone ring to produce mature aurachin RE.  相似文献   

14.
Eleven abnormal hemoglobins were detected in the course of cord blood screening or in the evaluation of evident hematological problems in individual cases. Identification of the variant in each case was done by high-performance liquid chromatography (HPLC); HPLC provides a rapid, sensitive means for the examination of abnormal hemoglobins. Some of the 11 variants that were identified have been described repeatedly and are included to provide information on the HPLC behavior of tryptic peptides. Others are much rarer. Additional information is provided about the hematological and clinical expression as well as ethnic and geographical distribution of the abnormal hemoglobin.This investigation was supported in part by Grants HL-02558 and HL-15162 from the National Institutes of Health, U.S. Public Health Service.  相似文献   

15.
Metabolism of the environmental pollutant and weak carcinogen benzo[c]-phenanthrene (B[c]Ph) by rat liver microsomes and by a purified and reconstituted cytochrome P-450 system is examined. B[c]Ph proved to be one of the best polycyclic aromatic hydrocarbon substrates for rat liver microsomes. It is metabolized by microsomes from control rats and by rats treated with phenobarbital or 3-methylcholanthrene at 3.9, 4.2 and 7.8 nmol/nmol cytochrome P-450/min, respectively. Principal metabolites are dihydrodiols along with small amounts (less than 10%) of phenols. The K-region 5,6-dihydrodiol is the major metabolite and accounts for 77-89% of the total metabolites. The 3,4-dihydrodiol with a bay-region 1,2-double bond is formed in much smaller amounts and accounts for only 6-17% of the total metabolites, the highest percentage being formed by microsomes from control rats. Highly purified monooxygenase systems reconstituted with cytochrome P-450a, P-450b and P-450c and epoxide hydrolase form predominantly the 5,6-dihydrodiol (95-97% of total metabolites) and only a small percentage of the 3,4-dihydrodiol (3-5% of total metabolites). The 3,4-dihydrodiol is formed with higher enantiomeric purity by microsomes from 3-methylcholanthrene-treated rats (88%) than by microsomes from control rats (78%) or phenobarbital-treated rats (60%). In each case the (3R,4R)-enantiomer predominates. B[c]Ph 5,6-dihydrodiol formed by all three microsomal preparations is nearly racemic.  相似文献   

16.
The enantiomers of rac-2,2′-diiodobiphenyl were separated by liquid chromatography on microcrystalline triacetylcellulose. The conformational lability, a large separation factor α, and a suitable capacity factor k′(+) of this biphenyl allowed us to convert the racemate into 90% of enantiomerically pure (-)-2,2′-diiodobiphenyl and 10% of pure (+)-2,2′-diiodobiphenyl, respectively, by a series of in situ racemization-elution cycles. The much better retained (+)-enantiomer was racemized on the chromatographic column at 50°C after the less retained (-)-enantiomer has already been eluted at 8°C. © 1995 Wiley-Liss, Inc.  相似文献   

17.
The common methods to determine dissociation constants of solutes, e.g., uv spectrophotometry, potentiometry, and conductimetry, are accurate but require at least 1 nmol of compound. High-performance liquid chromatography (HPLC) allows 1 pmol of a uv-absorbing compound to be detected. By adjusting the polarity of the mobile phase, reverse and normalphase properties of an ion-exchanger can be minimized, resulting in a high correlation between charge and retardation of the solute. Thus, the degree of ionization of several compounds was monitored in mobile-phase compositions of different pH values using cation exchange. The pK values of several pterin derivatives corresponded to those obtained by other methods. In addition, pK values of two unidentified pterin derivatives were determined, using only 20 pmol of each.  相似文献   

18.
Galactosyltransferase catalyzes transfer of galactose from UDP-galactose to glucose or N-acetylglucosamine with resultant formation of galactosides and UDP. In this new assay galactosyltransferase activity is measured by determining UDP by isocratic high-performance liquid chromatography on an amino-bonded column monitored spectrophotometrically. Concurrently, unreacted UDP-galactose and breakdown products arising from UDP-galactose (UMP and uridine) are also determined. The new technique does not require radioactive substrates, permits usage of saturating concentrations of UDP-galactose, and provides monitoring of side reactions.  相似文献   

19.
A method for differentiating endopeptidases and aminopeptidases on the basis of substrate specificity is presented. Various synthetic chromogenic substrates, succinyl-(Ala)3-p-nitroaniline, succinyl-(Ala)2-p-nitroaniline, (Ala)3-p-nitroaniline, and (Ala)2-p-nitroaniline, were incubated with various peptidases and the incubation mixtures were directly analyzed by high-performance liquid chromatography to determine the splitting patterns of these substrates by the enzymes. The substrates and hydrolyzed products containing the chromophore were separated on a reverse-phase column under isocratic conditions, and the chromophore was specifically detected in the effluent fractions by absorbance measurement at 314 nm. Endopeptidases, leucine aminopeptidase, and dipeptidyl aminopeptidase showed different patterns of cleavage of the substrates. This simple and rapid high-performance liquid chromatographic procedure is suitable for identifying the above activities in different fractions obtained during separation and purification studies. The same approach was applied to the simultaneous determination of three types of endopeptidase activities in rat tissues based on the ability of the enzymes to hydrolyze different sites in succinyl-(Ala)3-p-nitroaniline.  相似文献   

20.
Cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) was coated on large-pore silica gels and used as a chiral stationary phase (CSP) for high-performance liquid chromatographic separation of enantiomers. The influences of pore size of silica gel, coating amount of CDMPC, coating solvent, and column temperature on chiral discrimination were investigated. CSPs prepared with a large-pore silica gel having a small surface area showed higher chiral recognition. The amount of CDMPC adsorbed on the silica gel influenced the chiral recognition of some racemates. Loading capacity of racemates increased with an increase of the amount of CDMPC supported on the silica gel, and a CSP coated with 45% CDMPC by weight can be used for both analytical and semi-preparative scale separations. The CDMPC, coated using acetone as the coating solvent, exhibited, in many cases, higher enantioselectivity than that obtained with tetrahydrofuran F as the coating solvent. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号