首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human APOBEC3A (A3A) is a single-domain cytidine deaminase that converts deoxycytidine residues to deoxyuridine in single-stranded DNA (ssDNA). It inhibits a wide range of viruses and endogenous retroelements such as LINE-1, but it can also edit genomic DNA, which may play a role in carcinogenesis. Here, we extend our recent findings on the NMR structure of A3A and report structural, biochemical and cell-based mutagenesis studies to further characterize A3A’s deaminase and nucleic acid binding activities. We find that A3A binds ssRNA, but the RNA and DNA binding interfaces differ and no deamination of ssRNA is detected. Surprisingly, with only one exception (G105A), alanine substitution mutants with changes in residues affected by specific ssDNA binding retain deaminase activity. Furthermore, A3A binds and deaminates ssDNA in a length-dependent manner. Using catalytically active and inactive A3A mutants, we show that the determinants of A3A deaminase activity and anti-LINE-1 activity are not the same. Finally, we demonstrate A3A’s potential to mutate genomic DNA during transient strand separation and show that this process could be counteracted by ssDNA binding proteins. Taken together, our studies provide new insights into the molecular properties of A3A and its role in multiple cellular and antiviral functions.  相似文献   

3.
Cellular uptake of organic solutes is mediated in large part by a gene family of membrane transporters called OATPs (SLC21A). To study the structural determinants and evolutionary development of the SLC21A family, we have cloned and functionally characterized a highly expressed evolutionarily primitive Oatp from the liver of the small skate, Raja erinacea. A full-length cDNA (2.3 kb) was obtained that encodes a protein of 689 amino acids. The characteristics of this novel skate Oatp, including tissue expression, subcellular localization, substrate selectivity, Na(+) dependence, and inhibitor selectivity were generally similar to liver-specific human OATP-C and rat Oatp4. However, sequence comparisons with other OATPs indicate that this skate Oatp shares only approximately 40-50% amino acid identity with the liver-specific OATPs/Oatps and with human OATP-F. Further computer analysis revealed that the highest amino acid identities reside in the first external (78%) and internal loops (75%) and transmembrane domains 2 (76%), 3 (62%), 4 (70%), and 11 (64%). We propose that the conserved regions of the SLC21A transporter family may be critical structural determinants of substrate specificity and function.  相似文献   

4.
The Drosophila behaviour/human splicing (DBHS) proteins are a family of RNA/DNA binding cofactors liable for a range of cellular processes. DBHS proteins include the non-POU domain-containing octamer-binding protein (NONO) and paraspeckle protein component 1 (PSPC1), proteins capable of forming combinatorial dimers. Here, we describe the crystal structures of the human NONO and PSPC1 homodimers, representing uncharacterized DBHS dimerization states. The structures reveal a set of conserved contacts and structural plasticity within the dimerization interface that provide a rationale for dimer selectivity between DBHS paralogues. In addition, solution X-ray scattering and accompanying biochemical experiments describe a mechanism of cooperative RNA recognition by the NONO homodimer. Nucleic acid binding is reliant on RRM1, and appears to be affected by the orientation of RRM1, influenced by a newly identified ‘β-clasp’ structure. Our structures shed light on the molecular determinants for DBHS homo- and heterodimerization and provide a basis for understanding how DBHS proteins cooperatively recognize a broad spectrum of RNA targets.  相似文献   

5.
Structural and functional properties of ras proteins   总被引:33,自引:0,他引:33  
E Santos  A R Nebreda 《FASEB journal》1989,3(10):2151-2163
The ras proteins belong to a family of related polypeptides that are present in all eukaryotic organisms from yeast to human. Their extraordinary evolutionary conservation suggests that they have essential cellular functions, although their exact role remains unknown. Mutations in specific amino acids and overexpression of normal proteins have been linked to altered proliferation and/or differentiation and, particularly, to neoplastic processes. Mature ras proteins are located on the inner side of the plasma membrane, and their biochemical properties include binding and exchange of guanine nucleotides and GTPase activity. The favored hypothesis for ras function is that these proteins exist in an equilibrium between an inactive conformation (p21.GDP) and an active conformation (p21. GTP) in which they are able to interact with their as yet unknown cellular target or targets. Similarities in cellular location, structure, and biochemistry with other known regulatory (G) proteins suggest that they play a role in transduction of signals from the cell surface. The elucidation of the crystal structure of normal and transforming ras proteins and the identification of cellular proteins that interact directly with them (GAP, CDC25) or suppress some of their biological effects (Krev-1) have opened new avenues in the search for their elusive cellular targets and in the elucidation of the functional role of ras gene products.  相似文献   

