共查询到20条相似文献,搜索用时 0 毫秒
1.
Amylase, cellulase, trehalase, aminopeptidase and trypsin were determined using the midgut and trehalose using the haemolymph of starved and of subsequently fed larvae of Rhynchosciara americana. Midgut trehalase activity decreases steadily during starvation and increases again on feeding, whereas haemolymph trehalose titres remain constant, suggesting that trehalase is a true digestive enzyme. The decrease in amylase, cellulase and trypsin activity in the midgut during starvation is of the same order as that recovered from the excreta. Since this finding is exactly what one would expect if enzyme production stops in response to starvation, this supports the hypothesis that synthesis that synthesis of these enzymes is controlled. The excretion rate of amylase, cellulase and trypsin is very low in comparison to their activity inside the peritrophic membrane and the travel time of the food bolus through the gut. It is proposed that the peritrophic membrane separates two extracellular sites for digestion as an adaptation to conserve secreted enzymes. This could be accomplished by the existence of an endo-ectoperitrophic circulation of the enzymes involved in the initial attack on the food and by restricting to the ectoperitrophic fluid the enzymes which participate only in intermediary digestion of food. 相似文献
2.
Caldeira W Dias AB Terra WR Ribeiro AF 《Archives of insect biochemistry and physiology》2007,64(1):1-18
Bostrichiformia is the less known major series of Coleoptera regarding digestive physiology. The midgut of Dermestes maculatus has a cylindrical ventriculus with anterior caeca. There is no cell differentiation along the ventriculus, except for the predominance of cells undergoing apocrine secretion in the anterior region. Apocrine secretion affects a larger extension and a greater number of cells in caeca than in ventriculus. Ventricular cells putatively secrete digestive enzymes, whereas caecal cells are supposed to secrete peritrophic gel (PG) glycoproteins. Feeding larvae with dyes showed that caeca are water-absorbing, whereas the posterior ventriculus is water-secreting. Midgut dissection revealed a PG and a peritrophic membrane (PM) covering the contents in anterior and posterior ventriculus, respectively. This was confirmed by in situ chitin detection with FITC-WGA conjugates. Ion-exchange chromatography of midgut homogenates, associated with enzymatic assays with natural and synthetic substrates and specific inhibitors, showed that trypsin and chymotrypsin are the major proteinases, cysteine proteinase is absent, and aspartic proteinase probably is negligible. Amylase and trypsin occur in contents and decrease along the ventriculus; the contrary is true for cell-membrane-bound aminopeptidase. Maltase is cell-membrane-bound and predominates in anterior and middle midgut. Digestive enzyme activities in hindgut are negligible. This, together with dye data, indicates that enzymes are recovered from inside PM by a posterior-anterior flux of fluid outside PM before being excreted. The combined results suggest that protein digestion starts in anterior midgut and ends in the surface of posterior midgut cells. All glycogen digestion takes place in anterior midgut. 相似文献
3.
Two beta-glycosidases (BG) (Mr 47,000 and Mr 50,000) were purified from Spodoptera frugiperda (Lepidoptera: Noctuidae) midguts. These two polypeptides associate or dissociate depending on the medium ionic strength. The Mr 47,000 BG probably has two active sites. One of the putative active sites (cellobiase site) hydrolyses p-nitrophenyl beta-D-glucoside (NPbetaGlu) (79% of the total activity in saturated enzyme), cellobiose, amygdalin and probably also cellotriose, cellotetraose and cellopentaose. The cellobiase site has four subsites for glucose residue binding, as can be deduced from cellodextrin cleavage data. The enzymatic activity in this site is abolished after carbodiimide modification at pH 6.0. Since the inactivation is reduced in the presence of cellobiose, the results suggest the presence of a carboxylate as a catalytic group. The other active site of Mr 47,000 BG (galactosidase site) hydrolyses p-nitrophenyl beta-D-galactoside (NPbetaGal) better than NPbetaGlu, cleaves glucosylceramide and lactose and is unable to act on cellobiose, cellodextrins and amygdalin. This active site is not modified by carbodiimide at pH 6.0. The Mr 47,000 BG N-terminal sequence has high identity to plant beta-glycosidases and to mammalian lactase-phlorizin hydrolase, and contains the QIEGA motif, characteristic of the family of glycosyl hydrolases. The putative physiological role of this enzyme is the digestion of glycolipids (galactosidase site) and di- and oligosaccharides (cellobiase site) derived from hemicelluloses, thus resembling mammalian lactase-phlorizin hydrolase. 相似文献
4.
