首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Abstract. The structure and composition of a cool-temperate old-growth beech (Fagus crenata) - dwarf bamboo (Sasa spp.) forest, partially affected by landslide disturbance, in the Daisen Forest Reserve of southwestern Japan, were investigated in relation to forest floor and canopy conditions. All stems ≥ 4 cm DBH were mapped on a 4-ha plot and analyses were made of population structure, spatial distribution and spatial association of major tree species. The dominant species, F. crenata, which had the maximum DBH among the species present, had the highest stem density. However, for other species, larger-sized species had lower stem density with few smaller stems or saplings, while smaller-sized species had higher stem density with many smaller stems or saplings. Canopy trees of F. crenata were distributed randomly in the plot, while its stems in the other layers and all other species were distributed patchily. Small patches represent gap-phase regeneration. Larger patches correlate with landslide disturbance, difference in soil age, or the presence/absence of Sasa. Cluster analysis for spatial associations among species and stems in the different layers revealed that the forest community consists of several groups. One main group was formed on sites not covered with Sasa. This group contained a successional subgroup (from Betula grossa to Acer mono and/or F. crenata) initiated by landslide disturbance and a subgroup of tree species that avoid Sasa. Another group was formed on sites with mature soils covered largely with Sasa. This contained associations of canopy trees of F. crenata and smaller-sized tree species such as Acanthopanax sciadophylloides and Acer japonicum. It is found that the community of this old-growth beech forest is largely organized by natural disturbance and heterogeneous conditions of the forest floor (difference in soil age and presence/absence of Sasa). The existence of these different factors and the different responses of species to them largely contribute to the maintenance of tree species diversity in this forest.; Keywords: Cluster analysis; Fagus crenata; Forest dynamics; Gap; Landslide; Spatial pattern.  相似文献   

2.
Question: How does typhoon‐related disturbance (more specifically, disturbance in the understorey due to tree‐fall and branch‐fall) affect different species mortality rates in a vertically well‐structured forest community? Location: Cool‐temperate, old‐growth forest in the Daisen Forest Reserve, Japan. Methods: We investigated the canopy dynamics and mortality rate trends of trees ≥5 cm diameter at breast height in a 4‐ha study plot, and analysed the effects of tree diameter and spatial structure on the mortality risks for major tree species in the understorey. Results: Significant differences were found in the mortality rates and proportions of injured dead stems between census periods, which were more pronounced in the understorey than in the canopy. Acer micranthum, which showed increased mortality during typhoon disturbance periods, had a clumped distribution. In contrast, Acer japonicum and Viburnum furcatum, which showed similar mortality rates between census periods, had a loosely clumped spatial distribution and a negative association with canopy trees, respectively. In the understorey stems of Acanthopanax sciadophylloides and Fagus crenata, whose spatial distribution patterns depended on canopy gaps, significant increases in mortality rates were observed only during severe typhoon‐related disturbance periods. Conclusions: The sensitivity of trees to typhoon‐related canopy disturbance is more pronounced in the lower layers of vertically structured forest communities. Differences in mortality patterns generated through the combined effects of spatial variation in disturbance regime and species‐specific spatial distribution patterns (spatial aggregation, association with canopy trees, and canopy gap dependency) contribute to the co‐existence of understorey species in forest communities that are subject to typhoon‐related disturbance.  相似文献   

3.
Nishimura  N.  Hara  T.  Miura  M.  Manabe  T.  Yamamoto  S. 《Plant Ecology》2003,164(2):235-248
The growth dynamics and mode of competition between adult trees 5.0cm in diameter at breast height (DBH) of nine abundant treespeciesoccupying ca. 85% of the total basal area were investigated in a 4ha study plot (200 m × 200 m) of awarm-temperate old-growth evergreen broad-leaved forest in the Tatera ForestReserve of Tsushima Island, southwestern Japan. In the plot, adult trees 5.0 cm DBH co-occurred with 35 woody plant species (except forwoody vine species). The most dominant and largest species,Castanopsis cuspidata var. sieboldiiexhibited a bimodal DBH distribution; it was found in both the upper and lowervertical layers. Other tree species had unimodal DBH distributionscorrespondingmostly to the lower vertical layer. We developed a model for individual growthincorporating both intra- and interspecific competition and degree ofcompetitive asymmetry. One-sided interspecific competition was detected in 17cases out of the 66 possible combinations on the scale of the 4 hastudy plot. The direction of interspecific competition was generally one-sidedfrom layer-I species to layer-II and III ones. The effects of two-sidedcompetition were detected only in layer-II and III species. OnlyDistylium racemosum exhibited one-sided intraspecificcompetition. We also found 11 cases of positive interspecific relationships.Generally, competitive relationships prevailed over positive relationshipsbetween adult trees in this warm-temperate evergreen broad-leaved forest.Competition between adult trees 5.0 cm in DBH did not occurinthe same vertical layer, but occurred only between trees in different verticallayers. This suggests that competition between adult trees 5.0cm in DBH plays a key role in the variation in species coexistencebetween different vertical layers on the 4 ha scale of thewarm-temperate evergreen broad-leaved forests. Moreover, it was found bycomparing with three different forest types that interspecific competition ismore intense in warm-temperate forests than in cool-temperate or sub-borealforests. We conclude that, compared to cool-temperate or sub-boreal forests(which have little interspecific competition), warm-temperate forests supportmore complex interspecific relationships and species-specific habitatpreferences that result in higher species diversity.  相似文献   

