首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant species distributed along wide elevational or latitudinal gradients show phenotypic variation due to their heterogeneous habitats. This study investigated whether phenotypic variation in populations of the Solidago virgaurea complex along an elevational gradient is caused by genetic differentiation. A common garden experiment was based on seeds collected from nine populations of the S. virgaurea complex growing at elevations from 1,597 m to 2,779 m a.s.l. on Mt. Norikura in central Japan. Population genetic analyses with microsatellite markers were used to infer the genetic structure and levels of gene flow between populations. Leaf mass per area was lower, while leaf nitrogen and chlorophyll concentrations were greater for higher elevations at which seeds were originally collected. For reproductive traits, plants derived from higher elevations had larger flower heads on shorter stems and flowering started earlier. These elevational changes in morphology were consistent with the clines in the field, indicating that phenotypic variation along the elevational gradient would have been caused by genetic differentiation. However, population genetic analysis using 16 microsatellite loci suggested an extremely low level of genetic differentiation of neutral genes among the nine populations. Analysis of molecular variance also indicated that most genetic variation was partitioned into individuals within a population, and the genetic differentiation among the populations was not significant. This study suggests that genome regions responsible for adaptive traits may differ among the populations despite the existence of gene flow and that phenotypic variation of the S. virgaurea complex along the elevational gradient is maintained by strong selection pressure.  相似文献   

2.
Variable selection pressures across heterogeneous landscapes can lead to local adaptation of populations. The extent of local adaptation depends on the interplay between natural selection and gene flow, but the nature of this relationship is complex. Gene flow can constrain local adaptation by eroding differentiation driven by natural selection, or local adaptation can itself constrain gene flow through selection against maladapted immigrants. Here we test for evidence that natural selection constrains gene flow among populations of a widespread passerine bird ( Zonotrichia capensis ) that are distributed along an elevational gradient in the Peruvian Andes. Using multilocus sequences and microsatellites screened in 142 individuals collected along a series of replicate transects, we found that mitochondrial gene flow was significantly reduced along elevational transects relative to latitudinal control transects. Nuclear gene flow, however, was not similarly reduced. Clines in mitochondrial haplotype frequency were strongly associated with transitions in environmental variables along the elevational transects, but this association was not observed for the nuclear markers. These results suggest that natural selection constrains mitochondrial gene flow along elevational gradients and that the mitonuclear discrepancy may be due to local adaptation of mitochondrial haplotypes.  相似文献   

3.
Limber pine (Pinus flexilis James) in Colorado occurs on sites from the upper treeline (3,350 m) to the lower treeline (1,650 m). In this study we examined pollination phenology at eight sites along this transect and allozyme frequencies in two populations at either end of the transect to evaluate the level of interpopulation gene flow. Pollen release and megastrobilus receptivity are synchronous within populations, lasting about 15 days. Pollination phenology is strongly affected by site elevation. Most sites that differ in elevation by more than 400 m do not have overlapping pollination periods, and thus interpopulation gene flow is restricted despite strong westerly winds. Gene frequencies are significantly different between upper and lower treeline populations at eight of the ten loci surveyed. Nevertheless, we estimate the level of gene flow to be 11.1 migrants per generation between these two populations. Stepping-stone pollen transfer between intermediate populations and a high level of gene flow via seeds may be responsible. Thus, despite the elevational restriction on long-distance gene flow via pollen, limber pine appears to maintain a high level of interpopulation gene flow.  相似文献   

