首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Molecular structure of an A-DNA decamer d(ACCGGCCGGT)   总被引:3,自引:0,他引:3  
The molecular structure of the DNA decamer d(ACCGGCCGGT) has been solved and refined by single-crystal X-ray-diffraction analysis at 0.20 nm to a final R-factor of 18.0%. The decamer crystallizes as an A-DNA double helical fragment with unit-cell dimensions of a = b = 3.923 nm and c = 7.80 nm in the space group P6(1)22. The overall conformation of this A-DNA decamer is very similar to that of the fiber model for A-DNA which has a large average base-pair tilt and hence a wide and shallow minor groove. This structure is in contrast to that of several A-DNA octamers in which the molecules all have low base-pair-tilt angles (8-12 degrees) resulting in an appearance intermediate between B-DNA and A-DNA. The average helical parameters of this decamer are typical of A-DNA with 10.9 base pairs/turn of helix, an average helical twist angle of 33.1 degrees, and a base-pair-tilt angle of 18.2 degrees. However, the CpG step in this molecule has a low local-twist angle of 24.5 degrees, similar to that seen in other A-DNA oligomers, and therefore appears to be an intrinsic stacking pattern for this step. The molecules pack in the crystal using a recurring binding motif, namely, the terminal base pair of one helix abuts the surface of the shallow minor groove of another helix. In addition, the GC base pairs have large propeller-twist angles, unlike those found most other A-DNA structures.  相似文献   

3.
Three empirical potentials of the Lennard-Jones type taken from literature were used to calculate van der Waals contributions to the base-pair couples stacking energies in B-DNA and A-DNA type double helical conformations. The information obtained can be summarized as follows: (1) Purine-pyrimidine and purine-purine (pyrimidine-pyrimidine in the complementary strand) sequences preferred right-handed helical arrangement, whereas pyrimidine-purine sequences favoured left-handed (C-G) or unwound (T-A) stacking geometry; in the latter case this only held for B- but not A-DNA (the C-G sequence was not studied in A-DNA owing to difficulties (see below) with the G amino group in B-DNA); (2) Positive propeller twist of base-pairs was stable in both B- and A-DNA; the thymine methyl group promoted the propeller and this effect was strongest in the A-T step; (3) Tilt of base pairs occurred around zero in B-DNA and between 15-20 degrees C in A-DNA, in agreement with the experimental observations; (4) Vertical separation of base pairs was optimal within 0.33-0.34 nm for B-DNA and around 0.29 nm for A-DNA using the 9-6 potential. The 12-6 potential gave similar results with B-DNA as the 9-6 potential if, however, base pairs were separated by 0.35-0.36 nm; (5) The calculated effect of the guanine amino group was substantially stronger than expected on the basis of data derived from X-ray diffraction studies of oligonucleotide single crystals; (6) In comparison with the 9-6 potential, the 12-6 potential provided more strict energy minima. In summary, the empirical potentials reproduce, at least semiquantitatively, many but not all DNA properties; this should be taken into account whenever the potentials are used for prediction purposes.  相似文献   

4.
Cytosine methylation or bromination of the DNA sequence d(GGCGCC)2 is shown here to induce a novel extended and eccentric double helix, which we call E-DNA. Like B-DNA, E-DNA has a long helical rise and bases perpendicular to the helix axis. However, the 3'-endo sugar conformation gives the characteristic deep major groove and shallow minor groove of A-DNA. Also, if allowed to crystallize for a period of time longer than that yielding E-DNA, the methylated sequence forms standard A-DNA, suggesting that E-DNA is a kinetically trapped intermediate in the transition to A-DNA. Thus, the structures presented here chart a crystallographic pathway from B-DNA to A-DNA through the E-DNA intermediate in a single sequence. The E-DNA surface is highly accessible to solvent, with waters in the major groove sitting on exposed faces of the stacked nucleotides. We suggest that the geometry of the waters and the stacked base pairs would promote the spontaneous deamination of 5-methylcytosine in the transition mutation of dm5C-dG to dT-dA base pairs.  相似文献   