4.
S. Yamamoto 《Plant Ecology》1996,127(2):203-213
Gap regeneration of major tree species was examined, based on the pattern of gap phase replacement, in primary old-growth stands of warm-temperate, cool-temperate and subalpine forests, Japan. Using principal component analysis, the gap-regeneration behavior of major tree species could be divided into three guilds and that of Fagus crenata (monodominant species of cool-temperate forests). The criteria used for this division were total abundance of canopy trees and regenerations and relative abundance of regenerations to canopy trees. The gap-regeneration behavior of species in the first guild was that canopy trees regenerate in gaps from seedlings or saplings recruited before gap formation; they had higher total abundance and more abundant regenerations relative to their canopy trees. The gap-regeneration behavior of F. crenata was same as species in the first guild, but F. crenata had less abundant regenerations relative to its canopy trees. Species in the second guild had lower total abundance and less abundant regenerations to their canopy trees. The guild contained species whose canopy trees regenerate in gaps from seedlings or saplings recruited after gap formation or regenerate following largescale disturbance. The third guild consisted of species with lower total aboundance and more abundant regenerations relative to their canopy trees. The gap-regeneration behavior of some species in this guild was that trees regenerate in gaps from seedlings or saplings recruited before gap formation, and grow, mature, and die without reaching the canopy layer, while the gap-regeneration behavior of other species was same as that of species in the first guild or F. crenata. Major tree species of subalpine forests were not present in the third guild.  相似文献   

5.
Analysis of the spatial pattern of plants may provide insight into the processes and mechanisms that promote species coexistence and community organization. Using torus-translation tests and point-pattern analyses for a heterogeneous Poisson process, we investigated habitat association and intra- and inter-specific spatial relationships of six major tree species in a cool-temperate forest community. All stems ≥5 cm in diameter at breast height were mapped on a 1.4-ha (100 × 140 m) plot and the topographic conditions (convexity and slope degree) and canopy state were assessed. Our results showed that all six species exhibited habitat associations with topographic and/or canopy conditions except for Magnolia salicifolia. Intra-specific aggregation was found for Acer japonicum, M. salicifolia, and Hamamelis japonica var. obtusata. Community-wide analysis of the inter-specific spatial patterns showed mainly mixed or partially overlapped patterns at a scale of up to 30 m, whereas individual pairwise analyses of inter-specific patterns revealed that Fagus crenata was positively associated with two Acer species and M. salicifolia at a spatial scale of up to 5 m. These results highlight that scale-dependant ecologically important processes, such as species-specific habitat preference, regeneration mode, seed dispersal, facilitation and niche complementarity, may operate simultaneously to shape tree distributional patterns, although their presence/absence as well as relative importance vary among species. Given the complexity of the process and mechanisms promoting species coexistence and community organization, more attention should be given to the effect of spatial scale in analyzing the spatial patterns of tree species in forest communities.  相似文献   