6.
The plant SABATH protein family encompasses a group of related small-molecule methyltransferases (MTs) that catalyze the S-adenosyl-L-methionine-dependent methylation of natural chemicals encompassing widely divergent structures. Indole-3-acetic acid (IAA) methyltransferase (IAMT) is a member of the SABATH family that modulates IAA homeostasis in plant tissues through methylation of IAA's free carboxyl group. The crystal structure of Arabidopsis (Arabidopsis thaliana) IAMT (AtIAMT1) was determined and refined to 2.75 A resolution. The overall tertiary and quaternary structures closely resemble the two-domain bilobed monomer and the dimeric arrangement, respectively, previously observed for the related salicylic acid carboxyl methyltransferase from Clarkia breweri (CbSAMT). To further our understanding of the biological function and evolution of SABATHs, especially of IAMT, we analyzed the SABATH gene family in the rice (Oryza sativa) genome. Forty-one OsSABATH genes were identified. Expression analysis showed that more than one-half of the OsSABATH genes were transcribed in one or multiple organs. The OsSABATH gene most similar to AtIAMT1 is OsSABATH4. Escherichia coli-expressed OsSABATH4 protein displayed the highest level of catalytic activity toward IAA and was therefore named OsIAMT1. OsIAMT1 exhibited kinetic properties similar to AtIAMT1 and poplar IAMT (PtIAMT1). Structural modeling of OsIAMT1 and PtIAMT1 using the experimentally determined structure of AtIAMT1 reported here as a template revealed conserved structural features of IAMTs within the active-site cavity that are divergent from functionally distinct members of the SABATH family, such as CbSAMT. Phylogenetic analysis revealed that IAMTs from Arabidopsis, rice, and poplar (Populus spp.) form a monophyletic group. Thus, structural, biochemical, and phylogenetic evidence supports the hypothesis that IAMT is an evolutionarily ancient member of the SABATH family likely to play a critical role in IAA homeostasis across a wide range of plants.  相似文献   

7.
8.
The function of DNA‐ and RNA‐binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure‐based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high‐resolution three‐dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I‐TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high‐resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I‐TASSER produces high‐quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low‐resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
BackgroundHeme is an important nutritional iron source for almost all bacteria. Elevated heme concentrations, in contrast, are toxic e.g. due to the generation of reactive oxygen species. The cellular heme concentration thus requires tight regulation. The observation of heme acting as an effector molecule in heme-uptake and -utilization processes is rather new and many of these processes are unknown or rarely understood on the molecular level.Scope of reviewWe describe processes involving transient heme-protein interaction in bacteria and highlight the regulatory function of heme at key steps during heme uptake and utilization. We furthermore focus on essential structural aspects of heme binding to respective proteins.Major conclusionsThe structural and functional basis for heme-regulated processes in bacteria is diverse and ranges from increased degradation to extended half-life and from inhibition to activation of the respective heme-regulated protein. The large variety of effects is attributed to the versatile ability of heme to interact with proteins in different ways.General significanceKnowledge of the molecular mechanism of transient heme-protein interaction is central to understand the heme-regulated processes in bacteria. The heme-binding proteins involved in these processes represent potential targets for the development of novel antibacterial drugs. New antibacterial strategies are urgently needed to combat antibiotic resistance.  相似文献   

10.

Background  

Among the EF-Hand calcium-binding proteins the subgroup of S100 proteins constitute a large family with numerous and diverse functions in calcium-mediated signaling. The evolutionary origin of this family is still uncertain and most studies have examined mammalian family members.  相似文献   

11.
The N terminal region of hepatitis delta antigen (HDAg), referred to here as NdAg, has a nucleic acid chaperone activity that modulates the ribozyme activity of hepatitis delta virus (HDV) RNA and stimulates hammerhead ribozyme catalysis. We characterized the nucleic acid binding properties of NdAg, identified the structural and sequence domains important for nucleic acid binding, and studied the correlation between the nucleic acid binding ability and the nucleic acid chaperone activity. NdAg does not recognize the catalytic core of HDV ribozyme specifically. Instead, NdAg interacts with a variety of nucleic acids and has higher affinities to longer nucleic acids. The studies with RNA homopolymers reveal that the binding site size of NdAg is around nine nucleotides long. The extreme N terminal portion of NdAg, the following coiled-coil domain and the basic amino acid clusters in these regions are important for nucleic acid binding. The nucleic acid–NdAg complex is stabilized largely by electrostatic interactions. The formation of RNA–protein complex appears to be a prerequisite for facilitating hammerhead ribozyme catalysis of NdAg and its derivatives. Mutations that reduce the RNA binding activity or high ionic strength that destabilizes the RNA–protein complex, reduce the nucleic acid chaperone activity of NdAg.  相似文献   