Control of the release of digestive enzymes in the larvae of the fall armyworm,Spodoptera frugiperda
Digali Lwalaba Klaus H. Hoffmann Joseph Woodring 《Archives of insect biochemistry and physiology》2010,73(1):14-29
There is a basal level of enzyme activity for trypsin, aminopeptidase, amylase, and lipase in the gut of unfed larval (L6) Spodoptera frugiperda. Trypsin activity does not decrease with non‐feeding, possibly because of the low protein levels in plants along with high amino acid requirements for growth and storage (for later reproduction in adults). Therefore, trypsin must always be present so that only a minimal protein loss via egestion occurs. Larvae, however, adjust amylase activity to carbohydrate ingestion, and indeed amylase activity is five‐fold higher in fed larvae compared to unfed larvae. Gut lipase activity is low, typical of insects with a high carbohydrate diet. A flat‐sheet preparation of the ventriculus was used to measure the release of enzymes in response to specific nutrients and known brain/gut hormones in S. frugiperda. Sugars greatly increase (>300%) amylase release, but starch has no effect. Proteins and amino acids have little or no effect on trypsin or aminopeptidase release. The control of enzyme release in response to food is likely mediated through neurohormones. Indeed, an allatostatin (Spofr‐AS A5) inhibits amylase and trypsin, and allatotropin (Manse‐ AT) stimulates amylase and trypsin release. Spofr‐AS A5 also inhibits ileum myoactivity and Manse‐AT stimulates myoactivity. The epithelial secretion rate of amylase and trypsin was about 20% of the amount of enzyme present in the ventricular lumen, which, considering the efficient counter‐current recycling of enzymes, suggests that the secretion rate is adequate to replace egested enzymes. © 2009 Wiley Periodicals, Inc. 相似文献
5.
6.
Raymond V. Barbehenn Michael M. Martin 《Archives of insect biochemistry and physiology》1998,39(3):109-117
Magnesium and calcium ions, in concentrations comparable to those reported in the midgut fluids of lepidopteran larvae, bring about the precipitation of most of the tannic acid present in simple solutions buffered at pH 8.0 and 10.0, but not at pH 6.5. In contrast, when tannic acid is added to Manduca sexta midgut fluid, less than 31% of the tannic acid added to the gut fluid is converted to a form that can be centrifuged into a pellet. The rest remains in the supernatant solution in the form of a colloidal suspension. Very little of the tannic acid, if any, remains in true solution. We suggest that the tannic acid-containing phase that is produced when tannic acid is added to midgut fluid is a complex multi-molecular aggregate of indefinite chemical composition, incorporating varying amounts of tannic acid, surface-active phospholipids, proteins, and polyvalent metal ions. On the basis of this study, we further suggest that the failure of tannins to diffuse across the peritrophic envelopes of lepidopteran larvae is a result of the capacity of the peritrophic envelope to act as a physical barrier to insoluble and colloidally dispersed particles, not the presence of substances in the matrix that strongly adsorb polyphenols or the presence of an extensive network of fixed anionic sites in the matrix that acts as an electrostatic barrier to the passage of polyphenolate anions. Arch. Insect Biochem. Physiol. 39:109–117, 1998.© 1998 Wiley-Liss, Inc. 相似文献
7.