6.
We analyze forest structure, diversity, and dominance in three large-scale Amazonian forest dynamics plots located in Northwestern (Yasuni and Amacayacu) and central (Manaus) Amazonia, to evaluate their consistency with prevailing wisdom regarding geographic variation and the shape of species abundance distributions, and to assess the robustness of among-site patterns to plot area, minimum tree size, and treatment of morphospecies. We utilized data for 441,088 trees (DBH ≥1 cm) in three 25-ha forest dynamics plots. Manaus had significantly higher biomass and mean wood density than Yasuni and Amacayacu. At the 1-ha scale, species richness averaged 649 for trees ≥1 cm DBH, and was lower in Amacayacu than in Manaus or Yasuni; however, at the 25-ha scale the rankings shifted, with Yasuni < Amacayacu < Manaus. Within each site, Fisher’s alpha initially increased with plot area to 1–10 ha, and then showed divergent patterns at larger areas depending on the site and minimum size. Abundance distributions were better fit by lognormal than by logseries distributions. Results were robust to the treatment of morphospecies. Overall, regional patterns in Amazonian tree species diversity vary with the spatial scale of analysis and the minimum tree size. The minimum area to capture local diversity is 2 ha for trees ≥1 cm DBH, or 10 ha for trees ≥10 cm DBH. The underlying species abundance distribution for Amazonian tree communities is lognormal, consistent with the idea that the rarest species have not yet been sampled. Enhanced sampling intensity is needed to fill the still large voids we have in plant diversity in Amazon forests.  相似文献   

7.
We investigated the recruitment of saplings (across the 2 m-heightthreshold) of six species,Picea jezoensis, Abies sachalinensis,Betula ermanii, Picea glehnii, Acer ukurunduense andSorbus commixta,in a sub-boreal forest, northern Japan. Data were collectedin a 2.48-ha plot over six growing seasons (1989–1994).We used path analysis to analyse the relationships between therecruitment rates of saplings and the stand structural attributessuch as mother tree abundance, stand crowdedness, stand stratification,Sasabamboo density on the forest floor, and fallen log abundance.The combination of stand structural attributes affecting recruitmentrates of the six sub-boreal forest tree species differed markedlyamong the species and corresponded to species composition. Itis suggested that the size-structure dynamics of adult treesof the sub-boreal forest are regulated largely by differentregeneration processes among the species and only slightly byinterspecific competition between adult trees because interspecificcompetition between adult trees was not evident. The dynamicsof species coexistence of the sub-boreal forest should be describedas a process combining the diversity of recruitment processesof saplings of the component species and the diversity of interspecificcompetition between adult trees. We propose the boundary conditionhypothesis for species coexistence in the sub-boreal forest,that the persistence of each component species is ascribed largelyto the different recruitment processes of saplings (boundaryconditions for adult tree growth dynamics) and only a littleto interspecific adult tree competition. Climax forest; safe site; regeneration niche; mode of competition; species diversity  相似文献   

8.
Questions: Are there interspecific differences in mortality and recruitment rates across life stages between two shade‐tolerant dominant trees in a sub‐alpine old‐growth forest? Do such differences in demography contribute to the coexistence and co‐dominance of the two species? Location: Sub‐alpine, old‐growth forest on Mt. Ontake, central Honshu, Japan. Methods: From 1980 to 2005, we recorded DBH and status (alive or dead) of all Abies mariesii and A. veitchii individuals (DBH ≥ 5 cm) in a 0.44‐ha plot. Based on this 25 year census, we quantified mortality and recruitment rates of the two species in three life stages (small tree, 5 cm ≤ DBH < 10 cm; subcanopy tree, 10 cm ≤ DBH < 20 cm; canopy tree, DBH ≥ 20 cm). Results: Significant interspecific differences in mortality and recruitment rates were observed in both the small tree and sub‐canopy tree stages. In this forest, saplings (< 5 cm DBH) are mostly buried by snow‐pack during winter. As a consequence, saplings of A. mariesii, which is snow and shade tolerant, show higher rates of recruitment into the small tree stage than do those of A. veitchii. Above the snow‐pack, trees must tolerate dry, cold temperatures. A. veitchii, which can more readily endure such climate conditions, showed lower mortality rate at the subcanopy stage and a higher recruitment rate into the canopy tree stage. This differential mortality and recruitment among life‐stages determines relative dominance of the two species in the canopy. Conclusion: Differential growth conditions along a vertical gradient in this old forest determine survival of the two species prior to reaching the canopy, and consequently allow co‐dominance at the canopy stage.  相似文献   

