首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Ants are among the most successful species at invading new environments. Their success undeniably comes from their various modes of reproduction and colony breeding structures, which influence their dispersal ability, reproductive potential, and foraging strategies. Almost all invasive ant species studied so far form supercolonies, a dense network of interconnected nests comprising numerous queens, without aggression toward non‐nestmates. This strategy results in invasive colonies that are able to grow extremely fast and large while avoiding intraspecific competition, allowing them to monopolize environmental resources and outcompete native species. Here, we developed and used 10 microsatellite markers to investigate the population structure and breeding system of the dark rover ant Brachymyrmex patagonicus Mayr in its introduced range. We determined whether this species exhibits a supercolonial structure by assessing whether different nests belonged to the same genetic colony. We inferred its dispersal ability by investigating isolation by distance and estimated the numbers of queens per colonies and mating per queen through parent‐offspring inferences. We found that most of the colonies of B. patagonicus were comprised of a single nest, headed by a single queen. Each nest was distinct from one another, without isolation by distance, which suggests strong dispersal ability through nuptial flights. These features are commonly observed in noninvasive and native ant species, but they are surprising for a successful invasive ant, as they strongly differ from other invasive ants. Overall, we discuss how this seemingly unfavorable strategy for an invasive ant might favor the invasive success of the dark rover ant in the United States.  相似文献   

2.
红火蚁Solenopsis invicta Buren是国际最具危险性的入侵性物种之一,传播扩散速度快、适生能力强。云南由于其独特的地理和气候环境,给红火蚁的入侵和发生提供了丰富的栖息环境和食物。本研究对云南高海拔冷凉区域人工草坪条件下红火蚁婚飞有翅蚁、工蚁活动规律,以及蚁巢变化规律进行了系统的调查研究。结果表明,在人工草坪条件下,红火蚁婚飞活动主要发生在每年的5-8月,6月初和8月初为婚飞生殖蚁发生高峰期,婚飞生殖蚁数量分别达到390.33头/1 000 m2和523.33头/1 000 m2,分别占到全年婚飞生殖蚁总量的25.19%和33.77%;诱集工蚁数量在6月下旬-7月上旬、8月下旬-9月下旬达到两个高峰,合计诱集数量分别为634.66头/1 000 m2和1 636.00头/1 000 m2,分别占到全年诱集工蚁总量的44.59%和17.30%;新增蚁巢数量在6月1日-7月1日、8月16日、9月15日-12月16日、次年3月14日-4月15日为4个增长阶段,新增蚁巢数量分别为9.66个/...  相似文献   

3.
为了阐明红火蚁Solenopsis invicta Buren的发生危害规律,为制定红火蚁的监测与防治措施提供科学依据,本研究调查了广州地区(113°45′E,22°43′N)红火蚁工蚁巢外活动日节律和季节性变化,以及有翅蚁的婚飞活动。结果表明,工蚁巢外活动日节律随季节或月份的不同而存在着明显差异:其中12-2月份的日活动节律为单峰型,即在中午温度较高时数量较大,而在5-10月份的日活动节律为双峰型,即在上午或下午工蚁数量较大,其余月份的活动为不明显的双峰型。工蚁巢外活动数量和时间随季节的不同而有显著差异。其中以6月和10月份的日活动数量最多,而在1月和2月份的活动数量最少,时间最短,其余月份活动数量居中。工蚁在阵雨前后的活动数量明显多于晴天,但处于降雨时刻的巢外工蚁数量极少。蚁巢受侵扰后出巢工蚁数量在30 s内最大,之后便随时间的延长而逐渐减少,该种现象可以用房室函数进行描述。另外,工蚁的巢外数量会随侵扰强度的加大而增加。在试验区内全年都可见到红火蚁婚飞,但婚飞活动主要集中在3-5月份,每日婚飞活动主要发生在下午,并主要发生在雨前或雨后。上述结果对于了解我国红火蚁的发生危害规律和提升其监控技术水平有较大参考价值。  相似文献   