Umut Toprak Martin Erlandson Doug Baldwin Lianglu Wan Cathy Coutu Cedric Gillott Dwayne D. Hegedus 《Insect Science》2016,23(5):656-674
The peritrophic matrix (PM) is essential for insect digestive system physiology as it protects the midgut epithelium from damage by food particles, pathogens, and toxins. The PM is also an attractive target for development of new pest control strategies due to its per os accessibility. To understand how the PM performs these functions, the molecular architecture of the PM was examined using genomic and proteomic approaches in Mamestra configurata (Lepidoptera: Noctuidae), a major pest of cruciferous oilseed crops in North America. Liquid chromatography‐tandem mass spectrometry analyses of the PM identified 82 proteins classified as: (i) peritrophins, including a new class with a CBDIII domain; (ii) enzymes involved in chitin modification (chitin deacetylases), digestion (serine proteases, aminopeptidases, carboxypeptidases, lipases and α‐amylase) or other reactions (β‐1,3‐glucanase, alkaline phosphatase, dsRNase, astacin, pantetheinase); (iii) a heterogenous group consisting of polycalin, REPATs, serpin, C‐Type lectin and Lsti99/Lsti201 and 3 novel proteins without known orthologs. The genes encoding PM proteins were expressed predominantly in the midgut. cDNAs encoding chitin synthase‐2 (McCHS‐2), chitinase (McCHI), and β‐N‐acetylglucosaminidase (McNAG) enzymes, involved in PM chitin metabolism, were also identified. McCHS‐2 expression was specific to the midgut indicating that it is responsible for chitin synthesis in the PM, the only chitinous material in the midgut. In contrast, the genes encoding the chitinolytic enzymes were expressed in multiple tissues. McCHS‐2, McCHI, and McNAG were expressed in the midgut of feeding larvae, and NAG activity was present in the PM. This information was used to generate an updated model of the lepidopteran PM architecture. 相似文献
8.
《Insect Biochemistry》1990,20(8):839-847
Acetylglucosaminidase, amylase, cellobiase and maltase are more active in anterior midgut cells, whereas aminopeptidase, carboxypeptidase and trypsin are more active in posterior midgut cells of Tenebrio molitor larvae. Differential centrifugation of midgut homogenates prepared in saline (or mannitol) isotonic buffered solutions revealed that aminopeptidase is associated with membranes, which occur in subcellular fractions displaying many microvilli. Carboxypeptidase, trypsin and the carbohydrases are mostly found in the soluble fraction, although significant amounts sediment together with cell vesicles. Data on differential calcium precipitation of midgut homogenates and on partial ultrasound disruption of midgut tissue suggest that aminopeptidase is a microvillar enzyme and that the digestive enzymes recovered in the soluble fraction of cells are loosely bound to the cell glycocalyx. About 5% of the non-absorbable dye amaranth fed to T. molitor larvae remains in the midgut tissue after rinsing. Most dye was recovered in the soluble fraction of midgut cells. This provided further support for the hypothesis that the digestive enzymes found in the soluble fraction are actually extracellular and that the true intracellular enzymes are those associated with cell vesicles. The results suggest that the carbohydrases are secreted by exocytosis from the anterior midgut and carboxypeptidase and trypsin from the posterior midgut. 相似文献
9.
为了明确继代饲喂不同寄主植物对草地贪夜蛾幼虫体内生理酶活性的影响,在室内分别用3种寄主植物叶片饲养草地贪夜蛾多代,测定其F3代5龄幼虫体内保护酶(SOD,POD,CAT)、消化酶(脂肪酶、胃蛋白酶和α-淀粉酶)和解毒酶(GSTs,CarEs,CYP450s)活性差异,并分析不同寄主植物次生代谢物含量与幼虫体内酶活及其生长发育的相关性。结果表明,取食马铃薯叶片的F3代幼虫总发育历期最长,取食小麦的最短,两者间差异显著;小麦叶片中的单宁、总酚、类黄酮和生物碱含量均显著低于玉米和马铃薯;草地贪夜蛾幼虫体内保护酶活性均为取食小麦叶片的最低,取食马铃薯叶片的最高,其中取食马铃薯叶片的草地贪夜蛾体内POD和SOD酶活性达取食小麦的1.34和1.26倍;以3种寄主为食的F3代幼虫脂肪酶和α-淀粉酶活性变化不大,但持续饲喂马铃薯叶片3个世代可导致草地贪夜蛾幼虫体内胃蛋白酶活性显著升高,达10.502 U/mg. prot,为持续饲喂玉米叶片幼虫(1.508 U/mg. prot)的6.96倍以上。连续饲喂3种寄主叶片后的幼虫GSTs和CarEs活性无显著性差异,但取食玉米叶片的幼虫体内细胞色素P450s(CYP450s)活性显著高于取食小麦和马铃薯的幼虫。可见,连续多代取食次生物质含量不同的寄主植物会使草地贪夜蛾体内部分酶活性发生变化,并对幼虫的生长发育产生影响。 相似文献
10.