5.
All crystal structures of A-DNA duplexes exhibit a typical crystal packing, with the termini of one molecule abutting the shallow grooves of symmetry related neighbors, while all other forms (B, Z, and RNA) tend to form infinitely stacked helices. The A-DNA arrangement leads to the formation of shallow groove base multiples that have implications for the structure of DNA in compacted states. The characteristic packing leaves big solvent channels, which can be sometimes occupied by B-DNA duplexes. Comparisons of the structures of the same oligomer crystallizing in two different space groups and of different sequences crystallizing in the same space group show that the lattice forces dominate the A-DNA conformation in the crystals, complicating the effort to elucidate the influence of the base sequence on the structures. Nevertheless, in both alternating and nonalternating fragments some sequence effects can still be uncovered. Furthermore, several studies have started to define the minimal sequence changes or chemical modifications that can interconvert the oligomers between different double-helical conformers (A-, B-, and Z-form). Overall, it is seen that the rigid nucleotide principle applies to the oligomeric fragments. Besides the structures of the naked DNAs, their interactions with water, polyamines, and metal ions have attracted considerable attention. There are conserved patterns in the hydration, involving both the grooves and the backbone, which are different from those of B-DNA or Z-DNA. Overall, A-DNA seems to be more economically hydrated than B-DNA, particularly around the sugar-phosphate backbone. Spermine was found to be able to bind exclusively to either of the grooves or to the phosphate groups of the backbone, or exhibit a mixed binding mode. The located metal cations prefer binding to guanine bases and phosphate groups. The only mispairs investigated in A-DNA are the wobble pairs, yielding structural insight into their effects on helix stabilities and hydration. G · T wobble pairs have been determined in various sequence contexts, where they differentially affect the conformations and stableness of the duplexes. The structure of a G · m5C base pair, which surprisingly also adopted the wobble conformation, suggests that a similar geometry may transiently exist for G · C pairs. These results from the crystalline state will be compared to the solution state and discussed in relation to their relevance in biology. © 1997 John Wiley & Sons, Inc. Biopoly 44: 45–63, 1997  相似文献   

6.
Changes in the free energy of mutual phosphate group interactions are calculated that accompany bending of the A-, B- and Z-DNA backbones in 0.7, 2.1 and 4.2 mol/l NaCl aqueous solutions. The bending is often found to be favoured in the direction of the double helix grooves; B-DNA prefers bending into the major groove while minor groove is the preferred bending direction of A-DNA in the presence of 0.7 mol/l NaCl. Interestingly, the preferences are reversed in 4.2 mol/l NaCl. Further stabilization of A-DNA and B-DNA backbones is achieved in some cases if bending is combined with suitable local double helix twist alterations. Bending tendencies of Z-DNA backbone are generally weaker and they decrease, in contrast to B-DNA and A-DNA, with the increasing ionic strength.  相似文献   

7.
The crystal structure of the DNA dodecamer duplex CATGGGCCCATG lies on a structural continuum along the transition between A- and B-DNA. The dodecamer possesses the normal vector plot and inclination values typical of B-DNA, but has the crystal packing, helical twist, groove width, sugar pucker, slide and x-displacement values typical of A-DNA. The structure shows highly ordered water structures, such as a double spine of water molecules against each side of the major groove, stabilizing the GC base pairs in an A-like conformation. The different hydration of GC and AT base pairs provides a physical basis for solvent-dependent facilitation of the A↔B helix transition by GC base pairs. Crystal structures of CATGGGCCCATG and other A/B-DNA intermediates support a ‘slide first, roll later’ mechanism for the B→A helix transition. In the distribution of helical parameters in protein–DNA crystal structures, GpG base steps show A-like properties, reflecting their innate predisposition for the A conformation.  相似文献   