4.
Reproductive phenologies in a diverse temperate ant fauna   总被引:1,自引:0,他引:1  
Abstract.  1. Ant nuptial flights are central to understanding ant life history and ecology but have been little studied. This study examined the timing of nuptial flights, the synchronicity of nuptial flights (as a potential index of mating strategy), and variation in nuptial flights with elevation and among years in a diverse temperate ant fauna.
2. Flights occurred throughout the year, but were concentrated in the beginning of summer and in early fall (autumn). Relative to the entire flight season, closely related species tended to be more likely than expected by chance to fly at similar times, perhaps because of phylogenetic constraints on life history evolution.
3. Flights were relatively synchronous within species for nearly all species considered, but synchronicity did not appear to be a robust estimate of overall mating strategy.
4. Overall patterns in nuptial flights among species and the timing of flights for individual species varied with elevation, but did not vary greatly among years.
5. Although this study is one of the most comprehensive on the reproductive flight phenologies of ants, much remains to be learned about the causes and consequences of such spatial and temporal variation in flight phenology.  相似文献   

5.
Abstract.— The objective of this study was to assess breeding and dispersal patterns of both males and females in a monogyne (a single queen per colony) population of ants. Monogyny is commonly associated with extensive nuptial flights, presumably leading to considerable gene flow over large areas. Opposite to these expectations we found evidence of both inbreeding and sex-biased gene flow in a monogyne population of Formica exsecta . We found a significant degree of population subdivision at a local scale (within islands) for queens (females heading established colonies) and workers, but not for colony fathers (the males mated to the colony queens). However, we found little evidence of population subdivision at a larger scale (among islands). More conclusive support for sex-biased gene flow comes from the analysis of isolation by distance on the largest island, and from assignment tests revealing differences in female and male philopatry. The genetic similarity between pairs of queens decreased significantly when geographical distance increased, demonstrating limited dispersal and isolation by distance in queens. By contrast, we found no such pattern for colony fathers. Furthermore, a significantly greater fraction of colony queens were assigned as having originated from the population of residence, as compared to colony fathers. Inbreeding coefficients were significantly positive for workers, but not for mother queens. The queen-male relatedness coefficient of 0.23 (regression relatedness) indicates that mating occurs between fairly close relatives. These results suggest that some monogyne species of ants have complex dispersal and mating systems that can result in genetic isolation by distance over small geographical scales. More generally, this study also highlights the importance of identifying the relevant scale in analyses of population structure and dispersal.  相似文献   

6.
Many studies have shown the efficiency of using weaver ants (Oecophylla species) as natural biocontrol agents against agricultural pests. Supplementary feeding could promote fast growth of this ant's population and discourage them from moving away. However, such artificial feeding might slow down ants search rates and in this way make them less efficient bio-agents. The experiments were conducted for two consecutive seasons at Naliendele Research Station. Cashew trees planted at a spacing of 12 m × 12 m in 2002 were used to investigate whether supplementary feeding could enhance foraging behaviour of Oecophylla longinoda. Fed O. longinoda colonies fed weaver ants (FWA) were supplemented with a 30% sugar solution and approximately 22 g of finely ground fish meat at two-week intervals while the unfed colonies unfed weaver ants (UWA) had access to only naturally occurring food sources. Weaver ant densities and pest damage were monitored fortnightly on newly damaged shoots, panicles and fruits and nut yields assessed after each harvest season. The results revealed that there was a significant difference (P < 0.05) with higher weaver ant densities in the FWA compared to UWA colonies and significantly lower (P < 0.05) pest damage levels were recorded on weaver ant treatments compared to plots without weaver ants. No significant differences (P > 0.05) in yields and mean damage levels were recorded between the two weaver ant treatments. Highest nut yield (4.22 ± 0.30 kg/tree and 5.37 ± 0.27 kg/tree) was recorded in the fed colonies, followed by non-fed colonies (4.20 ± 0.30 kg/tree and 4.88 ± 0.24 kg/tree) and the least (2.66 ± 0.19 kg/tree and 2.99 ± 0.19 kg/tree) was recorded from the untreated controls in 2012/2013 and 2013/2014, respectively. The studies indicated that supplementary feeding could boost weaver ants to higher population levels without reducing their effectiveness as biocontrol agents.  相似文献   

