首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Major manifestations of vertebral degenerative joint disease were observed on a Pre-Columbian Muisca series from the Soacha Cemetery (11th to 13th centuries) Colombia, South America. In total, 1,646 vertebrae of 83 individuals were examined. Osteophytes, vertebral body joint surface contour change ("lipping"), and vertebral body pitting were evaluated for each vertebral body. For apophyseal joints, joint surface contour change, pitting, and eburnation were recorded. Two methods of frequency calculation and five for vertebral degenerative disease diagnosis were applied and compared, allowing discussion of methodological considerations. Our study showed that 83% of individuals and 32% of vertebrae were classified as positive when diagnosed by the presence of at least one of the following manifestations: osteophytes, vertebral body joint surface contour change ("lipping"), apophyseal joint surface contour change, or eburnation (method called "Pitting excluded"). No significant differences were found between the sexes. In the youngest cohort (15-30 years), 65% of individuals and 10% of vertebrae exhibit at least one of the previously mentioned manifestations. High prevalences suggest a high level of physical activity beginning in childhood which may have accelerated the aging process in this Pre-Columbian population. Historical data are compatible with this hypothesis.  相似文献   

2.
Vertebral arthritis is examined in a prehistoric Native American sample from northwestern Alabama. Both osteophytosis (OP) of the vertebral bodies and osteoarthritis (OA) of the apophyseal facets are highest in the lumbar vertebrae, followed by the cervical and thoracic segments, although differences are much more striking in OP. OA is bilaterally asymmetric, with greater prevalence on the right side in the upper thoracic region. Much of the patterning seen in arthritis in this and other samples is due to the stresses imposed by spinal curvature and weight-bearing due to our erect posture. In addition, handedness is the probable cause of asymmetry in OA. However, the high levels of cervical OP are unexpected, and may be due to use of the tumpline in carrying burdens. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Sex differences in the distribution of vertebral degenerative and plastic change were examined and compared within and between samples of 51 individuals from the historically and ethnographically documented 16th-19th century site of Ensay, the Outer Hebrides, and 59 individuals from the medieval site of Wharram Percy, the Yorkshire Wolds. Both populations have a known gendered division of labor between males and females and known activity-related stresses on the spine. Osseous changes normally associated with degenerative joint disease (osteoarthritis) of the apophyseal facets and osteophytosis of the vertebral bodies were scored and reported separately. Inter- and intrasite differences were found in the frequency and distribution of osseous change down the spine. Overall, the Ensay sample was more highly stressed than that from Wharram Percy. Furthermore, differences between males and females at Ensay could be identified as relating to different types of activities. Distinctions between males and females at Wharram Percy were less marked, suggesting broadly similar lifestyles. These results accorded with expectations regarding contrasting levels of activity-related stress at the two sites and the division of labor between males and females. In particular, the prevalence and distribution of facet remodeling, facet sclerosis/eburnation, and osteophytosis in Ensay females could be related to load-bearing using creels (a form of basket), which disrupted "normal" patterns of osseous change along the spine. Importantly, morphologically distinct osseous modifications recorded on the apophyseal facets produced dissimilar distributions, suggesting that they may have different etiologies. These results highlight the need for a high degree of discrimination in recording, analyzing, and exploring activity-related osseous change.  相似文献   

