共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract. The plant functional types (growth forms) traditionally recognized by arctic ecologists provide a useful framework for predicting vegetation responses to, and effects on, ecosystem processes. These functional types are similar to those objectively defined by cluster analysis based on traits expected to influence ecosystem processes. Principal components analysis showed that two major suites of traits (related to growth rate and woodiness) explain the grouping of species into functional types. These plant functional types are useful because they (1) influence many ecological processes (e.g. productivity, transpiration, and nutrient cycling) in similar ways, (2) predict both responses to and effects on environment, including disturbance regime, and (3) show no strong relationship with traits determining migratory ability (so that no functional type will be eliminated by climatic change simply because it cannot migrate). Circumstantial evidence for the ecological importance of these functional types comes from the distribution of types along environmental gradients and the known ecological effects of traits (e.g., effects of litter quality on decomposition and of plant height on winter albedo) that characterize each functional type. The paleorecord provides independent evidence that some of these functional types have responded predictably to past climatic changes. Field experiments also show that plant functional types respond predictably to changes in soil resources (water and nutrients) but less predictably to temperature. We suggest that evidence for the validity of arctic plant functional types is strong enough to warrant their use in regional models seeking to predict the transient response of arctic ecosystems to global change. 相似文献
2.
Abstract. The percentage of above-canopy Photosynthetic Photon Flux Density (%PPFD) was measured at 0, 50 and 100 cm above the forest floor and above the main understory vegetation in stands of (1) pure Betula papyrifera (White birch), (2) pure Populus tremuloides (Trembling aspen), (3) mixed broad-leaf-conifer, (4) shade-tolerant conifer and (5) pure Pinus banksiana (Jack pine) occurring on both clay and till soil types. %PPFD was measured instantaneously under overcast sky conditions (nine locations within each of 29 stands) and continuously for a full day under clear sky conditions (five locations within each of eight stands). The percentage cover of the understory layer was estimated at the same locations as light measurements. Mean %PPFD varied from 2% at the forest floor under Populus forests to 15% above the understory vegetation cover under Betula forests. Percent PPFD above the understory vegetation cover was significantly higher under shade intolerant tree species such as Populus, Betula and Pinus than under shade tolerant conifers. No significant differences were found in %PPFD above the understory vegetation cover under similar tree species between clay and till soil types. The coefficient of variation in %PPFD measured in the nine locations within each stand was significantly lower under deciduous dominated forests (mean of 19%) than under coniferous dominated forests (mean of 40%). %PPFD measured at the forest floor was positively correlated with %PPFD measured above the understory vegetation and negatively correlated with cumulative total percent cover of the understory vegetation (R2 = 0.852). The proportion of sunflecks above 250 and 500 mmol m–2 s–1 was much lower and %PPFD in shade much higher under Populus and Betula forests than under the other forests. Differences in the mean, variability and nature of the light environment found among forest and soil types are discussed in relation to their possible influences on tree succession. 相似文献
3.
Abstract. Surface fuels were examined in 48 stands of the Canadian mixed‐wood boreal forest. Tree canopy was characterized with the point‐centred quadrant method and stands were characterized as deciduous, mixed‐deciduous, mixed‐coniferous or coniferous according to the percentage of conifer basal area. Woody debris loadings were measured with the line intersect method and the litter, duff, shrub loads and depths or heights were sampled with various quadrats. No significant difference was found among stand types for total woody debris load, large basal diameter shrub loads and load or depth of litter and duff. However, conifer stands had significantly heavier loads of small diameter elements (twigs and shrubs) and conifer pieces were more numerous within these stands than in deciduous stands. The BEHAVE prediction system was used to evaluate the impact of these differences on the potential of fire ignition in situations where topography and weather were constant. The qualitative and quantitative changes in fuels, resulting from species replacement and fast decay rates, influence fire hazard. Simulations of fire behaviour showed that in the mixed‐wood boreal forest fires were less intense and spread more slowly in deciduous stands than in mixed or coniferous stands. Moreover, spring fires were more intense than summer fires, and differences between seasons increased with the increase of deciduous basal area. 相似文献
4.