7.
For social insect species, intraspecific variation in colony social structure provides an opportunity to relate the evolution of social behavior to ecological factors. The species Myrmica punctiventris is a cavity-dwelling forest ant that exhibits very different colony structures in two populations in the northeastern United States. Combined data from seasonal censuses, allozyme electrophoresis, and worker hostility tests showed that a population of M. punctiventris in Vermont was strictly monogynous and seasonally polydomous. The same procedures showed that a population of M. punctiventris in New York was facultatively polygynous and predominantly monodomous. Genetic relatedness among colony-mates was not different from Hamilton's expected values in the Vermont population and was consistent with little exchange of ants between colonies and single-mating of queens. In contrast, relatedness was lower in New York, and examination of nest-mate genotypes revealed exchange of ants between colonies, high rates of colony loss and replacement of queens, or multiple-mating of queens. The genetic structure of the Vermont population was consistent with no inbreeding, but in New York, the population genetic structure reflected microgeographic subdivision and inbreeding. Previous study of the ant communities at these sites implicates nest-site limitation in New York as a primary constraint on social structure.  相似文献   

8.
The greenhead ant Rhytidoponera metallica has long been recognized as posing a potential challenge to kin selection theory, because it has large queenless colonies where apparently many of the morphological workers are mated and reproducing. However, this species has never been studied genetically and important elements of its breeding system and kin structure remain uncertain. We used microsatellite markers to measure the relatedness among nestmates, unravel the fine‐scale population genetic structure, and infer the breeding system of R. metallica. The genetic relatedness among worker nestmates is very low but significantly greater than zero (r=0.082 ± 0.015), which demonstrates that nests contain many distantly related breeders. The inbreeding coefficient is very close to and not significantly different from zero, indicating random mating and lack of microgeographic genetic differentiation. On average, closely located nests are not more similar genetically than distant nests, which is surprising, as new colonies form by budding and female dispersal is restricted. Lack of inbreeding and absence of population viscosity indicates high gene flow mediated by males. Overall, the genetic pattern detected in R. metallica suggests that a high number of moderately related workers mate with unrelated males from distant nests. This breeding system results in the lowest relatedness among nestmates reported for social insect species where breeders and helpers are not morphologically differentiated.  相似文献   

9.
Nest-mate recognition plays a key role in the biology of ants. Although individuals coming from a foreign nest are, in most cases, promptly rejected, the degree of aggressiveness towards non nest-mates may be highly variable among species and relies on genetic, chemical and environmental factors. We analyzed intraspecific relationships among neighboring colonies of the dominant Mediterranean acrobat ant Crematogaster scutellaris integrating genetic, chemical and behavioral analyses. Colony structure, parental relationships between nests, cuticular hydrocarbons profiles (CHCs) and aggressive behavior against non nest-mates were studied in 34 nests located in olive tree trunks. Bayesian clustering analysis of allelic variation at nine species-specific microsatellite DNA markers pooled nests into 14 distinct clusters, each representing a single colony, confirming a polydomous arrangement of nests in this species. A marked genetic separation among colonies was also detected, probably due to long distance dispersion of queens and males during nuptial flights. CHCs profiles varied significantly among colonies and between nests of the same colony. No relationship between CHCs profiles and genetic distances was detected. The level of aggressiveness between colonies was inversely related to chemical and spatial distance, suggesting a ‘nasty neighbor’ effect. Our findings also suggest that CHCs profiles in C. scutellaris may be linked to external environmental factors rather than genetic relationships.  相似文献   