12.
We present a unified algorithm to analyze distances between short oligomers in large collections of nucleic acids and protein sequences (DISTANP). This extended version of DISTAN methodology not only permits analysis of distances between selected pairs of oligomers, but also allows a user to analyze distances between groups of residues (such as acidic and hydrophobic amino acids). This capacity allows differentiation of sequence properties of known functional domains in nucleic acids and proteins.  相似文献   

13.
Stathmin family phosphoproteins (stathmin, SCG10, SCLIP, and RB3/RB3'/RB3") are involved in signal transduction and regulation of microtubule dynamics. With the exception of stathmin, they are expressed exclusively in the nervous system, where they display different spatio-temporal and functional regulations and hence play at least partially distinct and possibly complementary roles in relation to the control of development, plasticity, and neuronal activities. At the molecular level, each possesses a specific "stathmin-like domain" and, with the exception of stathmin, various combinations of N-terminal extensions involved in their association with intracellular membrane compartments. We show here that each stathmin-like domain also displays specific biochemical and tubulin interaction properties. They are all able to sequester two alpha/beta tubulin heterodimers as revealed by their inhibitory action on tubulin polymerization and by gel filtration. However, they differ in the stabilities of the complexes formed as well as in their interaction kinetics with tubulin followed by surface plasmon resonance as follows: strong stability and slow kinetics for RB3; medium for SCG10, SCLIP, and stathmin; and weak stability and rapid kinetics for RB3'. These results suggest that the fine-tuning of their stathmin-like domains contributes to the specific functional roles of stathmin family proteins in the regulation of microtubule dynamics within the various cell types and subcellular compartments of the developing or mature nervous system.  相似文献   

14.
We present NMR structural and dynamics analysis of the putative ligand binding region of human Notch-1, comprising EGF-like domains 11-13. Functional integrity of an unglycosylated, recombinant fragment was confirmed by calcium-dependent binding of tetrameric complexes to ligand-expressing cells. EGF modules 11 and 12 adopt a well-defined, rod-like orientation rigidified by calcium. The interdomain tilt is similar to that found in previously studied calcium binding EGF pairs, but the angle of twist is significantly different. This leads to an extended double-stranded beta sheet structure, spanning the two EGF modules. Based on the conservation of residues involved in interdomain hydrophobic packing, we propose this arrangement to be prototypical of a distinct class of EGF linkages. On this premise, we have constructed a model of the 36 EGF modules of the Notch extracellular domain that enables predictions to be made about the general role of calcium binding to this region.  相似文献   

15.
16.
Wang Q  Tolstonog GV  Shoeman R  Traub P 《Biochemistry》2001,40(34):10342-10349
A combination of enzymatic and chemical ladder sequencing of photo-cross-linked protein-single-stranded oligodeoxyribonucleotide complexes and analysis by MALDI-TOF mass spectrometry was employed to identify the amino acid residues responsible for the stable binding of nucleic acids in several intermediate filament (IF) subunit proteins. The IF proteins studied included the type I and type II cytokeratins K8, K18, and K19; the type III proteins desmin, glial fibrillary acidic protein (GFAP), peripherin, and vimentin; and the type IV neurofilament triplet protein L (NF-L). The site of nucleic acid binding was localized to the non-alpha-helical, amino-terminal head domain of all of the IF proteins tested. GFAP, which has the shortest head domain of the proteins tested, cross-linked via only two amino acid residues. One of these residues was located within a conserved nonapeptide domain that has been shown to be required for filament formation. One or more cross-linked residues were found in a similar location in the other proteins studied. The major binding site for nucleic acids for most of the proteins appears to be localized within the middle of the head domain. The two exceptions to this generalization are GFAP, which lacks these residues, and NF-L, in which a large number of cross-linked residues were found scattered throughout the first half of the head domain. Control experiments were also done with two bacteriophage ssDNA-binding proteins, as well as actin and tubulin. The single sites of cross-linkage observed with the bacteriophage proteins, Phe(183) for the T4 gene 32 protein and Phe(73) for the M13 gene 5 protein, were in good agreement with literature data. Actin and tubulin could not be cross-linked to the oligonucleotide. Aside from the insight into the biological activity of IF proteins that these data provide, they also demonstrate that this analytical method can be employed to study a variety of protein-nucleic acid interactions.  相似文献   