4.
The vertebral column plays a key role in maintaining posture, locomotion, and transmitting loads between body components. Cervical vertebrae act as a bridge between the torso and head and play a crucial role in the maintenance of head position and the visual field. Despite its importance in positional behaviors, the functional morphology of the cervical region remains poorly understood, particularly in comparison to the thoracic and lumbar sections of the spinal column. This study tests whether morphological variation in the primate cervical vertebrae correlates with differences in postural behavior. Phylogenetic generalized least-squares analyses were performed on a taxonomically broad sample of 26 extant primate taxa to test the link between vertebral morphology and posture. Kinematic data on primate head and neck postures were used instead of behavioral categories in an effort to provide a more direct analysis of our functional hypothesis. Results provide evidence for a function-form link between cervical vertebral shape and postural behaviors. Specifically, taxa with more pronograde heads and necks and less kyphotic orbits exhibit cervical vertebrae with longer spinous processes, indicating increased mechanical advantage for deep nuchal musculature, and craniocaudally longer vertebral bodies and more coronally oriented zygapophyseal articular facets, suggesting an emphasis on curve formation and maintenance within the cervical lordosis, coupled with a greater resistance to translation and ventral displacement. These results not only document support for functional relationships in cervical vertebrae features across a wide range of primate taxa, but highlight the utility of quantitative behavioral data in functional investigations. Am J Phys Anthropol 156:531–542, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
This paper describes the morphology of the vertebral remains of the KNM-BG 35250 Nacholapithecus kerioi individual from the Middle Miocene of Kenya. Cervical vertebrae are generally large relative to presumed body mass, suggesting a heavy head with large jaws and well-developed neck muscles. The atlas retains the lateral and posterior bridges over the vertebral artery. The axis has a robust dens and a large angle formed by superior articular surfaces. The thoracic vertebral specimens include the diaphragmatic vertebra and one post-diaphragmatic vertebra. The thoracic vertebral bodies are much smaller that those of male Papio cynocephalus, whereas many of the dorsal elements are large and robust, exceeding those of male P. cynocephalus. Lumbar vertebral bodies are small relative to body mass, craniocaudally moderately long, and have a median ventral keel. The transverse process is craniocaudally long and arises from the widest part of the body cranially and the pedicle above the inferior vertebral notch caudally. Anapophyses are present in one of the preserved lumbar vertebrae. The postzygapophyses are thick dorsoventrally. These lumbar features are broadly shared with Proconsul. However, the base of the spinous process is longer and more caudally positioned in N. kerioi compared to Proconsul, and is more similar to the condition in Pongo. They are not dorsally (or moderately caudally) directed as is seen in P. nyanzae, Pan, and most other extant primates. A caudally directed spinous process does not permit a broad range of spinal dorsiflexion. The presumed stiff back in N. kerioi suggests a different locomotor repertoire than in Proconsul. Morotopithecus bishopi, although not possessing the same features, exhibits another morphological suite of characters for lumbar stiffness. Diverse functional adaptations of the lumbar spine were present in African hominoids during the Early to Middle Miocene.  相似文献   

6.
A new method for the estimation of dorsoventral and lateral mobility of platycoelous vertebrae with V-shaped (radial) articular facets on the zygapophyses is developed. This vertebral pattern is observed in dinosaurs, some other fossil reptiles, and in the cervical and lumbar regions of mammals. Based on theoretical biomechanical analysis of the intervertebral discs and articulations between zygapophyses, the estimation formulas are developed and calibrated, using precise measurements of mobility between cervical vertebrae of domestic sheep. The method is applied to the presacral vertebrae of the horned dinosaur Protoceratops andrewsi. In its cervical, lumbar, and anterior thoracic regions, the differences between the calculated amplitudes of movements and the sought true values are expected to range within ±5°. As compared to the sheep, Protoceratops shows a greater lateral mobility in the presacral region and reduced vertical mobility in the cervical region.  相似文献   

7.
General doctrine holds that early hominids possessed a long lumbar spine with six segments. This is mainly based on Robinson's (1972) interpretation of a single partial Australopithecus africanus skeleton, Sts 14, from Sterkfontein, South Africa. As its sixth last presacral vertebra exhibits both thoracic and lumbar characteristics, current definitions of lumbar vertebrae and lumbar ribs are discussed in the present study. A re-analysis of its entire preserved vertebral column and comparison with Stw 431, another partial A. africanus skeleton from Sterkfontein, and the Homo erectus skeleton KNM-WT 15000 from Nariokotome, Kenya, did not provide strong evidence for the presence of six lumbar vertebrae in either of these early hominids. Thus, in Sts 14 the sixth last presacral vertebra has on one side a movable rib. In Stw 431, the corresponding vertebra shows indications for a rib facet. In KNM-WT, 15000 the same element is very fragmentary, but the neighbouring vertebrae do not support the view that it is L1. Although in all three fossils the transitional vertebra at which the articular facets change orientation seems to be at Th11, this is equal to a large percentage of modern humans. Indeed, a modal number of five lumbar vertebrae, as in modern humans, is more compatible with evolutionary principles. For example, six lumbar vertebrae would require repetitive shortening and lengthening not only of the lumbar, but also of the entire precaudal spine. Furthermore, six lumbar vertebrae are claimed to be biomechanically advantageous for early hominid bipedalism, yet an explanation is lacking as to why the lumbar region should have shortened in later humans. All this raises doubts about previous conclusions for the presence of six lumbar vertebrae in early hominids. The most parsimonious explanation is that they did not differ from modern humans in the segmentation of the vertebral column.  相似文献   