10.
Obligatory social parasites, such as ant species that need colonies of other ant species for reproduction, are rare and many of them are classified as vulnerable. This is especially the case with highly adapted permanent inquilines that are specialised on one or a few host species. Their rarity may be due to reduced dispersal abilities, as a result of reduced body size, altered wing morphology, and curtailed nuptial flight, eventually leading to inbreeding. Furthermore, the host populations may differ in their ability to resist the parasite, yet the conditions of successful parasite invasion are largely unknown. Here we investigated the population structure of the inquiline ant Plagiolepis xene and its host P. pygmaea, using microsatellite data. Genetic differentiation, inbreeding, the effective population size and nest kin structure were analysed. We found that populations of P. xene are established by a single or at most a few individuals, and that the populations were genetically highly differentiated. However, within individual host populations the parasite is able to maintain panmixia, although data on the host suggests that the local distribution of the parasite also follows patterns of substructuring in the host population. Altogether our results suggest that inquiline parasite populations are genetically highly vulnerable.  相似文献   

11.
Differences in colony structure between two populations of the forest ant, Myrmica punctiventris, have had dramatic consequences on allocation to growth and reproduction. A population in Vermont, in which colonies have a single, once-mated queen, shows no evidence of inbreeding or population subdivision and has allocated 25% of sexual reproduction to males in two consecutive years. In contrast, for a population in New York that is facultatively polygynous, we have evidence of microgeographic genetic structure and inbreeding, and the populationwide allocation ratio was extremely male-biased. Additionally, the Vermont population allocated much more energy to sexual reproduction than did the New York population. Detailed analysis of data from the Vermont population, within which colonies undergo a seasonal cycle of expansion to multiple nesting sites (polydomy), gave strong evidence of queen-worker conflict over male allocation and indicated that workers are winning that conflict. Finally, we used contextual analysis to find that fertility selection operates almost exclusively at the level of the individual nest rather than at the higher level of the multinest colony.  相似文献   

12.
Haliotis midae is South Africa's most important aquaculture species. The reproduction cycle is currently not closed as many farms rely on wild‐caught broodstock for seed production. However, there is an increasing interest in genetic improvement in commercial stocks, with a growing number of producers implementing selective breeding strategies. High throughput commercial production and mass spawning make it difficult to maintain breeding records; therefore, mostly mass selection is practised. The high fecundity and unequal parental contributions also often lead to increased levels of inbreeding. This study therefore aimed to assess the genetic effects of such breeding practices on commercial populations of H. midae. Using microsatellite loci, the genetic properties of a wild, an F1 and an F2 population were estimated and compared. Although there was no significant loss of genetic diversity amongst the cultured populations in comparison with the wild progenitor population, there was low‐to‐moderate genetic differentiation between populations. Relatedness amongst the F2 population was significant, and the rate of inbreeding was high. The effective population size for the F2 (±50) was also comparatively small with respect to the wild (∞) and F1 (±470) populations. These results suggest that farms need to give caution to breeding practices beyond the first (F1) generation and aim to increase effective population sizes and minimise inbreeding to ensure long‐term genetic gain and productivity. This study also confirms the usefulness of population genetic analyses for commercial breeding and stock management in the absence of extensive pedigree records.  相似文献   

13.
The relative power of queens and workers at controlling sex allocation in the ant Colobopsis nipponicus is investigated in this study. Results show that C. nipponicus completely satisfies Hamilton's assumptions concerning colony social structure: monogyny, monoandry, and no worker reproduction. A genetic survey of the population structure rejects possibilities of local mate competition, local resource enhancement, and local resource competition, which all can bias population-allocation ratios from 0.5. Although these factors are absent, the observed sex-allocation ratio (male investment/total sexual investment; 0.250 ± 0.027) is significantly biased toward females and is not different from the estimated optimal ratio for workers (0.252). Thus, it appears that workers are likely to win in conflicts over sex allocation with queens.  相似文献   

14.
Changing climates are predicted to alter the distribution of thermal niches. Small ectotherms such as ants may be particularly vulnerable to heat injury and death. We quantified the critical thermal maxima of 92 ant colonies representing 14 common temperate ant species. The mean CTmax for all measured ants was 47.8 °C (±0.27; range=40.2–51.2 °C), and within-colony variation was lower than among-colony variation. Critical thermal maxima differed among species and were negatively correlated with body size. Results of this study illustrate the importance of accounting for mass, among and within colony variation, and interspecific differences in diel activity patterns, which are often neglected in studies of ant thermal physiology.  相似文献   