8.
Solid-state 2H-nmr spectra have been obtained from folded films of oriented Li- and Na-DNA molecules with the purine bases selectively deuterium labeled at the 8 position. From line shape simulations, we find that the Na-DNA sample at 75% relative humidity (rh) contains both A-DNA and surprisingly large amounts of B-DNA
  • 1 Here, B-DNA refers to “B-DNA family” (i.e. B- or C-DNA).
  • (57%). For the A-DNA component the average base tilt is 23°, and the total distribution width of tilt angles and helix axis orientations is ~ 4° (standard deviation). In the B-DNA component the base tilt is ~ 0° and the total distribution width is ~ 20°. In contrast, films of Li-DNA only exhibit the B-form line shape, consistent with a base tilt of ~ 0° and a total distribution width of base tilt angles and helix axis orientations of 9°. The nmr results that demonstrate the presence of large amounts of B-DNA in the Na-DNA sample contrast with the x-ray diffraction measurements that indicated mainly A-form. The nmr spectra are used to monitor the B-DNA content in the Na-films and to evaluate procedures for increasing the A-DNA fraction.  相似文献   

    9.
    Structural properties of the complex formed between genomic DNA and the intercalating drug ethidium bromide (EtBr) have been determined by use of a Raman microscope equipped with near-infrared laser excitation. The polarized spectra, which were obtained from oriented fibers of the EtBr:DNA complex, are interpreted in terms of the relative orientations of the phenanthridinium ring of EtBr and bases of DNA. Quantification of structure parameters of EtBr and DNA in the complex were assessed using Raman tensors obtained from polarized Raman analyses of oriented specimens of EtBr (single crystal) and DNA (hydrated fiber). We find that the phenanthridinium plane is tilted by 35+/-5 degrees from the plane perpendicular to the fiber (DNA helix) axis. Assuming coplanarity of the phenanthridinium ring and its immediate base neighbors at the intercalation site, such bases would have a tilt angle closer to that of A-DNA (20 degrees) than to that of B-DNA (6 degrees). The average base tilt in stretches of DNA between intercalation sites remains that of B-DNA.  相似文献   

    10.
    A generalized procedure to generate nucleic acid structures is presented. In this procedure, the bases of a base pair are oriented first for characterization of particular DNA receptor sites. The resultant sites are then used in the study of specific molecule–DNA interactions. For example, intercalation sites, kinked DNA, and twisted and tilted bases are envisioned. Alterations of structures via antisyn orientations of bases, as well as crankshaft motion about collinear bonds, provide additional conformations without disrupting the overall backbone structure. These approaches to the generation of nucleic acid structures are envisioned as required in studies of the intercalation phenomenon, minor adjustments of DNA to accommodate denaturation, binding of carcinogens to DNA, complex formation of transition metals with DNA, and antitumor agents as ligands. For these base-pair and base orientations, backbone orientations are calculated by the AGNAS technique to yield physically meaningful conformations, namely, those conformations for which nonbonded contacts are favourable. A procedure is presented to generate dimer duplex units that are physically meaningful and to assemble these units into a polynucleotide duplex. Double helices that begin with B-DNA, undergo a transition to one of the above-mentioned receptor sites, and return to B-DNA can be assembled from a catalog of dimer duplexes. Stereographic projections of the various receptor sites already being used to model binding to DNA are presented.  相似文献   

    11.
    The crystal structure of the B-DNA hexamer d(CTCGAG) has been solved at 1.9 A resolution by iterative single isomorphous replacement, using the brominated derivative d(CG5BrCGAG), and refined to an R-factor of 18.6% for 120 nonhydrogen nucleic acid atoms and 32 water molecules. Although the central four base pairs form a typical B-form helix, several parameters suggest a transition to an A-like conformation at the termini. Based on this observation, a B-to-A transition was modeled, maintaining efficient base stacking across the junction. The wide minor groove (approximately 6.9 A) is reminiscent of that in the side-by-side double drug-DNA complexes and hosts a double spine of hydration. The global helix axes of the pseudo-continuous helices are at an acute angle of 60 degrees. The pseudocontinuous stacking is reinforced by the minor groove water structure extending between the two duplexes. The crossover point of two pairs of stacked duplexes is at the stacking junction, unlike that observed in the B-DNA decamers and dodecamers. This arrangement may have implications for the structure of a four-way DNA junction. The duplexes are arranged around a large (approximately 20 A diameter) channel centered on a 6(2) screw axis.  相似文献   