8.
This paper describes the morphology of cervical vertebrae in Nacholapithecus kerioi, a middle Miocene primate species excavated from Nachola, Kenya in 1999-2002. The cervical vertebrae in Nacholapithecus are larger than those of Papio cynocephalus. They are more robust relative to more caudal vertebral bones. Since Nacholapithecus had large forelimbs, it is assumed that strong cervical vertebrae would have been required to resist muscle reaction forces during locomotion. On the other hand, the vertebral foramen of the lower cervical vertebrae in Nacholapithecus is almost the same size as or smaller than that of P. cynocephalus. Atlas specimens of Nacholapithecus resemble those of extant great apes with regard to the superior articular facet, and they have an anterior tubercle trait intermediate between that of extant apes and other primate species. Nacholapithecus has a relatively short and thick dens on the axis, similar to those of extant great apes and the axis body shape is intermediate between that of extant apes and other primates. Moreover, an intermediate trait between extant great apes and other primate species has been indicated with regard to the angle between the prezygapophyseal articular facets of the axis in Nacholapithecus. Although the atlas of Nacholapithecus is inferred as having a primitive morphology (i.e., possessing a lateral bridge), the shape of the atlas and axis leads to speculation that locomotion or posture in Nacholapithecus involved more orthograde behavior similar to that of extant apes, and, in so far as cervical vertebral morphology is concerned, it is thought that Nacholapithecus was incipiently specialized toward the characteristics of extant hominoids.  相似文献   

9.
A three-dimensional model of the human cervical spine for impact simulation   总被引:4,自引:0,他引:4  
A three-dimensional analytical model of the cervical spine is described. The cervical vertebrae and the head are modeled as rigid bodies which are interconnected by deformable elements representing the intervertebral disks, facet joints, ligaments and muscles. A special pentahedral continuum element for representing the articular facets is described which effectively maintains stability of the cervical spine in both lateral and frontal plane accelerations, which is very difficult with multi-spring models of the facets. A simplified representation is used for the spine and body below the level of T1. The neck musculature is modeled by over 100 muscle elements representing 22 major muscle groups in the neck. The model has been validated for frontal and sideways impact accelerations by simulating published experimental data. Results are also presented to show the effects of the stretch reflex response on the dynamics of the head and neck under moderate acceleration.  相似文献   

10.
An experimental technique for quantifying load-sharing in cadaveric spines is used to test the hypothesis that degenerative changes in human apophyseal joints are directly related to high levels of compressive load-bearing by these joints. About 36 cadaveric thoraco-lumbar motion segments aged 64-92 years were subjected to a compressive load of 1.5 kN. The distribution of compressive stress was measured in the intervertebral discs using a miniature pressure transducer, and stress measurements were summed over area to give the compressive force resisted by the disc. This was subtracted from the applied 1.5 kN to indicate compressive load-bearing by the apophyseal joints. The cartilage of each apophyseal joint surface was then graded for degree of degeneration. After maceration, each joint surface was scored for degenerative joint disease (DJD) affecting the bone. Results demonstrated that the apophyseal joints resisted 5-96% (mean 45%) of the applied compressive force. A significant positive correlation was demonstrated between age and cartilage degeneration, age and DJD bone score, apophyseal joint load-bearing and bone score, and cartilage score and load-bearing. The latter correlation was strongest for load-bearing above 50%. Ordinal regression showed that the variables describing bone DJD (marginal osteophytes, pitting, bony contour change, and eburnation) were significantly correlated with degree of cartilage degeneration. It is concluded that in elderly individuals apophyseal joint load-bearing above a threshold of 50% is associated with severe degenerative changes in cartilage and bone, and that markers of DJD observed palaeopathologically may be used as predictors of such loadingin life.  相似文献   