4.
Local adaptation of populations along elevational gradients is well known, but conclusive evidence that such divergence has resulted in the origin of distinct species in parapatry remains lacking. We integrated morphological, vocal, genetic and behavioural data to test predictions pertaining to the hypothesis of parapatric ecological speciation associated with elevation in populations of a tropical montane songbird, the Grey‐breasted Wood‐wren (Henicorhina leucophrys: Troglodytidae), from the Sierra Nevada de Santa Marta, Colombia. We confirmed that two distinct populations exist along the elevational gradient. Phylogenetic analyses tentatively indicate that the two populations are not sister taxa, suggesting they did not differentiate from a single ancestor along the gradient, but rather resulted from separate colonization events. The populations showed marked divergence in morphometrics, vocalizations and genetic variation in mitochondrial and nuclear loci, and little to no evidence of hybridization. Individuals of both populations responded more strongly to their own local songs than to songs from another elevation. Although the two forms do not appear to have differentiated locally in parapatry, morphological and vocal divergence along the elevational gradient is consistent with adaptation, suggesting a possible link between adaptive evolution in morphology and songs and the origin of reproductive isolation via a behavioural barrier to gene flow. The adaptive value of phenotypic differences between populations requires additional study.  相似文献   

5.
Much of the world's insect and plant biodiversity is found in tropical and subtropical ‘hotspots’, which often include long elevational gradients. These gradients may function as ‘diversity pumps’ and contribute to both regional and local species richness. Climactic conditions on such gradients often change rapidly along short vertical distances and may result in local adaptation and high levels of population genetic structure in plants and insects. We investigated the population genetic structure of two species of Ficus (Moraceae) along a continuously forested elevational gradient in Papua New Guinea. This speciose plant genus is pollinated by tiny, species‐specific and highly coevolved chalcid wasps (Agaonidae) and represented by at least 73 species at our study gradient. We present results from two species of Ficus sampled from six elevations between 200 m and 2700 m a.s.l. (almost the entire elevational range of the genus) and 10 polymorphic microsatellite loci. These results show that strong barriers to gene flow exist between 1200 m and 1700 m a.s.l. Whereas lowland populations are panmictic across distances over 70 km, montane populations can be disjunct over 4 km, despite continuous forest cover. We suggest that the limited gene flow between populations of these two species of montane Ficus may be driven by environmental limitations on pollinator or seed dispersal in combination with local adaptation of Ficus populations. Such a mechanism may have wider implications for plant and pollinator speciation across long and continuously forested elevational gradients if generalist insect pollinators and vertebrate seed dispersers also form populations based on elevation.  相似文献   

6.
Understanding whether and how different habitats shape population genetics is a fundamental question and a specific goal for evolutionary and conservation biology research. This study examined genetic diversity and gene flow within and between mountain and foothill habitats of Primula merrilliana, an endangered distylous forest herb in eastern China. Eleven population characteristics, including area, size and density variation, from the two habitats were also investigated. Mountain populations had significantly higher mean genetic diversity than foothill populations, which may be explained by stronger self‐incompatibility breeding system, more opportunity to use elevational shifts to track suitable sites under conditions of climate change and more heterogeneous environments in the former habitat, rather than by the differences of population size, gene flow and genetic drift intensity between them. Genetic analysis revealed that two distinct lineages, corresponding to the two habitats, diverged at China's ‘Last Glaciation’ (11 700–67 500 yr BP), suggesting this divergence was probably triggered by warmer climates during inter‐ (or post‐) glacial periods. Low unidirectional gene flow from mountain to foothill habitats, chiefly by seed dispersal, played a more important role in overall gene flow between habitats than within‐habitat gene flow. Within habitats, pollen contributes more substantially to gene flow than seed dispersal, especially in foothill habitats, possibly due to higher individual density and larger population sizes. These results have implications for the conservation in this and similar landscape areas and indicate the need to protect suitable habitats with wide elevational spans and sufficient size to permit ecological and elevational shifts in response to climatic changes. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 172–189.  相似文献   