JIANGUO HUANG JACQUES C. TARDIF YVES BERGERON BERNHARD DENNELER FRANK BERNINGER MARTIN P. GIRARDIN 《Global Change Biology》2010,16(2):711-731
To address the central question of how climate change influences tree growth within the context of global warming, we used dendroclimatological analysis to understand the reactions of four major boreal tree species –Populus tremuloides, Betula papyrifera, Picea mariana, and Pinus banksiana– to climatic variations along a broad latitudinal gradient from 46 to 54°N in the eastern Canadian boreal forest. Tree‐ring chronologies from 34 forested stands distributed at a 1° interval were built, transformed into principal components (PCs), and analyzed through bootstrapped correlation analysis over the period 1950–2003 to identify climate factors limiting the radial growth and the detailed radial growth–climate association along the gradient. All species taken together, previous summer temperature (negative influences), and current January and March–April temperatures (positive influences) showed the most consistent relationships with radial growth across the gradient. Combined with the identified species/site‐specific climate factors, our study suggested that moisture conditions during the year before radial growth played a dominant role in positively regulating P. tremuloides growth, whereas January temperature and growing season moisture conditions positively impacted growth of B. papyrifera. Both P. mariana and P. banksiana were positively affected by the current‐year winter and spring or whole growing season temperatures over the entire range of our corridor. Owing to the impacts of different climate factors on growth, these boreal species showed inconsistent responsiveness to recent warming at the transition zone, where B. papyrifera, P. mariana, and P. banksiana would be the most responsive species, whereas P. tremuloides might be the least. Under continued warming, B. papyrifera stands located north of 49°N, P. tremuloides at northern latitudes, and P. mariana and P. banksiana stands located north of 47°N might benefit from warming winter and spring temperatures to enhance their radial growth in the coming decades, whereas other southern stands might be decreasing in radial growth. 相似文献
5.
Abstract. Reproducibility of vegetation measurements is critical for large‐scale or long‐term studies, where numerous observers collect data, but past studies have questioned repro‐ducibility of some techniques. Five methods of evaluating understory composition were appraised for reproducibility among six observers in two forest types in south‐central Alaska: ocular estimates in quadrats, overall community species rank and cover estimates, nested rooted frequency, horizontal‐vertical profiles, and pin drop (systematic points). One forest type was selected to represent structure of coastal communities, another to represent structure of interior Alaska communities. Three general methods of evaluating reproducibility were considered: standard deviations (precision among observers), components of variance (percentage of total variance attributable to observers), and analysis of variance (significance of observer variance). Observer variances were generally similar among techniques and significant in most cases. No technique stood out as being more reproducible than others. Features of techniques other than reproducibility may be more important when selecting a technique. Management decisions based on vegetation cover data should consider the observer errors involved as well as biological significance. 相似文献
6.
Karnosky DF Werner H Holopainen T Percy K Oksanen T Oksanen E Heerdt C Fabian P Nagy J Heilman W Cox R Nelson N Matyssek R 《Plant biology (Stuttgart, Germany)》2007,9(2):181-190
Because seedlings and mature trees do not necessarily respond similarly to O(3) stress, it is critically important that exposure systems be developed that allow exposure of seedlings through to mature trees. Here we describe three different O(3) Free-Air Exposure Systems that have been used successfully for exposure at all growth stages. These systems of spatially uniform O(3) release have been shown to provide reliable O(3) exposure with minimal, if any, impact on the microclimate. This methodology offers a welcome alternative to chamber studies which had severe space constraints precluding stand or community-level studies and substantial chamber effects on the microclimate and, hence physiological tree performance. 相似文献
7.