    12.
    Sequence-dependent bending of DNA and phasing of nucleosomes   总被引:5,自引:0,他引:5  
    Conformational analysis has revealed anisotropic flexibility of the B-DNA double helix: it bends most easily into the grooves, being the most rigid when bent in a perpendicular direction. This result implies that DNA in a nucleosome is curved by means of relatively sharp bends ("mini-kinks") which are directed into the major and minor grooves alternatively and separated by 5-6 base pairs. The "mini-kink" model proved to be in keeping with the x-ray structure of the B-DNA dodecamer resolved later, which exhibits two "annealed kinks", also directed into the grooves. The anisotropy of B DNA is sequence-dependent: the pyrimidine-purine dimers (YR) favor bending into the minor groove, and the purine-pyrimidine dinucleotides (RY), into the minor one. The RR and YY dimers appear to be the most rigid dinucleotides. Thus, a DNA fragment consisting of the interchanging oligopurine and oligopyrimidine blocks 5-6 base pairs long should manifest a spectacular curvature in solution. Similarly, a nucleotide sequence containing the RY and YR dimers separated by a half-pitch of the double helix is the most suitable for wrapping around the nucleosomal core. Analysis of the numerous examples demonstrating the specific alignment of nucleosomes on DNA confirms this concept. So, the sequence-dependent "mechanical" properties of the double helix influence the spatial arrangement of DNA in chromatin.  相似文献   

    13.
    Given a specified DNA sequence and starting with an idealized conformation for the double helix (A-DNA or B-DNA), the dependence of conformational energy on variations in the local geometry of the double helix can be examined by computer modeling. By averaging over all thermally accessible states, it is possible to determine 1) how the optimum local structure differs from the initial idealized conformation and 2) the energetic costs of small structural deformations. This paper describes such a study. Tables are presented for the prediction of helix twist angles and base pair roll angles for both A-DNA and B-DNA when the sequence has been specified. Local deviations of helix parameters from their average values can accumulate to produce a net curvature of the molecule, a curvature that can be sharp enough to be experimentally detectable. As an independent check on the method, the calculations provide predictions for the longitudinal compressibility (Young's modulus) and the average torsional stiffness, both of which are in good agreement with experimental values. In examining the role of sequence-dependent variations in helix structure for the recognition of specific sequences by proteins, we have calculated the energy needed to deform the self-complementary hexanucleotide d(CAATTG) to match the local geometry of d(GAATTC), which is the sequence recognized by the EcoRI restriction endonuclease. That energy would be sufficient to reduce the binding of the incorrect sequence to the protein by over 2 orders of magnitude relative to the correct sequence.  相似文献   

    14.
    Abstract

    A series of potential energy calculations have been carried out to estimate base sequence dependent structural differences in B-DNA. Attention has been focused on the simplest dimeric fragments that can be used to build long chains, computing the energy as a function of the orientation and displacement of the 16 possible base pair combinations within the double helix. Calculations have been performed, for simplicity, on free base pairs rather than complete nucleotide units. Conformational preferences and relative flexibilities are reported for various combinations of the roll, tilt, twist, lateral displacement, and propeller twist of individual residues. The predictions are compared with relevant experimental measures of conformation and flexibility, where available. The energy surfaces are found to fit into two distinct categories, some dimer duplexes preferring to bend in a symmetric fashion and others in a skewed manner. The effects of common chemical substitutions (uracil for thymine, 5-methyl cytosine for cytosine, and hypoxanthine for guanine) on the preferred arrangements of neighboring residues are also examined, and the interactions of the sugar-phosphate backbone are included in selected cases. As a first approximation, long range interactions between more distant neighbors, which may affect the local chain configuration, are ignored. A rotational isomeric state scheme is developed to describe the average configurations of individual dimers and is used to develop a static picture of overall double helical structure. The ability of the energetic scheme to account for documented examples of intrinsic B-DNA curvature is presented, and some new predictions of sequence directed chain bending are offered.  相似文献   