Stygar D Dolezych B Nakonieczny M Migula P Michalczyk K Zaak M 《Comptes rendus biologies》2010,333(10):725-735
This article presents the activity of carbohydratases and proteases in the midgut of Cameraria ohridella larvae--an oligophagous pest whose preferred feeding is horse chestnuts leaves. Optimal media pH of the assayed enzymes were similar to those of other Lepidopterans. Relatively high amylase activity, as well as maltase and sucrase activities, indicates that starch and sucrose are the main digested saccharides. Trehalase activity was similar to that described in other Lepidopterans. Activities of glycosidases were significantly lower than those of disaccharidases what suggests that neither cellulose nor glycosides are important for C. ohridella. Trypsin is the main endoprotease of this pest. Like in other leaf-eaters carboxypeptidase activity was higher than that of aminopeptidase. The activity of the majority of examined enzymes increased in the following successive pest generations, which could be explained by the decreased nutritional value of older leaves. Probably this phenomenon in hydrolases activity in Cameraria is a nonspecific mechanism present at this stage of co-evolution of the horse chestnut and its pest. 相似文献
11.
Digali Lwalaba Sandy Weidlich Klaus H. Hoffmann Joseph Woodring 《Archives of insect biochemistry and physiology》2010,74(2):114-126
A dose‐dependent inhibition of endogenous trypsin and aminopeptidase occurs in the lumen of Spodoptera frugiperda after feeding L6 larvae exogenous inhibitors soybean trypsin inhibitor (SBTI), tosyl‐L‐lysine chloromethyl ketone‐HCl (TLCK), or bestatin, respectively, for 3 days. TLCK inhibits trypsin in tissue extracts and in secretions more strongly than SBTI. The aminopeptidase released into the lumen (containing the peritrophic membrane) is strongly inhibited by bestatin, but the membrane‐bound enzyme is not. A bound enzyme may be more resistant to an inhibitor than unbound. A cross‐class elevation of aminopeptidase activity occurs in response to ingested trypsin inhibitor, but there was no cross‐class effect of aminopeptidase inhibitor (bestatin) on trypsin activity. An endogenous trypsin and aminopeptidase inhibitor is present in the lumen and ventricular cells. The strength of the endogenous trypsin inhibition seems to be in the same range as that resulting from ingestion of the exogenous inhibitor SBTI. In some insect species, considerable trypsin secretion occurs in unfed as well as in fed animals, and endogenous protease inhibitors might function to protect the ventricular epithelium by inactivation of trypsin when less food is available. © 2010 Wiley Periodicals, Inc. 相似文献
12.
The peritrophic membrane of Spodoptera frugiperda: secretion of peritrophins and role in immobilization and recycling digestive enzymes 总被引:3,自引:0,他引:3
Bolognesi R Ribeiro AF Terra WR Ferreira C 《Archives of insect biochemistry and physiology》2001,47(2):62-75
A peritrophin from the Spodoptera frugiperda peritrophic membrane (PM) and microvillar proteins from S. frugiperda anterior midgut cells were isolated and used to raise antibodies in a rabbit. These antibodies, as well as a Tenebrio molitor amylase antibody that cross-reacts with S. frugiperda amylases, and wheat-germ aglutinin were used in immunolocalization experiments performed with the aid of confocal fluorescence and immunogold techniques. The results showed that the peritrophin was secreted by anterior midgut columnar cells in vesicles pinched-off the microvilli (microapocrine secretion). The resulting double membrane vesicles become single membrane vesicles by membrane fusion, releasing peritrophin and part of the amylase and trypsin. The remaining membranes still containing microvillar proteins and membrane-bound amylase and trypsin are incorporated into a jelly-like material associated with PM. Calcofluor-treated larvae lacking a PM were shown to lose the decreasing gradient of trypsin and chymotrypsin observed along the midgut of control larvae. This gradient is thought to be formed by a countercurrent flux of fluid (in the space between PM and midgut cells) that powers enzyme recycling. 相似文献
13.