11.
12.
The facet joint contributes to the normal biomechanical function of the spine by transmitting loads and limiting motions via articular contact. However, little is known about the contact pressure response for this joint. Such information can provide a quantitative measure of the facet joint's local environment. The objective of this study was to measure facet pressure during physiologic bending in the cervical spine, using a joint capsule-sparing technique. Flexion and extension bending moments were applied to six human cadaveric cervical spines. Global motions (C2-T1) were defined using infra-red cameras to track markers on each vertebra. Contact pressure in the C5-C6 facet was also measured using a tip-mounted pressure transducer inserted into the joint space through a hole in the postero-inferior region of the C5 lateral mass. Facet contact pressure increased by 67.6 ± 26.9 kPa under a 2.4 Nm extension moment and decreased by 10.3 ± 9.7 kPa under a 2.7 Nm flexion moment. The mean rotation of the overall cervical specimen motion segments was 9.6 ± 0.8° and was 1.6 ± 0.7° for the C5-C6 joint, respectively, for extension. The change in pressure during extension was linearly related to both the change in moment (51.4 ± 42.6 kPa/Nm) and the change in C5-C6 angle (18.0 ± 108.9 kPa/deg). Contact pressure in the inferior region of the cervical facet joint increases during extension as the articular surfaces come in contact, and decreases in flexion as the joint opens, similar to reports in the lumbar spine despite the difference in facet orientation in those spinal regions. Joint contact pressure is linearly related to both sagittal moment and spinal rotation. Cartilage degeneration and the presence of meniscoids may account for the variation in the pressure profiles measured during physiologic sagittal bending. This study shows that cervical facet contact pressure can be directly measured with minimal disruption to the joint and is the first to provide local pressure values for the cervical joint in a cadaveric model.  相似文献   

13.
Recent functional studies of human vertebrae have revealed that loads borne by the axial skeleton during bipedal postures and locomotion pass through the pedicles and posterior elements as well as through the bodies and discs. Accordingly, particular morphological attributes of these vertebral elements have been linked exclusively with bipedalism. In order to test the validity of current form-function associations in human vertebral anatomy, this study considers the morphology of human thoracolumbar vertebral bodies and pedicles in the context of a wide comparative primate sample. The last lumbar vertebra of STS 14 (Australopithecus africanus) is also included in the analysis. Results indicate that certain features of human vertebrae previously thought to reflect bipedalism are characteristic of several nonhuman primates, including those whose posture is habitually pronograde. These features include the decrease in vertebral body surface area and the increase in cross-sectional area of the pedicle between the penultimate and last lumbar vertebra. In addition, although humans have relatively large and wide last lumbar pedicles, the enlargement and widening of the pedicle between the penultimate and last lumbar vertebra is not unique to humans. On the other hand, human vertebrae do exhibit several unique adaptations to bipedal posture and locomotion: (1) the vertebral body surface areas of the lower lumbar vertebrae and the cross-sectional areas of the last lumbar pedicles are large relative to body size, and (2) the last lumbar pedicles are wider relative to length and to body size than are those of nonhuman primates. The last lumbar vertebra of STS 14 does not exhibit any of these human-like vertebral features—its pedicles and body surface areas are relatively small, and its pedicles are not relatively wide, but relatively short.  相似文献   

14.
Recent examination of the Shanidar 3 remains revealed the presence of anomalous bilateral arthroses in the lumbar region. This paper describes this developmental anomaly, as well as several degenerative changes and offers potential etiologies.The Shanidar 3 remains represent an adult male Neandertal, approximately 35–50 years of age, dating to the Last Glacial. Although the partial skeleton is fragmentary, preserved elements include an almost complete set of ribs, portions of all thoracic vertebrae, all lumbar vertebrae, and the sacrum. Vertebral articulations from S1–T1 can be confidently assigned. The vertebra designated L1 is well preserved but lacks transverse processes. Instead, well defined bilateral articular surfaces, rather than transverse processes, are located on the pedicles. The skeletal elements associated with the anomalous L1 articulations were not recovered.The most likely interpretation is that the arthroses in question represent the facets for a 13th pair of ribs, a rare condition in modern hominid populations. Such lumbar developmental anomalies are an infrequent expression of a larger complex of cranial-caudal border shifting seen in the vertebral column. These shifts result in a change in the usual boundaries between the distinctive vertebral regions and are responsible for the majority of variability present in the vertebral column.  相似文献   