Three model communities of trembling aspen (monoculture, and mixed with either paper birch or sugar maple) were grown for seven years in elevated atmospheric CO(2) and O(3) using Free Air CO(2) Enrichment (FACE) technology. We utilized trends in species' importance, calculated as an index of volume growth and survival, as indications of shifting community composition. For the pure aspen communities, different clones emerged as having the highest change in relative importance values depending on the pollutant exposure. In the control and elevated CO(2) treatments, clone 42E was rapidly becoming the most successful clone while under elevated O(3), clone 8 L emerged as the dominant clone. In fact, growth of clone 8 L was greater in the elevated O(3) treatment compared to controls. For the mixed aspen-birch community, importance of aspen and birch changed by - 16 % and + 62 %, respectively, in the controls. In the treatments, however, importance of aspen and birch changed by - 27 % and + 87 %, respectively, in elevated O(3), and by - 10 % and + 45 %, respectively, in elevated CO(2). Thus, the presence of elevated O(3) hastened conversion of stands to paper birch, whereas the presence of elevated CO(2) delayed it. Relative importance of aspen and maple changed by - 2 % and + 3 %, respectively, after seven years in the control treatments. But in elevated O(3), relative importance of aspen and maple changed by - 2 % and + 5 %, respectively, and in elevated CO(2) by + 9 and - 20 %, respectively. Thus, elevated O(3) slightly increases the rate of conversion of aspen stands to sugar maple, but maple is placed at a competitive disadvantage to aspen under elevated CO(2). 相似文献
8.
Marlies E.W. van der Welle Peter J. Vermeulen Gaius R. Shaver Frank Berendse 《植被学杂志》2003,14(5):711-720
Abstract. We studied the relationship between plant N:P ratio, soil characteristics and species richness in wet sedge and tussock tundra in northern Alaska at seven sites. We also collected data on soil characteristics, above‐ground biomass, species richness and composition. The N:P ratio of the vegetation did not show any relationship with species richness. The N:P ratio of the soil was related with species richness for both vegetation types. Species richness in the tussock tundra was most strongly correlated with soil calcium content and soil pH, with a strong correlation between these two factors. N:P ratio of the soil was also correlated with soil pH. Other factors correlated with species richness were soil moisture and Sphagnum cover. Organic matter content was the factor most strongly correlated with species richness in the wet sedge vegetation. N:P ratio of the soil was strongly correlated with organic matter content. We conclude that N:P ratio in the vegetation is not an important factor determining species richness in arctic tundra and that species richness in arctic tundra is mainly determined by pH and flooding. In tussock tundra the pH, declining with soil age, in combination with Sphagnum growth strongly decreases species richness, while in wet sedge communities flooding over long periods of time creates less favourable conditions for species richness. 相似文献
9.
10.
Abstract. In order to explain conifer species recruitment in Canada's southeastern boreal forest, we characterized conifer regeneration microsites and determined how these microsites vary in abundance during succession. Microsite abundance was evaluated in deciduous, mixed and coniferous stands along a 234-yr postfire chronosequence. Conifers were most often found in relatively well-illuminated microsites, devoid of litter, especially broad-leaf litter, and with a reduced cover of lower vegetation (< 50 cm tall). Although associated with moss-rich forest floor substrates, Abies balsamea was the most ubiquitously distributed species. Picea glauca and especially Thuja occidentalis seedlings were frequently found on rotten logs. Light measurements did not show differences among seedling species nor between stand types. The percentage cover of broad-leaf litter decreased significantly during succession. Also, rotten logs covered with moss occupied a significantly larger area in the mid-successionnal stands than in early successional deciduous or late successional coniferous stands. The results suggest that the presence of specific forest floor substrate types is a factor explaining low conifer recruitment under deciduous stands, conifer codominance in the mid-successional stage, and delayed Thuja recolonization after fire. Results also suggest that some facilitation mechanism is responsible for the observed directional succession. 相似文献
11.