17.
Peptidyl-prolyl cis/trans isomerization, observed in the native state of an increasing number of proteins, is of considerable biological significance. The first evidence for an asymmetric transmission along the polypeptide chain of the structural effects of prolyl isomerization is now derived from the statistics of the C(alpha)/C(alpha)-atom distance distributions in the crystal structures of 848 non-homologous proteins. More detailed information on how isomerization affects segments adjacent to proline is obtained from crystal structures of proteins, that are more than 95% homologous, and that exhibit two different states of isomerization at a particular prolyl bond. The resulting 64 cases, which represent 3.8% of the database used, form pairs of coordinates which were analyzed for the existence of isomer-specific intramolecular nonbonded C(alpha)/C(alpha)-atom distances around the critical proline, and for the positional preferences for particular amino acids in the isomeric sequence segment. The probability that a native protein exhibits both prolyl isomers in the crystalline state increases in particular with a Pro at the third position N-terminal to the isomeric bond (-3 position), and with Ser, Gly and Asp at the position preceding the isomeric bond (-1 position). Structural alignment of matched pairs of isomeric proteins generates three classes with respect to position-specific distribution of C(alpha)-atom displacements around an isomeric proline imide bond. In the majority of cases the distribution of these intermolecular isomer-specific C(alpha)-atom distances shows a symmetric behavior for the N-terminal and C-terminal segment flanking the proline residue, and the magnitude did not exceed 1.3+/-0.6 A including the C(alpha) atoms in proximity to the prolyl bond. However, in the remaining 12 protein pairs the structural changes are unidirectional relative to the isomerizing bond whereby the magnitude of the isomer-specific effect exceeds 3.0+/-2.0 A even at positions remote to proline. Interestingly, the magnitude of the intramolecular isomer-specific C(alpha) atom displacements reveals a lever-arm amplification of the isomerization-mediated structural changes in a protein backbone. The observed backbone effects provide a structural basis for isomer-specific reactions of proline-containing polypeptides, and thus may play a role in biological recognition and regulation.  相似文献   

18.
19.
R B Moffett  T E Webb 《Biochemistry》1981,20(11):3253-3262
Rat liver nucleocytosolic messenger ribonucleic acid (mRNA) transport is shown to be regulated by proteins with a high affinity for nucleic acids. In the cell-free system described, the energy-dependent transport of all RNA classes [transfer RNA (tRNA), mRNA, and ribosomal RNA (rRNA)] exhibited a dependence upon the availability of discrete minor sets of cytosol proteins. In addition to having a different level of saturation, only the mRNA "transport protein" activities are increased by adenosine cyclic 3',5'-phosphate (cAMP), an effect most likely mediated by a cAMP-dependent protein kinase. The mRNA transport proteins were isolated from cytosol by precipitation with streptomycin sulfate followed by deoxyribonucleic acid (DNA)-cellulose affinity chromatography, or from oligo-(thymidylate)-cellulose bound cytoplasmic messenger ribonucleoprotein (mRNP) particles by high-salt extraction. Either method yielded a protein fraction which exhibited a 1000-fold increase in mRNA transport activity as compared to cytosol. Over one-half of the mRNA transport activity is associated with the mRNP of the cell. A partial homology between the cytosol and mRNP-derived proteins was demonstrated by polyacrylamide gel electrophoresis. One major (20 000 daltons) and several minor proteins (23 000, 52 000, 54 000, and 72 000 daltons) were in common. Nuclear 4-5S exited from in vitro incubated nuclei in three phases, according to their differential in vivo rates of labeling and intranuclear pool sizes. The amount of nuclear RNA transported in vitro as mRNA (about 1.0%) agrees wtih the in vivo estimates. Additional evidence for in vivo equivalence was provided by the physicochemical characterization and bioassay of the RNA. The transported mRNA sedimented in urea-sucrose gradients as an 8-18S heterodisperse product. This RNA initiated cell-free translation with the synthesis of precursor peptides as diverse in size as those for albumin and alpha 2U-globulin. The relative abundancies of various transported mRNAs were different than the corresponding abundancies of liver cytoplasmic mRNAs.  相似文献   

20.
Silk-moth chorion proteins belong to a small number of families: A, B, C, Hc-A and Hc-B. The central domain is an evolutionarily conservative region in each family, of variable length and composition between families. This domain shows clear 6-fold periodicities for various amino acid residues, e.g. glycine. The periodicities, together with the well-documented prevalence of beta-sheet and beta-turn secondary structure of chorion proteins, strongly support a structural model in which four-residue beta-strands alternate with beta-turns, forming a compact antiparallel, probably twisted beta-sheet. Conformational analysis, aided by interactive graphics refinement and recent experimental findings, further suggest that this structure consists of beta-strands, alternating with I' and II' beta-turns, and apparently forms the basis for the molecular and supramolecular assembly of chorion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号