15.
Reported investigations of facet articulation in the human spine have often been conducted through the insertion of pressure sensitive film into the joint space, which requires incision of the facet capsule and may alter the characteristics of interaction between the facet surfaces. Load transmission through the facet has also been measured using strain gauges bonded to the articular processes. While this method allows for preservation of the facet capsule, it requires extensive instrumentation of the spine, as well as strain-gauge calibration, and is highly sensitive to placement and location of the strain gauges. The inherently invasive nature of these techniques makes it difficult to translate them into medical practice. A method has been developed to investigate facet articulation through the application of test kinematics to a specimen-specific rigid-body model of each vertebra within a lumbar spine segment. Rigid-body models of each vertebral body were developed from CT scans of each specimen. The distances between nearest-neighboring points on each facet surface were calculated for specific time frames of each specimen's flexion/extension test. A metric describing the proportion of each facet surface within a distance (2 mm) from the neighboring surface, the contact area ratio (CAR), was calculated at each of these time frames. A statistically significant difference (p<0.037) was found in the CAR between the time frames corresponding to full flexion and full extension in every level of the lumbar spine (L1-L5) using the data obtained from the seven specimens evaluated in this study. The finding that the contact area of the facet is greater in extension than flexion corresponds to other findings in the literature, as well as the generally accepted role of the facets in extension. Thus, a biomechanical method with a sufficiently sensitive metric is presented as a means to evaluate differences in facet articulation between intact and treated or between healthy and pathologic spines.  相似文献   

16.
Macerated cervical vertebrae of 139 adult and 39 juvenile dogs were assessed for morphological evidence of axial rotation, which is denoted by the shape and orientation of the articular facets. The potential effect of the presence of caudal costal foveae at C7 on facet geometry was also investigated. Four variations of caudal facet shape were evident, namely, plane, concave, convex and sigmoid. The earliest onset of change in shape from plane to curved was noticed in juvenile dogs who were older than 8 weeks. The incidence of curved facets denoting axial rotation ability was observed to increase on descending down the cervical spine. Concave caudal facets were more frequently present in males and in large dogs (P < 0.001), compared to Dachshunds and small breeds. The degree of concavity was not related to age but was associated with the transverse distance between the most medial aspects of the caudal and corresponding cranial facets (P < 0.05). In large breeds, the presence of concave caudal facets at C7 was inversely related to the presence of caudal costal foveae (P < 0.01). The effect of axial rotation is discussed in context with clinical literature suggesting that axial rotation might attribute to the development of the wobbler syndrome.  相似文献   

17.
The articular facet of a superior articular process of the sacrum is directed backward, inward, and upward with marked variations. 4 angles characterize the orientation of this facet: a) The relative angle of tilt: i.e. the angle between the articular facet and the upper end-plate of the sacrum, measured in a sagittal plane. b) The absolute angle of tilt: i.e. the angle between the articular facet and the horizontal plane, measured in a sagittal plane. c) The tilted part-angle of opening: i.e. the angle between the articular facet and the sagittal plane, measured in a plane parallel to the upper end-plate of the sacrum. d) The horizontal part-angle of opening: i.e. the angle between the articular facet and the sagittal plane, measured in a horizontal plane. These 4 angles are determined by characteristic straights within the articular facet and certain reference planes (upper end-plate of the sacrum, horizontal plane, sagittal plane). Only 2 intersecting straights suffice for an adequate determination of a geometrical plane; therefore, if we know the relative angle of tilt and the tilted part-angle of opening, we are able to construct or to calculate the absolute angle of tilt as well as the horizontal part-angle of opening by using the range of inclination of the sacrum. The shape as well as the orientation of the articular facets at the superior articular processes of the sacrum do not depend on the inclination of the pelvis nor on the inclination of the sacrum nor on the range of the lumbosacral angle. Only the absolute angle of tilt shows a reference to the inclination of the sacrum because the relative angle of tilt shows a certain constancy. The orientation of the articular facets is slightly influenced by static moments, but considerably determined by dynamical requirements. At spines with irregular numbers of praesacral vertebrae, the orientation of the lumbosacral articular facets do not differ from the orientation of these facets at spines with the regular number of 24 praesacral vertebrae. This, however, does not prove right at spines, that have a lumbosacral "transitional vertebra". Such lumbosacral transitional vertebrae detract much from the stability of the lumbosacral region of the spine.  相似文献   