Mary A. Jamieson Ezra G. Schwartzberg Kenneth F. Raffa Peter B. Reich Richard L. Lindroth 《Global Change Biology》2015,21(7):2698-2710
Climate change and insect outbreaks are key factors contributing to regional and global patterns of increased tree mortality. While links between these environmental stressors have been established, our understanding of the mechanisms by which elevated temperature may affect tree–insect interactions is limited. Using a forest warming mesocosm, we investigated the influence of elevated temperature on phytochemistry, tree resistance traits, and insect performance. Specifically, we examined warming effects on forest tent caterpillar (Malacosoma disstria) and host trees aspen (Populus tremuloides) and birch (Betula papyrifera). Trees were grown under one of three temperature treatments (ambient, +1.7 °C, +3.4 °C) in a multiyear open‐air warming experiment. In the third and fourth years of warming (2011, 2012), we assessed foliar nutrients and defense chemistry. Elevated temperatures altered foliar nitrogen, carbohydrates, lignin, and condensed tannins, with differences in responses between species and years. In 2012, we performed bioassays using a common environment approach to evaluate plant‐mediated indirect warming effects on larval performance. Warming resulted in decreased food conversion efficiency and increased consumption, ultimately with minimal effect on larval development and biomass. These changes suggest that insects exhibited compensatory feeding due to reduced host quality. Within the context of observed phytochemical variation, primary metabolites were stronger predictors of insect performance than secondary metabolites. Between‐year differences in phytochemical shifts corresponded with substantially different weather conditions during these two years. By sampling across years within an ecologically realistic and environmentally open setting, our study demonstrates that plant and insect responses to warming can be temporally variable and context dependent. Results indicate that elevated temperatures can alter phytochemistry, tree resistance traits, and herbivore feeding, but that annual weather variability may modulate warming effects leading to uncertain consequences for plant–insect interactions with projected climate change. 相似文献
12.
Richard H. W. Bradshaw 《植被学杂志》1993,4(6):759-764
Abstract. Data from three forest stands for the past 2000 yr show how the shade-intolerant species Pinus sylvestris and Betula pubescens maintain significant populations in the Swedish boreal landscape. Age structure data from a northern stand close to the range limits of Picea abies and Pinus complement a local pollen diagram, and reveal cyclic population fluctuations which can be related to periods of climatic stress and fire. Pollen data from two southern stands show that high fire frequencies in the past prevented the expansion of Picea populations. Reduction of the fire frequency during the last 200 yr has favoured Picea. A long time perspective reveals the population dynamics of long-lived species and indicates the controlling factors. Such knowledge permits assessment of the current status and likely future of forest stands. 相似文献
13.
R.T. Busing 《植被学杂志》1996,7(5):685-694
Abstract. Patterns of tree species replacement in a Picea-Abies forest, determined by several different methods, are compared and the methods are assessed. Methods are grouped as either understory-based or gap-based estimates of replacement. The understory-based methods characterize canopy-understory interactions with spatial statistics, sapling density measurement, sapling frequency measurement, and successor sapling identification beneath live canopy trees. The gap-based methods include sapling density measurement, sapling frequency measurement, and successor sapling identification in tree-fall gaps. Methods except those based on frequency indicate a strong trend of replacement of all canopy species by Abies. Understory-based methods may underestimate canopy recruitment of intolerant trees, while gap-based methods relying on sapling density or frequency may overestimate recruitment of intolerant trees. Estimates based on the selection of successor saplings in the understory or in gaps are reliable. Gap successor estimates consider the process of gap capture and are useful in analyses of forest dynamics. 相似文献
14.
Janusz Bogdan Faliski 《植被学杂志》1998,9(1):57-64
Abstract. Broadleaved forest communities degenerated through strong pressure from large herbivores. Relief of this pressure led to regeneration, in particular of Salix caprea and other light-seeded pioneer trees: Populus tremula, Betula pendula and B. pubescens. This regeneration proceeded following conservation protection of degenerate stands in a nature reserve and later in Biaowiéza National Park. The emergence and development of the Salix caprea population proceeded following the expansion of Picea abies, which coincided with the period of enhanced animal pressure on the broadleaved forest. Salix caprea filled all the gaps in the tree stand after the destruction of trees and undergrowth by herbivores (in the years 1892–1915). The species also appeared abundantly in old, at the time unforested, clearings and felled areas. Here, S. caprea developed large populations with certain trees in good condition, with a growth form typical of forest trees and attaining considerable heights. The majority of trees were 50 - 60 yr old at the time of death, although some individuals reached 74 yr of age. The process of extinction of the Salix population — observed over 19 yr on permanent plots with marked trees — proceeded very quickly, especially in the first decade of observation. It led to the almost complete disappearance of S. caprea from the forest communities of Biaowiéza National Park. The death of individual trees is preceded by impairment of their health and reduced annual increments in the last 4–9 years of their life. The development of populations of permanent constituents of the forest, notably Carpinus betulus, Tilia cordata, Acer platanoides and Ulmus glabra, under the canopy of light-seeded trees, and the absence of a new generation of pioneer trees points to the end of the process of regeneration in the forest communities of BiaHwiéza National Park. 相似文献
15.