7.
The abundant centre model (ACM) predicts that the suitability of environmental conditions for a species decreases from the centre of its distribution toward its range periphery and, consequently, its populations will become scarcer, smaller and more isolated, resulting in lower genetic diversity and increased differentiation. However, little is known about whether genetic diversity shows similar patterns along elevational and latitudinal gradients with similar changes in important environmental conditions. Using microsatellite markers, we studied the genetic diversity and structure of 20 populations each of Anthyllis vulneraria along elevational gradients in the Alps from the valleys to the elevational limit (2500 m) and along a latitudinal gradient (2500 km) from Central Europe to the range margin in northern Scandinavia. Both types of gradients corresponded to an 11.5°C difference in mean annual temperature. Genetic diversity strongly declined and differentiation increased with latitude in line with the predictions of the ACM. However, as population size did not decline with latitude and genetic diversity was not related to population size in A. vulneraria, this pattern is not likely to be due to less favorable conditions in the North, but due to serial founder effects during the post‐glacial recolonization process. Genetic diversity was not related to elevation, but we found significant isolation by distance along both gradients, although the elevational gradient was shorter by orders of magnitude. Subarctic populations differed genetically from alpine populations indicating that the northern populations did not originate from high elevational Alpine ones. Our results support the notion that postglacial latitudinal colonization over large distances resulted in a larger loss of genetic diversity than elevational range shifts. The lack of genetic diversity in subarctic populations may threaten their long‐term persistence in the face of climate change, whereas alpine populations could benefit from gene flow from low‐elevation populations.  相似文献   

8.
Spatial variation in pathogen‐mediated selection is predicted to influence the evolutionary trajectory of host populations and lead to spatial variation in their immunogenetic composition. However, to date few studies have been able to directly link small‐scale spatial variation in infection risk to host immune gene evolution in natural, nonhuman populations. Here, we use a natural rodent–Borrelia system to test for associations between landscape‐level spatial variation in Borrelia infection risk along replicated elevational gradients in the Swiss Alps and Toll‐like receptor 2 (TLR2) evolution, a candidate gene for Borrelia resistance, across bank vole (Myodes glareolus) populations. We found that Borrelia infection risk (i.e., the product of Borrelia prevalence in questing ticks and the average tick load of voles at a sampling site) was spatially variable and significantly negatively associated with elevation. Across sampling sites, Borrelia prevalence in bank voles was significantly positively associated with Borrelia infection risk along the elevational clines. We observed a significant association between naturally occurring TLR2 polymorphisms in hosts and their Borrelia infection status. The TLR2 variant associated with a reduced likelihood of Borrelia infection was most common in rodent populations at lower elevations that face a high Borrelia infection risk, and its frequency changed in accordance with the change in Borrelia infection risk along the elevational clines. These results suggest that small‐scale spatial variation in parasite‐mediated selection affects the immunogenetic composition of natural host populations, providing a striking example that the microbial environment shapes the evolution of the host's immune system in the wild.  相似文献   

9.
We used landscape genetics and statistical models to test how landscape features influence connectivity or create barriers to dispersal for a mountain riparian tree species, Euptelea pleiospermum. Young leaves from 1078 individuals belonging to 36 populations at elevations of 900–2000 m along upper reaches of four rivers were genotyped using eight nuclear microsatellite markers. We found no evidence for the unidirectional dispersal hypothesis in E. pleiospermum within each river. The linear dispersal pattern along each river valley is mostly consistent with the “classical metapopulaton” model. Mountain ridges separating rivers were genetic barriers for this wind-pollinated tree species with anemochorous seeds, whereas river valleys provided important corridors for dispersal. Gene flow among populations along elevational gradients within each river prevails over gene flow among populations at similar elevations but from different rivers. This pattern of gene flow is likely to promote elevational range shifts of plant populations and to hinder local adaptation along elevational gradients. This study provides a paradigm to determine which of the two strategies (migration or adaptation) will be adopted by mountain riparian plants under climate warming.  相似文献   

10.
Environment and genetics combine to influence tree growth and should therefore be jointly considered when evaluating forest responses in a warming climate. Here, we combine dendroclimatology and population genetic approaches with the aim of attributing climatic influences on growth of European larch (Larix decidua) and Norway spruce (Picea abies). Increment cores and genomic DNA samples were collected from populations along a ~900-m elevational transect where the air temperature gradient encompasses a ~4 °C temperature difference. We found that low genetic differentiation among populations indicates gene flow is high, suggesting that migration rate is high enough to counteract the selective pressures of local environmental variation. We observed lower growth rates towards higher elevations and a transition from negative to positive correlations with growing season temperature upward along the elevational transect. With increasing elevation there was also a clear increase in the explained variance of growth due to summer temperatures. Comparisons between climate sensitivity patterns observed along this elevational transect with those from Larix and Picea sites distributed across the Alps reveal good agreement, and suggest that tree-ring width (TRW) variations are more climate-driven than genetics-driven at regional and larger scales. We conclude that elevational transects are an extremely valuable platform for understanding climatic-driven changes over time and can be especially powerful when working within an assessed genetic framework.  相似文献   