9.
Successful growth of a tree is the result of combined effects of biotic and abiotic factors. It is important to understand how biotic and abiotic factors affect changes in forest structure and dynamics under environmental fluctuations. In this study, we explored the effects of initial size [diameter at breast height (DBH)], neighborhood competition, and site condition on tree growth, based on a 3‐year monitoring of tree growth rate in a permanent plot (120 × 80 m) of montane Fagus engleriana–Cyclobalanopsis multiervis mixed forest on Mt. Shennongjia, China. We measured DBH increments every 6 months from October 2011 to October 2014 by field‐made dendrometers and calculated the mean annual growth rate over the 3 years for each individual tree. We also measured and calculated twelve soil properties and five topographic variables for 384 grids of 5 × 5 m. We defined two distance‐dependent neighborhood competition indices with and without considerations of phylogenetic relatedness between trees and tested for significant differences in growth rates among functional groups. On average, trees in this mixed montane forest grew 0.07 cm year?1 in DBH. Deciduous, canopy, and early‐successional species grew faster than evergreen, small‐statured, and late‐successional species, respectively. Growth rates increased with initial DBH, but were not significantly related to neighborhood competition and site condition for overall trees. Phylogenetic relatedness between trees did not influence the neighborhood competition. Different factors were found to influence tree growth rates of different functional groups: Initial DBH was the dominant factor for all tree groups; neighborhood competition within 5 m radius decreased growth rates of evergreen trees; and site condition tended to be more related to growth rates of fast‐growing trees (deciduous, canopy, pioneer, and early‐successional species) than the slow‐growing trees (evergreen, understory, and late‐successional species).  相似文献   

10.
Typhoon no. 19 of 1991 (T9119) caused multiple treefalls and created large openings in an old-growth beech (Fagus crenata) forest at Mt. Daisen, in the Daisen Forest Reserve, southwestern Japan. The area of the largest opening was about 1.7 ha (300 m by 70 m). To predict the dynamics of the beech stand after the disturbance of T9119, we investigated the damage to the stand and the density and growth rate of trees with DBH=5–10 cm in a 1-ha plot covering a large part of the largest opening and the adjacent closed canopy. The beech did not regenerate immediately. The regeneration and growth rate of trees with DBH=5–10 cm were related to the frequency of the typhoon attack for at least the past century. In beech forests, small gap formation is the prevailing mode of disturbance. Our results indicate that typhoons affect the structure and dynamics of this beech stand. We suggest that both small gap formation and large-scale disturbance are important for the maintenance of beech forest in some areas.  相似文献   

11.
黄土高原马栏林区辽东栎林种内、种间竞争研究   总被引:8,自引:0,他引:8  
利用Hegyi的单木竞争指数模型对黄土高原马栏林区辽东栎(Quercus liaotungensis)的种内和种间竞争强度进行了定量分析.结果显示:(1)辽东栎种内竞争强度与种间竞争强度的总和大致相等,其种内及种间竞争强度均随对象木胸径的增大而逐渐减小,其关系服从幂函数规律,竞争主要发生在胸径小于15 cm的幼树阶段.(2)各组成树种对辽东栎影响程度(竞争指数)的大小顺序为:辽东栎>油松(Pinus tabulaeformis)>白桦(Betulaplatyphylla)>山杨(Populus davidiana)>杜梨(Pyrus betulaefolia)>湖北山楂(Crataegus hupehensis)>茶条槭(Acer ginnala)>陕西鹅耳枥(Carpinus shensiensis)>葛萝槭(A.grosseri).(3)油松是该地区的次优势种,对辽东栎有较大的竞争压力,在群落发展中可能会形成以油松占优势的混交林.(4)辽东栎胸径小于15 cm时,种内种间竞争是导致大量个体死亡的主要原因;胸径超过15 cm时,人为砍伐可能是个体死亡的主要原因.研究结果认为马栏林区混交林油松的密度不宜过大,尤其是在与未成熟辽东栎种群混交时密度应合理,应对该林区的混交林进行人工抚育,及时择伐密度过大的油松,而在辽东栎胸径达到15 cm之前择伐长势较差的植株,以促使森林群落尽快趋于稳定.  相似文献   

12.
Abstract. We tested whether interspecific variation in tree seedling establishment in canopy gaps was significantly related to interspecific variation in tree density, for seven deciduous forest tree species (Quercus alba, Hamamelis virginiana, Acer rubrum, Sassafras albidum, Quercus rubra, Prunus serotina, Ostrya virginiana). For each species, seedling establishment was calculated as the difference in seedling density before experimental gap creation versus three years after gap creation. In each of the six experimentally-created gap types (33 % or 66 % removal of tree basal area from 0.01-ha, 0.05-ha or 0.20-ha patches), differences in seedling establishment among species were significantly related to differences in their density in the tree canopy. A regression model with loge tree density as the independent variable accounted for between 93 % and 98 % of interspecific variation in seedling establishment. Our results provide empirical support for models of tree dynamics in gaps that assume seedling establishment depends on canopy tree density.  相似文献   