18.
侯侃  王明辉  朱泓 《人类学学报》2017,36(1):87-100
对赤峰兴隆沟遗址第一地点出土的人类椎骨上椎体的退行性关节病(DJD)和黄韧带骨化(OLF)进行了生物考古学研究,制订了这两种病症患病程度的分级记录标准,并对患病率和患病程度均值进行了统计分析。对两性的对比发现DJD的差异主要体现在男性颈椎患病较多而女性腰椎患病较多,OLF的主要差异则是男性胸椎患病率显著高于女性。通过与对比组的比较,发现兴隆沟组腰椎、颈椎DJD患病率相对较高,并再次验证了两性患病情况存在的明显差异;兴隆沟组OLF患病率与对比组也有显著差异。兴隆沟组的椎骨患病情况不一定与生业模式有关,只反映了脊柱承受负荷的情况,其差异暗示行为模式上的差异。建议开展其他方面研究以详细了解其行为模式,同时要重视建立统一的古病理研究标准的重要性。  相似文献   

19.
The facet joint is a crucial anatomic region of the spine owing to its biomechanical role in facilitating articulation of the vertebrae of the spinal column. It is a diarthrodial joint with opposing articular cartilage surfaces that provide a low friction environment and a ligamentous capsule that encloses the joint space. Together with the disc, the bilateral facet joints transfer loads and guide and constrain motions in the spine due to their geometry and mechanical function. Although a great deal of research has focused on defining the biomechanics of the spine and the form and function of the disc, the facet joint has only recently become the focus of experimental, computational and clinical studies. This mechanical behavior ensures the normal health and function of the spine during physiologic loading but can also lead to its dysfunction when the tissues of the facet joint are altered either by injury, degeneration or as a result of surgical modification of the spine. The anatomical, biomechanical and physiological characteristics of the facet joints in the cervical and lumbar spines have become the focus of increased attention recently with the advent of surgical procedures of the spine, such as disc repair and replacement, which may impact facet responses. Accordingly, this review summarizes the relevant anatomy and biomechanics of the facet joint and the individual tissues that comprise it. In order to better understand the physiological implications of tissue loading in all conditions, a review of mechanotransduction pathways in the cartilage, ligament and bone is also presented ranging from the tissue-level scale to cellular modifications. With this context, experimental studies are summarized as they relate to the most common modifications that alter the biomechanics and health of the spine-injury and degeneration. In addition, many computational and finite element models have been developed that enable more-detailed and specific investigations of the facet joint and its tissues than are provided by experimental approaches and also that expand their utility for the field of biomechanics. These are also reviewed to provide a more complete summary of the current knowledge of facet joint mechanics. Overall, the goal of this review is to present a comprehensive review of the breadth and depth of knowledge regarding the mechanical and adaptive responses of the facet joint and its tissues across a variety of relevant size scales.  相似文献   

20.
The depiction of the Neandertals as incompletely erect was based primarily on Boule's (1911, 1912a, 1913) analysis of the La Chapelle-aux-Saints 1 partial skeleton. The inaccurate aspects of Boule's postural reconstruction were corrected during the 1950s. However, it has come to be believed, following Straus and Cave (1957), that Boule's errors of reconstruction were due to the diseased condition of the La Chapelle-aux-Saints 1 remains, rather than to Boule's misinterpretation of morphology. The abnormalities on the La Chapelle-aux-Saints 1 postcranium include: lower cervical, upper thoracic, and lower thoracic intervertebral degenerative joint disease (DJD), a distal fracture of a mid-thoracic rib, extensive DJD of the left hip, DJD of the right fifth proximal interphalangeal articulation, bilateral humeral head eburnation, and minor exostosis formation on the right humerus, ulna, and radius. These were associated with extensive alveolar inflammation including apical abscesses and antemortem tooth loss, some temporomandibular DJD, bilateral auditory exostoses, and minimal occipital condyle DJD. None of these abnormalities significantly affected Boule's Neandertal postural reconstruction, and a review of his analysis indicates that early twentieth century interpretations of skeletal morphology (primarily of the cranium, cervical vertebrae, lumbar and sacral vertebrae, proximal femora and tibiae, posterior tarsals, and hallucial tarsometatarsal joint), combined with Boule's evolutionary preconceptions, were responsible for his mistaken view of Neandertal posture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号