11.
Aim Differences in phenological timing might explain why populations of the annual Lactuca serriola reach higher elevational limits in a part of its introduced range than in its native range. I investigated (1) whether this difference in elevational limits has a genetic basis, (2) the importance of clinal genetic differentiation and phenotypic plasticity in phenology as responses to elevation in L. serriola, and whether these responses differ between regions, and (3) whether the realized temperature niche of L. serriola differs between the two regions. Location Plant material was collected in Canton Valais, Switzerland (native range) and the Wallowa Mountains, Oregon, USA (introduced range). The field experiment was conducted in Canton Grisons, Switzerland. Methods Plants from 20 populations collected along elevational gradients were grown in eight common gardens established at 200‐m elevational intervals (600–2000 m a.s.l.). The timing of phenological transitions was monitored and analysed with mixed‐effects models to determine differences in (1) elevational limits, and (2) clinal genetic differentiation and phenotypic plasticity as responses to elevation for plants from each region. The limits of the species along five temperature gradients were derived from generalized linear models using published occurrence data to quantify regional differences in the realized temperature niche. Results The limit of seed set (1400 m a.s.l.) was the same for plants of both regions. However, the limit of flowering, probably a better reflection of elevational limits in this study, was 400 m higher for plants from the introduced region due to their faster development. Native populations showed clines in development time with elevation consistent with expectations. However, these were weaker in introduced populations, the responses of which were rather characterized by phenotypic plasticity. Thus, although introduced populations grow at considerably cooler sites than in the native region, this is unlikely to have resulted from direct selection for tolerance of high‐elevation conditions. Main conclusions This study supports a genetic basis for differences in the elevational limits of L. serriola populations between two parts of its native and introduced range. Although it is not yet clear whether these differences evolved in the introduced range, these findings highlight the potential of alien species for gaining insights into niche evolution.  相似文献   

12.
We estimateci gene flow among several populations of the troglophilic woodlouse Androniscus dentiger from central Italy using allozyme data. Estimates of gene flow were obtained from GST, θ, and the private alleles method, after being tested whether the assumption of the population genetic model and the assumption of neutrality of alleles had been met. Hierarchical analysis of gene flow has been used to investigate the geographic scale at which gene exchange can actually occur. Results showed that, independent of the methods, no ongoing gene flow can be detected among populations, even among geographically proximate ones. Genetic drift is likely the main agent shaping the pattern of genetic divergence among these populations. Patterns of past and ongoing gene flow were considered, as surface populations have become genetically isolated more recently than cave populations. In general, all three methods to estimate gene flow provided Nm estimates of the same magnitude.  相似文献   

13.
Within the plant kingdom, many genera contain sister lineages with contrasting outcrossing and inbreeding mating systems that are known to hybridize. The evolutionary fate of these sister lineages is likely to be influenced by the extent to which they exchange genes. We measured gene flow between outcrossing Geum rivale and selfing Geum urbanum, sister species that hybridize in contemporary populations. We generated and used a draft genome of G. urbanum to develop dd‐RAD data scorable in both species. Coalescent analysis of RAD data from allopatric populations indicated that the species diverged 2–3 Mya, and that historical gene flow between them was extremely low (1 migrant every 25 generations). Comparison of genetic divergence between species in sympatry and allopatry, together with an analysis of allele frequencies in potential parental and hybrid populations, provided no evidence of contemporary introgression in sympatric populations. Cluster‐ and species‐specific marker analyses revealed that, apart from four early‐generation hybrids, individuals in sympatric populations fell into two genetically distinct groups that corresponded exactly to their morphological species classification with maximum individual admixture estimates of only 1–3%. However, we did observe joint segregation of four putatively introgressed SNPs across two scaffolds in the G. urbanum population that was associated with significant morphological variation, interpreted as tentative evidence for rare, recent interspecific gene flow. Overall, our results indicate that despite the presence of hybrids in contemporary populations, genetic exchange between G. rivale and G. urbanum has been extremely limited throughout their evolutionary history.  相似文献   

14.