15.
Termites (Isoptera) comprise a large and important group of eusocial insects, yet, in contrast to the eusocial Hymenoptera (ants, bees, wasps), the breeding systems of termites remain poorly understood. In this study, I inferred the breeding system of the subterranean termite Reticulitermes flavipes based on colony and population genetic structure as determined from microsatellite and mitochondrial DNA markers. Termites were sampled from natural wood debris from three undisturbed, forested sites in central North Carolina. In each site, two transects separated by 1 km were sampled at approximately 15-m intervals. A total of 1272 workers collected from 57 collection points were genotyped at six microsatellite loci, and mitochondrial DNA haplotype was determined for a subset of these individuals using either restriction fragment length polymorphism or sequence variation in the AT-rich region. Colonies appeared to be localized: workers from the 57 collection points represented 56 genetically distinct colonies with only a single colony occupying two collection points located 15 m apart. Genetic analysis of family structure and comparisons of estimates of F-statistics (F(IT), F(IC), F(CT)) and coefficients of relatedness (r) among nestmate workers with results of computer simulations of potential breeding systems suggested that 77% of all colonies were simple families headed by outbred monogamous pairs, whereas the remaining colonies were extended (inbred) families headed by low numbers of neotenics (about two females and one male) who were the direct offspring of the colony founders. There was no detectable isolation by distance among colonies along transects, suggesting that colony reproduction by budding is not common and that dispersal of reproductives during mating flights is not limited over this distance. Higher-level analysis of the microsatellite loci indicated weak but significant differentiation among sites (F(ST) = 0.06), a distance of 16-38 km, and between transects within sites (F(ST) = 0.06), a distance of 1 km. No significant differentiation at either the transect or site level was detected in the mitochondrial DNA sequence data. These results indicate that the study populations of R. flavipes have a breeding system characterized by monogamous pairs of outbred reproductives and relatively low levels of inbreeding because most colonies do not live long enough to produce neotenics, and those colonies that do generate neotenics contain an effectively small number of them.  相似文献   

16.
Abstract. 1. The leaf-cutting ant Atta cephalotes (L.) in a Costa Rican tropical moist forest showed diel changes in foraging activity. In most colonies studied, foraging was primarily nocturnal, although in a few colonies it was primarily diurnal.
2. In all colonies studied, mean forager mass was larger at night than during the day.
3. At night, most foragers carried freshly cut leaf fragments, whereas during the day a large proportion carried dried fragments and other vegetable matter collected from along their trail.
4. Along one trail, where foraging was primarily nocturnal, the match between ant mass and load mass was compared for laden ants at night and during the day. Laden ants at night were larger, carried relatively heavier loads, and showed a higher degree of matching between their mass and load mass than those foraging during the day.
5. A comparison of load masses of ants coming down a local tree and of ants picking up marked fragments from along their trail suggested that the diel difference in load mass and in the match between ant mass and load mass were related to the greater proportion of ants carrying freshly cut leaf fragments at night. Fresh fragments weighed more due to higher water content, and the match between ant mass and load mass was greater for ants cutting fresh fragments than for ants picking up abandoned fragments from along their trail.
6. Possible explanations for the diel changes in forager size and activity are discussed.  相似文献   