    15.
    A series of potential energy calculations have been carried out to estimate base sequence dependent structural differences in B-DNA. Attention has been focused on the simplest dimeric fragments that can be used to build long chains, computing the energy as a function of the orientation and displacement of the 16 possible base pair combinations within the double helix. Calculations have been performed, for simplicity, on free base pairs rather than complete nucleotide units. Conformational preferences and relative flexibilities are reported for various combinations of the roll, tilt, twist, lateral displacement, and propeller twist of individual residues. The predictions are compared with relevant experimental measures of conformation and flexibility, where available. The energy surfaces are found to fit into two distinct categories, some dimer duplexes preferring to bend in a symmetric fashion and others in a skewed manner. The effects of common chemical substitutions (uracil for thymine, 5-methyl cytosine for cytosine, and hypoxanthine for guanine) on the preferred arrangements of neighboring residues are also examined, and the interactions of the sugar-phosphate backbone are included in selected cases. As a first approximation, long range interactions between more distant neighbors, which may affect the local chain configuration, are ignored. A rotational isomeric state scheme is developed to describe the average configurations of individual dimers and is used to develop a static picture of overall double helical structure. The ability of the energetic scheme to account for documented examples of intrinsic B-DNA curvature is presented, and some new predictions of sequence directed chain bending are offered.  相似文献   

    16.
    Normal modes of vibration of DNA in the low-frequency region (10-300 cm-1 interval) have been identified from Raman spectra of crystals of B-DNA [d(CGCAAATTTGCG)], A-DNA [r(GCG)d(CGC) and d(CCCCGGGG)], and Z-DNA [d(CGCGCG) and d(CGCGTG)]. The lowest vibrational frequencies detected in the canonical DNA structures--at 18 +/- 2 cm-1 in the B-DNA crystal, near 24 +/- 2 cm-1 in A-DNA crystals, and near 30 +/- 2 cm-1 in Z-DNA crystals--are shown to correlate well with the degree of DNA hydration in the crystal structures, as well as with the level of hydration in calf thymus DNA fibers. These findings support the assignment [H. Urabe et al. (1985) J. Chem. Phys. 82, 531-535; C. Demarco et al. (1985) Biopolymers 24, 2035-2040] of the lowest frequency Raman band of each DNA to a helix mode, which is dependent primarily upon the degree of helix hydration, rather than upon the intrahelical conformation. The present results show also that B-, A-, C-, and Z-DNA structures can be distinguished from one another on the basis of their characteristic Raman intensity profiles in the region of 40-140 cm-1, even though all structures display two rather similar and complex bands centered within the intervals of 66-72 and 90-120 cm-1. The similarity of Raman frequencies for B-, A-, C-, and Z-DNA suggests that these modes originate from concerted motions of the bases (librations), which are not strongly dependent upon helix backbone geometry or handedness. Correlation of the Raman frequencies and intensities with the DNA base compositions suggests that the complex band near 90-120 cm-1 in all double-helix structures is due to in-plane librational motions of the bases, which involve stretching of the purine-pyrimidine hydrogen bonds. This would explain the centering of the band at higher frequencies in structures containing G.C pairs (greater than 100 cm-1) than in structures containing A.T pairs (less than 100 cm-1), consistent with the strengths of G.C and A.T hydrogen bonding.  相似文献   