Ryu Nakata Naoko Yoshinaga Masayoshi Teraishi Yutaka Okumoto 《Bioscience, biotechnology, and biochemistry》2013,77(9):1624-1629
ABSTRACTChitin, poly (β-(1→4)-N-acetyl-d-glucosamine), is an important biopolymer for insects that is utilized as a major component of peritrophic membrane. The chitin content in peritrophic membrane is of expedient interest from a pest control perspective, although it is hard to quantify chitin. In this study, we establish a facile method for the quantification of chitin in peritrophic membrane by image processing. In this method, chitin was indirectly quantified using chitosan–I3? complex, which exhibited a specific red-purple color. A calibration curve using a chitosan solution showed good linearity in a concentration range of 0.05–0.5 μg/μL. We quantified the amount of chitin in peritrophic membrane of Spodoptera litura (Lepidoptera: Noctuidae) larvae using this method. Throughout the study, only common inexpensive regents and easily attainable apparatuses were employed. This method can be easily applied to the sensitive quantification of the amounts of chitin and chitosan in materials by wide range of researchers.Abbreviations: LOD: limit of detection; LOQ: limit of quantification; ROI: region of interest; RSD: relative standard deviation. 相似文献
14.
Spodoptera frugiperda larvae have a microvillar aminopeptidase and both soluble and membrane-bound forms of amylase and trypsin. Membrane-bound aminopeptidase is solubilized by glycosyl phosphatidylinositol-specific phospholipase C (GPI-PLC) and detergents, suggesting it has a GPI anchor. Membrane-bound trypsin is not affected by GPI-PLC, although it is solubilized by papain and by different detergents. Membrane-bound amylase is similar to trypsin, although once solubilized in detergent it behaves as a hydrophilic protein. Musca domestica trypsin antiserum cross-reacts with only one polypeptide from S. frugiperda midgut. With this antiserum, trypsin was immunolocalized in the anterior midgut cells at the microvillar surface and on the membranes of secretory vesicles found in the apical cytoplasm and inside the microvilli. The data suggest that in this region trypsin is bound to the secretory vesicle membrane by a hydrophobic anchor. Vesicles migrate through the microvilli and are discharged into the lumen by a pinching-off process. Trypsin is then partly processed to a soluble form and partly, still bound to vesicle membranes, incorporated into the peritrophic membrane. In posterior midgut cells, trypsin immunolabelling is randomly distributed inside the secretory vesicles and at the microvilli surface, suggesting exocytosis. Amylase probably follows a route similar to that described for trypsin in anterior midgut, although membrane-bound forms (peptide anchor) solubilize apparently as a consequence of a pH increase inside the vesicles. 相似文献
15.
Grossmann GA Terra WR 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2001,128(1):109-122
There are three midgut alpha-galactosidases (TG1, TG2, TG3) from Tenebrio molitor larvae that are partially resolved by ion-exchange chromatography. The enzymes have approximately the same pH optimum (5.0), pl value (4.6) and Mr value (46000-49000) as determined by gel filtration or native electrophoresis run in polyacrylamide gels with different concentrations. Substrate specificities and functions were proposed for the major T. molitor midgut alpha-galactosidases (TG2 and TG3) based on chromatographic, carbodiimide inactivation, Tris inhibition, and on substrate competition data. Thus, TG2 would hydrolyse alpha-1,6-galactosaccharides, exemplified by raffinose, whereas TG3 would act on melibiose and apparently also on digalactosyldiglyceride, the most important compound in the thylacoid membranes of chloroplasts. Most galactoside digestion should occur in the lumen of the first two thirds of T. molitor larval midguts, since alpha-galactosidase activity predominates there. Spodoptera frugiperda larvae have three midgut alpha-galactosidases (SG1, SG2, SG3) partially resolved by ion-exchange chromatography. The enzymes have similar pH optimum (5.8), pl value (7.2) and Mr value (46000-52000), and at least the major alpha-galactosidase must have an active carboxyl group in the active site. Based on data similar to those described for T. molitor, SG1 and SG3 should hydrolyse melibiose and SG3 should digest raffinose and, perhaps, also digalactosyldiglyceride. The midgut distribution of alpha-galactosidase activity supports the proposal that alpha-galactosidase digestion occurs at the surface of anterior midgut cells in Spodoptera frugiperda larvae. 相似文献
16.