T. G. O'Connor 《植被学杂志》1991,2(2):245-254
Patches (1 m diameter) were cleared in a heavily grazed and a lightly grazed savanna in South Africa; half of them were covered once with grass litter. The greatest colonisation over three years occurred on heavily grazed patches with litter, the least on open, lightly grazed patches. Annual rainfall affected colonisation rate. Basal cover was lower on patches than in the surrounding vegetation. Patch composition was weakly affected by treatment, and was partly related to the composition of adjacent vegetation, but the proportional representation of species on patches differed from the surrounding vegetation. The stoloniferous Digitaria eriantha and the obligate seed reproducers Aristida bipartita and Heteropogon contortus were major components of patch communities but were uncommon in the surrounding vegetation and in the seed bank. Setaria incrassata and Themeda triandra were the predominant components of the surrounding vegetation and of the seed bank, but Setaria established very poorly and Themeda established well only on heavily grazed patches with litter. The pattern of seedling establishment was the same as that of colonisation. Most seedlings emerged atthe beginning of the wet season, with ca. 50% mortality soon thereafter. The colonising species can be partly predicted from the availability of propagules (vegetative or seed), emergence and establishment success, and subsequent growth. 相似文献
16.
Abstract. The currently prevailing view is that saplings require gaps or larger disturbances in order to grow into the canopy. This study documents an exception. In California's Pseudotsuga‐mixed hardwood forests, crowns of Pseudotsuga menziesii (Douglas fir) are within those of angiosperm trees (Arbutus menziesii and Quercus species). In the forests we examined, every Pseudotsuga was younger and all but one were growing more rapidly in girth than the Arbutus or Quercus whose crown it had penetrated. Furthermore, as saplings, the Pseudotsuga had grown at rates between those of suppressed saplings and canopy dominants. The recruitment of emergent Pseudotsuga substantially alters these canopies because of the large size Pseudotsuga attains. Given the density of Pseudotsuga growing in canopy crowns, such recruitment is likely. As a mechanism of recruitment, this through‐growth differs from gap recruitment in that the turnover of canopy trees is determined by an understory species' growth rate rather than the overstory species' longevity, and community attributes may change rapidly by replacement of canopy dominants with a dissimilar species. Pseudotsuga could grow through the canopy because of its greater potential height (> 60m vs. 20–40m for the angiosperms), narrower crown and its branches suffering less mechanical damage than those of the angiosperms. In general, resource levels in the understory, canopy height, and interspecific differences in maximum height and crown architecture all influence the likelihood of through‐growth. Therefore, for vegetation types whose dominants differ substantially in growth form, through‐growth may be a mechanism for rapid ecosystem change. 相似文献
17.
Question: How is tundra vegetation related to climatic, soil chemical, geological variables and grazing across a very large section of the Eurasian arctic area? We were particularly interested in broad‐scale vegetation‐environment relationships and how well do the patterns conform to climate‐vegetation schemes. Material and Methods: We sampled vegetation in 1132 plots from 16 sites from different parts of the Eurasian tundra. Clustering and ordination techniques were used for analysing compositional patterns. Vegetation‐environment relationships were analysed by fitting of environmental vectors and smooth surfaces onto non‐metric multidimensional scaling scattergrams. Results: Dominant vegetation differentiation was associated with a complex set of environmental variables. A general trend differentiated cold and continental areas from relatively warm and weakly continental areas, and several soil chemical and physical variables were associated with this broad‐scaled differentiation. Especially soil chemical variables related to soil acidity (pH, Ca) showed linear relationships with the dominant vegetation gradient. This was closely related to increasing cryoperturbation, decreasing precipitation and cooler conditions. Remarkable differences among relatively adjacent sites suggest that local factors such as geological properties and lemming grazing may strongly drive vegetation differentiation. Conclusions: Vegetation differentiation in tundra areas conforms to a major ecocline underlain by a complex set of environmental gradients, where precipitation, thermal conditions and soil chemical and physical processes are coupled. However, local factors such as bedrock conditions and lemming grazing may cause marked deviations from the general climate‐vegetation models. Overall, soil chemical factors (pH, Ca) turned out to have linear relationship with the broad‐scale differentiation of arctic vegetation. 相似文献
18.