    17.
    DNA fragments crystallize in an unpredictable manner, and relationships between their crystal and solution conformations still are not known. We have studied, using circular dichroism spectroscopy, solution conformations of (G + C)-rich DNA fragments, the crystal structures of which were solved in the laboratory of one of the present authors. In aqueous trifluorethanol (TFE) solutions, all of the examined oligonucleotides adopted the same type of double helix as in the crystal. Specifically, the dodecamer d(CCCCCGCGGGGG) crystalized as A-DNA and isomerized into A-DNA at high TFE concentrations. On the other hand, the hexamer d(CCGCGG) crystallized in Z-form containing tilted base pairs, and high TFE concentrations cooperatively transformed it into the same Z-form as adopted by the RNA hexamer r(CGCGCG), although d(CCGCGG) could isomerize into Z-DNA in the NaCl + NiCl2) aqueous solution. The fragments crystallizing as B-DNA remained B-DNA, regardless of the solution conditions, unless they denatured or aggregated. Effects on the oligonucleotide conformation of 2-methyl-2,4-pentanediol and other crystallization agents were also studied. 2-Methyl-2,4-pentanediol induced the same conformational transitions as TFE but, in addition, caused an oligonucleotide condensation that was also promoted by the other crystallization agents. The present results indicate that the crystal double helices of DNA are stable in aqueous TFE rather than aqueous solution.  相似文献   

    18.
    The crystal structures of five double helical DNA fragments containing non-Watson-Crick complementary base pairs are reviewed. They comprise four fragments containing G.T base pairs: two deoxyoctamers d(GGGGCTCC) and d(GGGGTCCC) which crystallise as A type helices; a deoxydodecamer d(CGCGAATTTGCG) which crystallises in the B-DNA conformation; and the deoxyhexamer d(TGCGCG), which crystallises as a Z-DNA helix. In all four duplexes the G and T bases form wobble base pairs, with bases in the major tautomer forms and hydrogen bonds linking N1 of G with O2 of T and O6 of G with N3 of T. The X-ray analyses establish that the G.T wobble base pair can be accommodated in the A, B or Z double helix with minimal distortion of the global conformation. There are, however, changes in base stacking in the neighbourhood of the mismatched bases. The fifth structure, d(CGCGAATTAGCG), contains the purine purine mismatch G.A where G is in the anti and A in the syn conformation. The results represent the first direct structure determinations of base pair mismatches in DNA fragments and are discussed in relation to the fidelity of replication and mismatch recognition.  相似文献   

    19.
    Abstract

    Conformational analysis has revealed anisotropic flexibility of the B-DNA double helix: it bends most easily into the grooves, being the most rigid when bent in a perpendicular direction. This result implies that DNA in a nucleosome is curved by means of relatively sharp bends (“mini-kinks”) which are directed into the major and minor grooves alternatively and separated by 5–6 base pairs. The “mini-kink” model proved to be in keeping with the x-ray structure of the B-DNA dodecamer resolved later, which exhibits two “annealed kinks”, also directed into the grooves.

    The anisotropy of B DNA is sequence-dependent: the pyrimidine-purine dimers (YR) favor bending into the minor groove, and the purine-pyrimidine dinucleotides (RY), into the minor one. The RR and YY dimers appear to be the most rigid dinucleotides. Thus, a DNA fragment consisting of the interchanging oligopurine and oligopyrmidine blocks 5–6 base pairs long should manifest a spectacular curvature in solution.

    Similarly, a nucleotide sequence containing the RY and YR dimers separated by a half-pitch of the double helix is the most suitable for wrapping around the nucleosomal core. Analysis of the numerous examples demonstrating the specific alignment of nucleosomes on DNA confirms this concept. So, the sequence-dependent “mechanical” properties of the double helix influence the spatial arrangement of DNA in chromatin.  相似文献   

    20.
    A circular dichroism study was conducted on the solution structure of several different oligonucleotides, whose X-ray structures have been solved. It is suggested that in aqueous solution the oligonucleotides can form structures that maintain geometrical elements which are typical of B-DNA, A-DNA, and their intermediate forms. It is shown that 5'GGATGGGAG:5'CTCCCATCC, which forms an A-DNA helix in the crystal state (McCall et al. 1986), in aqueous solution maintains an A-DNA like structure at temperatures below 10 degrees C. At temperatures between 10 degrees C and 25 degrees C it shows a tendency to form an intermediate structure between A-DNA and B-DNA. Also, it is shown that TFE does not cause a transition from B-DNA to A-DNA helix in short DNA fragments, but instead disrupts the helix.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号