【目的】围食膜(peritrophic membrane, PM)是昆虫抵御随食物摄入的病原微生物入侵的第一道天然屏障。本研究旨在鉴定出农业重大害虫棉铃虫Helicoverpa armigera围食膜的总蛋白成分,为进一步揭示昆虫围食膜的形成机制及研发新颖的害虫控制策略奠定基础。【方法】剥离棉铃虫5龄幼虫PM,用三氟甲磺酸(trifluoromethane sulfonic acid, TFMS)处理,采用液质联用技术(LC-MS/MS)鉴定围食膜蛋白质组,然后对鉴定结果进行生物信息学分析。【结果】本研究共鉴定出棉铃虫幼虫围食膜蛋白质169个,是目前鉴定最多的棉铃虫围食膜蛋白。通过GO分析,可以将这些鉴定的蛋白分为细胞组分、分子功能和生物学过程三大类;KEGG富集结果显示,鉴定蛋白可以富集在12条代谢通路中;蛋白互作分析(protein protein interaction, PPI)结果表明,以ACC和CG3011等蛋白为核心可以形成蛋白互作网络。【结论】本研究鉴定了169个棉铃虫幼虫围食膜蛋白质,并对其进行了GO, KEGG和PPI分析,结果有助于人们全面理解昆虫围食膜的分子结构和功能。 相似文献
17.
【目的】梣酮是从芸香科植物白鲜Diatamnus dasycarpus根皮中分离出的一种化合物, 对试虫表现出胃毒活性。本研究旨在检测梣酮对粘虫Mythimna separata 6龄幼虫中肠围食膜的影响, 从而进一步阐明梣酮的杀虫作用机理。【方法】经活体及离体处理, 通过生化分析和扫描电镜观察等方法, 研究了梣酮处理对粘虫幼虫中肠围食膜糖含量, 蛋白质含量和组分以及围食膜表面结构的影响。【结果】梣酮(20 mg/mL)活体处理降低了粘虫6龄幼虫围食膜的蛋白质含量, 却使糖含量升高。活体(20 mg/mL梣酮)及离体(8 mg/mL梣酮)处理条件下, 围食膜糖含量分别为对照组的1.75倍及2.17倍。SDS-PAGE结果显示, 离体及活体条件下经梣酮处理, 围食膜部分蛋白质降解。围食膜解剖扫描电镜观察表明, 梣酮处理可造成围食膜微纤丝排列紊乱。【结论】天然产物梣酮处理对粘虫中肠围食膜的糖含量及蛋白质含量和组分有影响,且改变了围食膜表面结构。本研究为深入地研究梣酮杀虫作用机理奠定了基础。 相似文献
18.
19.
Structure, processing and midgut secretion of putative peritrophic membrane ancillary protein (PMAP) from Tenebrio molitor larvae 总被引:1,自引:0,他引:1
Ferreira AH Cristofoletti PT Pimenta DC Ribeiro AF Terra WR Ferreira C 《Insect biochemistry and molecular biology》2008,38(2):233-243
A cDNA coding for a Tenebrio molitor midgut protein named peritrophic membrane ancillary protein (PMAP) was cloned and sequenced. The complete cDNA codes for a protein of 595 amino acids with six insect-allergen-related-repeats that may be grouped in A (predicted globular)- and B (predicted nonglobular)-types forming an ABABAB structure. The PMAP-cDNA was expressed in Pichia pastoris and the recombinant protein (64kDa) was purified to homogeneity and used to raise antibodies in rabbits. The specific antibody detected PMAP peptides (22kDa) in the anterior and middle midgut tissue, luminal contents, peritrophic membrane and feces. These peptides derive from PMAP, as supported by mass spectrometry, and resemble those formed by the in vitro action of trypsin on recombinant PMAP. Both in vitro and in vivo PMAP processing seem to occur by attack of trypsin to susceptible bonds in the coils predicted to link AB pairs, thus releasing the putative functional AB structures. The AB-domain structure of PMAP is found in homologous proteins from several insect orders, except lepidopterans that have the apparently derived protein known as nitrile-specifier protein. Immunocytolocalization shows that PMAP is secreted by exocytosis and becomes entrapped in the glycocalyx, before being released into midgut contents. Circumstantial evidence suggests that PMAP-like proteins have a role in peritrophic membrane type 2 formation. 相似文献