Abstract. The annual cycle of vegetative growth in the Mediterranean shrub Halimium halimifolium (Cistaceae) subjected to simulated and natural browsing on the stabilized sands of Doñana National Park (SW Spain) is described. In a drier area without herbivory (Monte Intermedio) plants were subjected to different intensities of clipping. In a more humid area with high herbivory pressure (Monte Negro) plants were isolated by cages. Plants were monitored monthly from February to November 1994. Vegetative growth starts in March and ends in June or July, according to temperature and water availability. Plants intensely clipped and plants subjected to natural browsing responded maximally regarding shoot length, and number of leaves on main shoots and branches. Clipped plants, however, did not reach the height and cover of controls. 相似文献
19.
Abstract. We studied vegetation structure and soil seed bank composition in different successional stages of secondary lowland tropical deciduous forest in Yucatán, Mexico. The series of study sites includes: slashed (S), slashed-and-burned (SB), and regenerating for 1, 6, 10, 15, 30, 40 and 100 yr. Species richness (S = 42 - 65), evenness (E = 0.32 - 0.38), and diversity (H' = 1.2 - 1.6) do not vary much as the forest grows older. 20 species of shrubs and trees were present in at least six of the seven regrowth years studied; 10 of these account for more than 50% of the total density values per regrowth year. These species dominate the vegetation due to their capacity to withstand repeated fire and felling. One third of the individuals sampled had regenerated from coppiced shoots. Species composition little resembles that in earlier accounts. The area is now largely covered by young regrowth stages (1 - 20 yr). Species constituting the original woody structure of the mature forest are rare or absent due to the lack of seed sources and failure of dispersal (which is due to limited dispersal capacities), lack of dispersal agents, or long distances. Herbs were the most important life form in the soil seed banks; only one tree species was found. The number of viable seeds varied between sampled areas: 70/m2 in the 40 yr-old, to 1 815/m2 in the slashed-and-burned (SB). The vegetation of S- and SB-areas was the same, but the number of viable seeds germinating in SB was twice the number in S; the number of species in the seed bank is the same for both areas. We speculate that fire modifies species dominance early in succession, allowing seeds of some species to germinate in great numbers. 相似文献
20.
Abstract. Evidence is presented for the occurrence of alternative stable states in a wet calcareous dune slack on the Frisian island of Texel, The Netherlands. An early pioneer stage (0.5 kgm?2 total standing crop) and a more productive later successional stage (2.9 kg m?2) occur side by side, with sharp boundaries between them. The pioneer vegetation has been recorded at the site for more than 62 yr. These features indicate the occurrence of a positive‐feedback mechanism that has led to alternative stable states. Analyses of ground and surface water composition, and decalcification depths, indicated that hydrologically the study site can be characterized as a flow‐through slack, with exfiltration of calcareous groundwater on one side and infiltration of surface water on the other side of the slack. These differences in hydrological conditions have led to distinct differences in environmental conditions within the dune slack. The occurrence of the two successional stages can, however, not be explained by differences in hydrological conditions since both stages occur side by side in the centre of the dune slack. It is, therefore, more likely that biotic interactions are the cause of the vegetation pattern. Three possible mechanisms for feedback processes are discussed: (1) enhanced nitrogen loss; (2) sulfide toxicity and (3) nutrient accumulation in internal cycle. 相似文献