Aim

How species respond to ongoing climate change has been a hot research topic, especially with the controversy in shifting range (movement) or persisting in local habitat (in situ) as the primary response. Assessing the relative roles of range shifts, phenotypic plasticity and genetic adaptation helps us predict the evolutionary fate of species. We aim to explore the evolutionary strategies of plants under climate change from a keystone herb in alpine ecosystems, Mirabilis himalaica, along its elevational gradient.

Location

Himalaya-Hengduan Mountains, China.

Methods

We combined evidence from population genomics and ecological data in both space and time to investigate the state of “staying” or “moving”. We identified migration events by assessing historical and contemporary gene flow and changes in species distribution. Morphological variation was compared by measuring five traits using specimen data. Moreover, we explored climate-driven genetic variation and local selection regimes acting on populations in the alpine landscape along an elevational gradient.

Results

Our results argue that staying in situ by morphological variation and local genetic evolution rather than range shifting plays an important role in M. himalaica response to climate change. We first found trace evidence of upward or climatic-driven shifting along an elevational gradient, although asymmetric gene flow was restricted within microenvironments of mid-elevational populations. Furthermore, morphological variation comparisons revealed clinal variation, as resource allocation showed a declining pattern in vegetative growth but increased reproductive growth with increasing elevation. Outlier tests and environment association analyses indicated adaptative loci primarily related to thermal-driven selection and continuous adaptations to high elevation in the Himalaya-Hengduan Mountains.

Main Conclusions

Our findings show M. himalaica may persist in local habitats rather than shifting range under climate change, exhibiting a low risk of genomic vulnerability in current habitats. This study has important implications in improving our understanding of the evolutionary response in alpine plants to climate change.  相似文献   

15.
The ecological effects of climate change have been shown in most major taxonomic groups; however, the evolutionary consequences are less well‐documented. Adaptation to new climatic conditions offers a potential long‐term mechanism for species to maintain viability in rapidly changing environments, but mammalian examples remain scarce. The American pika (Ochotona princeps) has been impacted by recent climate‐associated extirpations and range‐wide reductions in population sizes, establishing it as a sentinel mammalian species for climate change. To investigate evidence for local adaptation and reconstruct patterns of genomic diversity and gene flow across rapidly changing environments, we used a space‐for‐time design and restriction site‐associated DNA sequencing to genotype American pikas along two steep elevational gradients at 30,966 SNPs and employed independent outlier detection methods that scanned for genotype‐environment associations. We identified 338 outlier SNPs detected by two separate analyses and/or replicated in both transects, several of which were annotated to genes involved in metabolic function and oxygen transport. Additionally, we found evidence of directional gene flow primarily downslope from high‐elevation populations, along with reduced gene flow at outlier loci. If this trend continues, elevational range contractions in American pikas will likely be from local extirpation rather than upward movement of low‐elevation individuals; this, in turn, could limit the potential for adaptation within this landscape. These findings are of particular relevance for future conservation and management of American pikas and other elevationally restricted, thermally sensitive species.  相似文献   