13.
色木槭天然次生林种群竞争关系研究   总被引:2,自引:1,他引:1  
运用Hegyi单木竞争指数定量分析了色木槭(Acer mono)种内和种间竞争强度。结果表明,色木槭的种内竞争强度较大,占总竞争的26.1%,在早期阶段,色木槭的种内竞争强度随着径级的增加而增大,胸径大于30 cm后,其竞争强度又逐渐降低;色木槭的种间竞争强度(89.061)大于种内(31.487),色木槭种内和种间竞争强度的顺序为:色木槭>糠椴>蒙古栎>黄菠萝>胡桃楸>紫椴;随着色木槭胸径的增大,所受到的竞争压力逐渐减小,胸径在15 cm以前所受到的竞争压力最大,竞争强度与对象木的胸径大小之间的关系近似服从指数函数关系。在自然条件下,当色木槭胸径达到15 cm前时,应对其进行抚育管理以提高木材利用率。  相似文献   

14.
Aims Buttresses are prevalent and are important to many ecological processes in tropical rainforests but are overlooked in many rainforest studies. Based on a buttress survey in a 20-hectare plot, this study aims to answer the following questions: (I) Is buttress forming a fixed species characteristic? (ii) Is there any phylogenetic signal for buttress forming across a broad taxonomic scale? (iii) Is buttress forming an inherent feature or simply induced by environmental factors, and how is this relevant to the size of the tree?Methods We surveyed buttresses for all 95940 trees with diameter at breast height (DBH) ≥10mm in a 20-ha tropical dipterocarp rainforest in Xishuangbanna, SW China. The occurrence of buttresses was compared across different taxa and across different tree-size classes. A phylogenetic analysis was conducted among buttressed and non-buttressed species in order to understand the evolutionary background of buttress formation.Important findings This preliminary study showed that buttress trees are very abundant (making up 32% of trees with ≥100mm DBH) in this 20-ha tropical rainforest situated at the northern edge of the tropics. Fifty-one percent of the 468 tree species in the plot had stems that produced buttresses. Large trees were more likely to develop buttresses than smaller ones. We found that although buttress formation is not a fixed species characteristic, there is a strong phylogenetic signal for buttress formation in larger species.  相似文献   

15.
Abstract. In a montane mixed Fagus‐Abies‐Picea forest in Babia Gora National Park (southern Poland), the dynamics of an old‐growth stand were studied by combining an 8‐yr annual census of trees in a 1‐ha permanent sample plot with radial increments of Abies and Picea growing in the central part of the plot. The mortality among the canopy trees was relatively high (10% in 8 yr), but the basal area increment of surviving trees slightly exceeded the losses caused by tree death. DBH increment was positively correlated with initial diameter in Abies and Picea, but not in Fagus. For individual trees smaller than the median height, basal area increment was positively related to the basal area of old snags and the basal area of recently deceased trees in their neighbourhood, but negatively related to the basal area of live trees. Dendrochronological analysis of the past growth patterns revealed numerous periods of release and suppression, which were usually not synchronized among the trees within a 0.3 ha plot. The almost normal distribution of canopy tree DBH and the small number of young individuals in the plot indicated that stand dynamics were synchronized over a relatively large area and, hence, were consistent with the developmental phase concept. On the other hand, the lack of synchronization among periods of growth acceleration in individual mature Abies and Picea trees conforms more closely to the gap‐dynamics paradigm.  相似文献   

16.
Resorption of nitrogen (N) from senescing leaves is an important conservation mechanism that allows plants to use the same N repeatedly. We measured the extent of N resorption in plants co-occurring in a beech forest to examine the variability of N resorption, especially in relation to growth irradiance. Measurements were done in three deciduous woody species; one adult and several juvenile trees of Fagus crenata and several adult trees of Lindera umbellata and Magnolia salicifolia. N resorption efficiency (REFF; percentages of leaf N that is resorbed during leaf senescence) did not differ significantly among leaves under different growth irradiances in any species we studied. REFF was affected by the growth stage of the tree in F. crenata with the values being consistently lower in juvenile trees than in the adult tree. N resorption proficiency (RPROF; N concentration of dead leaves) converged to a similar value in F. crenata juvenile trees and M. salicifolia, irrespective of the presenescent leaf N concentration that was affected by growth irradiance. Again, RPROF was lower (i.e. absolute N concentration was higher) in juvenile trees than in the adult tree in F. crenata. These results suggest that the growth irradiance does not place a great impact on the extent of N resorption, but the growth stage of the tree is influential in some species. The difference between the adult and juvenile trees may be ascribed to the size of N sink tissues, which is likely to increase with plant age.  相似文献   