17.
To advance our understanding of the causes and the consequences of budding (colony multiplication by fragmentation of main nests), we investigated nest movement in the facultatively polydomous Pharaoh ant, Monomorium pharaonis. Demographic data revealed that Pharaoh ants are highly polygynous and have a relatively low worker to queen ratio of 12.86. Budding experiments demonstrated that the number of available bud nests has a significant effect on colony fragmentation and increasing the number of bud nests resulted in smaller colony fragments. The overall distribution among bud nests was uneven, even though there was no evidence that the different life stages and castes partitioned unevenly among the bud nests and the analysis of individual colonies revealed no evidence of an uneven split in any of the colonies. This demonstrates that Pharaoh ants have the ability to exert social control over colony size and caste proportions during budding, which may contribute to their success as an invasive ant. The intensity of nest disturbance had a significant effect on whether or not the ants migrated into bud nests. Major disturbance resulted in the ants abandoning the source nest and migrating to bud nests and minor disturbance did not stimulate the ants to abandon the source nest. The results of the successive budding experiment which allowed the ants the opportunity to bud into progressively smaller nest fragments demonstrate that Pharaoh ants maintain a preferred minimum group size of 469 ± 28 individuals. Food allocation experiments utilizing protein marking revealed that nest fragmentation in Pharaoh ants has no negative impact on intracolony food distribution. Overall, our results suggest that nest units in the Pharaoh ant behave like cooperative, rather than competitive, entities. Such cooperation is most likely facilitated by the fact that individuals in all bud nests are genetically related, remain in close proximity to each other, and may continue to exchange individuals after budding.  相似文献   

18.
Variation in queen number alters the genetic structure of social insect colonies, which in turn affects patterns of kin-selected conflict and cooperation. Theory suggests that shifts from single- to multiple-queen colonies are often associated with other changes in the breeding system, such as higher queen turnover, more local mating, and restricted dispersal. These changes may restrict gene flow between the two types of colonies and it has been suggested that this might ultimately lead to sympatric speciation. We performed a detailed microsatellite analysis of a large population of the ant Formica selysi, which revealed extensive variation in social structure, with 71 colonies headed by a single queen and 41 by multiple queens. This polymorphism in social structure appeared stable over time, since little change in the number of queens per colony was detected over a five-year period. Apart from queen number, single- and multiple-queen colonies had very similar breeding systems. Queen turnover was absent or very low in both types of colonies. Single- and multiple-queen colonies exhibited very small but significant levels of inbreeding, which indicates a slight deviation from random mating at a local scale and suggests that a small proportion of queens mate with related males. For both types of colonies, there was very little genetic structuring above the level of the nest, with no sign of isolation by distance. These similarities in the breeding systems were associated with a complete lack of genetic differentiation between single- and multiple-queen colonies, which provides no support for the hypothesis that change in queen number leads to restricted gene flow between social forms. Overall, this study suggests that the higher rates of queen turnover, local mating, and population structuring that are often associated with multiple-queen colonies do not appear when single- and multiple-queen colonies still coexist within the same population, but build up over time in populations consisting mostly of multiple-queen colonies.  相似文献   

19.
Summary: We report data from a four-year field study on the relationship between colony size and reproduction in the western harvester ant, Pogonomyrmex occidentalis. In all years, the likelihood of reproduction significantly increased with increasing size in both field censuses during naturally-occurring mating flights and experimentally-watered colonies whose entire reproductive output was collected. However, the total amount of reproductive biomass was unrelated to colony size. We describe the size threshold for reproduction in P. occidentalis and show that it varies across years. Once colonies become reproductively mature, they reproduce consistently although not in every year. We describe a method for collecting the entire reproductive output for desert ants whose reproductive flights are cued by rainfall.  相似文献   

20.
Genetic population structure was studied in two types of populations in the ants Formica exsecta and F. pressilabris: populations consisting of single-nest colonies (monodomy) and populations consisting of multi-nest colonies (polydomy). These characteristics seem to be associated with the number of egg-laying females (gynes) in a nest, mating structure of the population, sex ratio and male size variation. The monodomous populations are characterized by single-gyne nests, the population sex ratio is either I:1 or female-biased, males are mainly large-sized, and there is slight inbreeding in the population. The polydomous populations have multi-gyne nests with gynes related to each other, sex ratio is strongly male-biased, most males are small-sized, and there is slight genetic microdifferentiation within the populations. Diploid males found in a polydomous F. pressilabris population suggest that the population is inbred and isolated. Habitat localization is presented as a plausible explanation for the evolution of the polygynous and polydomous population structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号