16.
When the dispersal capability of a species is considerably less than its geographic range, genetic differences between populations should increase with the distance separating those populations. This pattern should be most evident in linearly distributed species. The sessile solitary cup coral Balanophyllia elegans lives along nearly the entire Pacific coast of North America, yet its crawling larvae usually settle within 40 cm of their birthplace. In this paper, I document geographic patterns of allozyme differentiation within and among populations of B. elegans and estimate the proportion of observed geographic pattern attributable to gene flow between adjacent populations. Genetic subdivision among localities separated by up to 3000 km was high (FST = 0.283, SE = 0.038). Inferred gene flow between pairs of localities (, individuals per generation) correlated inversely with the geographic distance between those localities, consistent with the pattern expected for a species at equilibrium in which gene flow occurred exclusively between adjacent localities. Within localities, patches separated by 4 to 30 m were also significantly subdivided, but genetic differentiation between patches did not vary significantly with the distance separating them. Simulations revealed that the power to detect genetic pattern expected from gene flow between adjacent populations increased with both the number of loci used to infer gene flow and the heterozygosity of those loci. Simulations also verified that when geographic distance poorly approximated the number of steps between populations, reduced major-axis regression more accurately portrayed the structural relationship between gene flow and separation than did ordinary least-squares regression. Attenuation of gene flow with distance explained 15% of the between-locality pattern of genetic differentiation in B. elegans. The remaining variation appeared to be due to neither natural selection nor a recent rangewide recolonization. Loci from the northern sampled localities, however, had fewer alleles than those from the remainder of the range, suggesting these localities had been recolonized recently following Pleistocene cooling.  相似文献   

17.
Gene flow between genetically distinct plant populations can have significant evolutionary consequences. It can increase genetic diversity, create novel gene combinations, and transfer adaptations from one population to another. This study addresses the roles of frequency-dependent selection and mating system in gene exchange between two subspecies of Gilia capitata (Polemoniaceae). Long-distance migrants are likely to be rare in new habitats, and the importance of immigrant frequency to fitness, gene exchange, and ultimately introgression, has not been explored. To test for the importance of frequency in migration, a field experiment was conducted in which artificial populations (arrays) composed of different mixtures of the two subspecies were placed in the home habitats of both. Female function (seed production) and a portion of male function (hybridization rate) were compared for the two subspecies to assess the potential for gene exchange and introgression between them. Individual fitness (through both hybridization and seed production) for the inland subspecies varied with its frequency as an immigrant at the coastal site. Rare immigrants produced fewer seeds and fathered fewer hybrid offspring. In contrast, both forms of reproductive function were frequency independent for the coastal subspecies when it was an immigrant at the inland site. Seed production was high and insensitive to frequency, and immigrants from the coast never successfully fertilized the inland subspecies' seeds. To control for the effects of frequency-dependent pollinator behavior in the field, hand crosses were performed in the greenhouse using a range of pollen mixtures. The greenhouse experiment demonstrated that cross-fertilization is possible in only one direction, that cross-pollination in the other direction is only partially successful, and that pollen from the coastal subspecies has a strong negative effect on seed production by the inland subspecies. Experimental pollen supplementation in the field verified both the unilateral incompatibility and the negative effect of coastal pollen on inland plant seed production observed in the greenhouse. Contrasts between field array and greenhouse results suggest that pollinator behavior and other ecological factors act to exaggerate reproductive barriers between the two subspecies. In this system, immigrant frequency interacts with reproductive biology and pollinator ecology to enhance gene flow between the populations in one direction, while restricting gene establishment and introgression in the other direction.  相似文献   

18.
Phenological differences in flowering arising along elevational gradients may be caused by either local adaptation or phenotypic plasticity. Local adaptation can lead to reproductive isolation of populations at different elevational zones and thus produce elevational genetic structuring, while phenotypic plasticity does not produce elevational genetic structuring. In this study, we examined the effects of elevation and fragmentation on genetic diversity and structure of Polylepis australis populations, where individuals exhibit phenological differences in flowering along an elevational gradient. We assessed the polymorphism of amplified fragment length polymorphism markers in adults and saplings from one conserved and one fragmented forest covering elevations from 1600 to 2600 m asl. Over 98% of variation was found within populations, and we found very low and similar genetic differentiation along elevational gradients for adults and saplings in both continuous and fragmented forests. In addition, there was no significant relationship between genetic diversity and elevation. Results indicated that phenological differences along elevational gradients are more likely caused by phenotypic plasticity than local adaptation, and fragmentation does not appear to have affected genetic diversity and differentiation in the studied populations. Results therefore imply that if necessary, seeds for reforestation purposes may be collected from different elevations to the seeding or planting sites.  相似文献   