17.
天然东北红豆杉(Taxus cuspidata)种内和种间竞争   总被引:20,自引:4,他引:16  
竞争是植物种内和种间关系的主要形式之一。通过对黑龙江穆棱东北红豆杉自然保护区的95株东北红豆杉对象木及980株竞争木的调查,运用Hegyi的单木竞争指数计算分析了东北红豆杉的种内和种间竞争强度。东北红豆杉的种内竞争强度不大,占总竞争的4%。竞争压力更多的来自于种间竞争,占总竞争的96%。与东北红豆杉竞争激烈的树种主要是冷杉、紫椴、色木槭和红松等地带性植被的优势种。随着东北红豆杉胸径的增大,所受到的竞争压力逐渐减小,胸径在20cm以前所受到的竞争压力最大,竞争强度与对象木胸径符合幂函数(CI=AD^-B)关系。  相似文献   

18.
Abstract. Changes in woody vegetation were examined over eight years, using a 1.05-ha permanent plot in which the location of every shrub and tree > 1m height was mapped. There was little change in the overstory vegetation, as expected for an old-growth forest. Much greater change occurred in the understory, primarily related to a 40 % increase in density. Differences occurred among species in the under-story, as Acer saccharum and Prunus serotina increased and Fraxinus americana and Fagus grandifolia decreased. Canopy gap dynamics are implicated in differences among species in the establishment and growth of individuals in the understory and their recruitment into the overstory. It is concluded that because understory is temporally variable, overstory recruitment from the understory may take different courses at different times in the same forest.  相似文献   

19.
红花尔基自然保护区天然樟子松林种内种间竞争分析   总被引:9,自引:1,他引:8  
运用Hegyi单木竞争指数分析了内蒙古红花尔基自然保护区天然樟子松(Pinus sylvestris var.mongolica Litv.)林内所有胸径大于2cm的樟子松、山杨(Populus davidiana Dode.)、白桦(Betula platyphylla Suk.)和山荆子(Malus baccata L.)的种内和种间竞争强度。结果表明,样地中主要的竞争木和对象木均为樟子松和白桦;樟子松的种内竞争强度(0.534)远大于种间竞争强度。随径级的增大,樟子松的种内竞争强度逐渐减小,且与胸径存在幂函数关系CI=A·D^-B。胸径达到30cm后,樟子松种内竞争强度变化不明显。作为竞争木,樟子松对其他树种产生了较大的竞争压力。  相似文献   

20.
Gap characteristics and gap phase replacement of major tree species were examined in two primary old-growth (mean DBHs of the canopy trees were 45.2 and 56.1 cm) and four secondary developing (range of mean DBH of the canopy trees was 23.5–39.9 cm) beech (Fagus crenata) stands in the Daisen Forest Reserve, southwestern Japan, and these were analyzed in relation to stand development as expressed by the difference of mean DBH of canopy trees. Percentage gap area (percentage of total gap area to total surveyed area) and mean and maximum gap size varied widely and ranged from 1.7 to 20.0%, from 19.4 to 162.8 m2, and from 35.7 to 585.1 m2, respectively. Mean percentage gap area and mean gap size were significantly greater in old-growth than in developing stands. However, they and maximum gap size might not increase linearly with stand development, and the gap feature of less developed stands was greater than that of later stages in developing stands. The cause was a higher formation rate, in younger developing stands, of gaps formed by simultaneous death (multiple trees falling down in domino fashion) which tends to produce larger gaps. In developing stands mean DBH of gapmakers (canopy trees that formed a gap) was smaller than that of canopy trees, though the inverse trend might be found in old-growth stands. Three typical types of death or injury states of gapmakers such as standing dead, trunk broken and uprooted were found in every study stand and the difference in stand development may not cause stand-to-stand variations for them. Importance of F. crenata (the most dominant species) in the canopy layer increased and its importance in the understory layer decreased with stand development. Shade-intolerant Quercus mongolica in the canopy layer was more important in younger than in old-growth stands, and there was no Quercus regeneration in old-growth stands. Acer mono consistently appeared, though in much less abundance than other species, in both canopy and understory layers of all study stands. Sub-canopy layers, which are mainly formed by sub-canopy tree species such as Acanthopanax sciadophylloides and Acer japonicum, may gradually develop with stand development.p>  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号