19.
Observed changes in the cyclicity of herbivore populations along latitudinal gradients and the hypothesis that shifts in the importance of generalist versus specialist predators explain such gradients has long been a matter of intense interest. In contrast, elevational gradients in population cyclicity are largely unexplored. We quantified the cyclicity of gypsy moth populations along an elevational gradient by applying wavelet analysis to spatially referenced 31-year records (1975–2005) of defoliation. Based on geographically weighted regression and nonlinear regression, we found either a hump-shaped or plateauing relationship between elevation and the cyclicity of gypsy moth populations and a positive relationship between cyclicity and the density of the gypsy moth’s preferred host-tree species. The potential effects of elevational gradients in the density of generalist predators and preferred host-tree species on the cyclicity of gypsy moth populations were evaluated with mechanistic simulation models. The models suggested that an elevational gradient in the densities of preferred host tree species could partially explain elevational patterns of gypsy moth cyclicity. Results from a model assuming a type-III functional response of generalist predators to changes in gypsy moth density were inconsistent with the observed elevational gradient in gypsy moth cyclicity. However, a model with a more realistic type-II functional response gave results roughly consistent with the empirical findings. In contrast to classical studies on the effects of generalist predators on prey population cycles, our model with a type-II functional response predicts a unimodal relationship between generalist-predator density and the cyclicity of gypsy moth populations.  相似文献   

20.
Excirolana braziliensis is a dioecious marine isopod that lives in the high intertidal zone of sandy beaches on both sides of Central and South America. It possesses no larval stage and has only limited means of adult dispersal. Indirect estimates of gene flow have indicated that populations from each beach exchange less than one propagule per generation. Multivariate morphometrics have discovered three morphs of this species in Panama, two of them closely related and found on opposite sides of Central America (“C morph” in the Caribbean and “C′ morph” in the eastern Pacific), the third found predominantly in the eastern Pacific (“P morph”). Though the P and C′ morphs are seldom found on the same beach, they have overlapping latitudinal ranges in the eastern Pacific. A related species, Excirolana chamensis, has been described from the Pacific coast of Panama. Each beach contains populations that remain morphologically and genetically stable, but a single drastic change in both isozymes and morphology has been documented. We studied isozymes and multivariate morphology of 10 populations of E. braziliensis and of one population of E. chamensis. Our objective was to assess the degree of genetic and morphological variation, the correlation of divergence on these two levels of integration, the phylogenetic relationships between morphs, and the possible contributions of low vagility, low gene flow, and occasional extinction and recolonization to the genetic structuring of populations. Genetic distance between the P morph, on one hand, and the other two morphotypes of E. braziliensis, on the other, was as high as the distance between E. braziliensis and E. chamensis. Several lines of evidence agree that E. chamensis and the P morph had diverged from other morphs of E. braziliensis before the rise of the Panama Isthmus separated the C and C′ forms, and that the P morph constitutes a different species. A high degree of genetic differentiation also exists between populations of the same morph. On the isozyme level, every population can be differentiated from every other on the basis of at least one diagnostically different locus, regardless of geographical distance or morphological affiliation. Morphological and genetic distances between populations are highly correlated. However, despite the high degree of local variation, evolution of E. braziliensis as a whole has not been particularly rapid; divergence between the C and C′ morphs isolated for 3 million yr by the Isthmus of Panama is not high by the standard of within-morph differentiation or by comparison with other organisms similarly separated. Alleles that are common in one population may be absent from another of the same morph, yet they appear in a different morph in a separate ocean. The high degree of local differentiation, the exclusive occupation of a beach by one genotype with rare arrival of foreign individuals that cannot interbreed freely with the residents, the genetic stability of populations with infrequent complete replacement by another genetic population, and the sharing by morphs of polymorphisms that are not shared by local populations, all suggest a mode of evolution concentrated in rare episodes of extinction and recolonization, possibly coupled with exceptional events of gene flow that help preserve ancestral variability in both oceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号