首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
    
Abstract. Plant communities of trampled soil dominated by plants characterized by the C4-assimilation syndrome were investigated in Europe. These species, belonging to genera such as Chamaesyce, Amaranthus, Eleusine, Eragrostis and Setaria, are thermophilous, late-germinating, prostrate herbs or grasses. The centre of their distribution is in the (Sub)Tropics. A syntaxonomic revision of the phytosociological material from Europe (incl. the Macaronesian Archipelago) revealed three alliances: the Euphorbion prostratae from Spain, the Polycarpo-Eleusinion indicae from Italy, and Slovenian and Croatian Istria, and the Eragrostio-Polygonion arenastri from temperate regions of Europe. The latter two syntaxa are described as new. All three alliances belong to the order Eragrostietalia (class Stellarietea mediae). Vicarious (ecologically analogous) communities occur also in southern Africa, eastern Asia and North America. The communities studied in the present paper are considered to be an impoverished form of highly diversified trampled plant communities typical of (sub)tropical areas.  相似文献   

2.
Zinc sulphate in the range of 10?4 to 2×10?5 M prevents the binding of C1 to antigen antibody complexes, and the initation of the cascade of events in the classical complement pathway leading to cell lysis. Other heavy metals, Co++, Cd++, Cu++, or Mn++ were without effect in this concentration range. Zinc was ineffective when added after C1 was bound and failed to displace C1 which was already bound to antigen antibody complexes. The ability of zinc to regulate the binding of the zymogen or activated form of C1 to antigen-antibody complexes represents a new method of controlling the initiation of the classical complement pathway.  相似文献   

3.
Nishi K  Komine Y  Sakai N  Maruyama T  Otagiri M 《FEBS letters》2005,579(17):3596-3600
Alpha1-acid glycoprotein (AGP) is a serum glycoprotein that mainly binds basic drugs. Previous reports have shown that AGP converts from a beta-sheet to an alpha-helix upon interaction with biomembranes. In the current studies, we found that alkanols, diols, and halogenols all induce this conformational change. Increased length and bulkiness of the hydrocarbon group and the presence of a halogen atom promoted this conversion, whereas the presence of a hydroxyl group inhibited it. Moreover, the effect was dependent on the hydrophobic and electrostatic properties of the alcohols. These results indicate that, in a membrane environment, hydrophobic and electrostatic factors cooperatively induce the transition of AGP from a beta-sheet to an alpha-helix.  相似文献   

4.
Mono- and biphasic kinetic effects of bile salts on the pancreatic IB phospholipase A2 (PLA2) catalyzed interfacial hydrolysis are characterized. This novel phenomenon is modeled as allosteric action of bile salts with PLA2 at the interface. The results and controls also show that these kinetic effects are not due to surface dilution or solubilization or disruption of the bilayer interface where in the mixed-micelles substrate replenishment becomes the rate-limiting step. The PLA2-catalyzed rate of hydrolysis of zwitterionic dimyristoylphosphatidylcholine (DMPC) vesicles depends on the concentration and structure of the bile salt. The sigmoidal rate increase with cholate saturates at 0.06 mole fraction and changes little at the higher mole fractions. Also, with the rate-lowering bile salts (B), such as taurochenodeoxycholate (TCDOC), the initial sigmoidal rate increase at lower mole fraction is followed by nearly complete reversal to the rate at the pre-activation level at higher mole fractions. The rate-lowering effect of TCDOC is not observed with the (62-66)-loop deleted ΔPLA2, or with the Naja venom PLA2 that is evolutionarily devoid of the loop. The rate increase is modeled with the assumption that the binding of PLA2 to DMPC interface is cooperatively promoted by bile salt followed by allosteric kcat?-activation of the bound enzyme by the anionic interface. The rate-lowering effect of bile salts is attributed to the formation of a specific catalytically inert E?B complex in the interface, which is noticeably different than the 1:1 EB complex in the aqueous phase. The cholate-activated rate of hydrolysis is lowered by hypolidemic ezetimibe and guggul extract which are not interfacial competitive inhibitors of PLA2. We propose that the biphasic modulation of the pancreatic PLA2 activity by bile salts regulates gastrointestinal fat metabolism and cholesterol homeostasis.  相似文献   

5.
Homopurine deoxyribonucleoside phosphorothioates possessing all internucleotide linkages of R(P) configuration form a duplex with an RNA or 2'-OMe-RNA strand with Hoogsteen complementarity. The duplexes formed with RNA templates are thermally stable at pH 5.3, while those formed with a 2'-OMe-RNA are stable at neutrality. Melting temperature and fluorescence quenching experiments indicate that the strands are parallel. Remarkably, these duplexes are thermally more stable than parallel Hoogsteen duplexes and antiparallel Watson-Crick duplexes formed by unmodified homopurine DNA molecules of the same sequence with corresponding RNA templates.  相似文献   

6.
Homopurine deoxyribonucleoside phosphorothioates, as short as hexanucleotides and possessing all internucleotide linkages of RP configuration, form a triple helix with two RNA or 2'-OMe-RNA strands, with Watson-Crick and Hoogsteen complementarity. Melting temperature and fluorescence quenching experiments strongly suggest that the Hoogsteen RNA strand is parallel to the homopurine [RP-PS]-oligomer. Remarkably, these triplexes are thermally more stable than complexes formed by unmodified homopurine DNA molecules of the same sequence. The triplexes formed by phosphorothioate DNA dodecamers containing 4-6 dG residues are thermally stable at pH 7.4, although their stability increases significantly at pH 5.3. FTIR measurements suggest participation of the C2-carbonyl group of the pyrimidines in the stabilization of the triplex structure. Formation of triple-helix complexes with exogenously delivered PS-oligos may become useful for the reduction of RNA accessibility in vivo and, hence, selective suppression/inhibition of the translation process.  相似文献   

7.
A deletion mutant that lacks the Psb30 protein, one of the small subunits of Photosystem II, was constructed in a Thermosynechococcus elongatus strain in which the D1 protein is expressed from the psbA3 gene (WT*). The ΔPsb30 mutant appears more susceptible to photodamage, has a cytochrome b559 that is converted into the low potential form, and probably also lacks the PsbY subunit. In the presence of an inhibitor of protein synthesis, the ?Psb30 lost more rapidly the water oxidation function than the WT* under the high light conditions. These results suggest that Psb30 contributes to structurally and functionally stabilise the Photosystem II complex in preventing the conversion of cytochrome b559 into the low potential form. Structural reasons for such effects are discussed.  相似文献   

8.
Mutants of the plasma membrane Ca(2+) pump (human isoform 4xb) with deletions in the linker between domain A and transmembrane segment M3 (A(L) region) were constructed and expressed in Chinese hamster ovary cells. The total or partial removal of the amino acid segment 300-349 did not change the maximal Ca(2+) transport activity, but mutants with deletions involving residues 300-338 exhibited a higher apparent affinity for Ca(2+) than the wild type h4xb enzyme. Deletion of the putative acidic lipid interacting sequence (residues 339-349) had no observable functional consequences. The removal of either residues 300-314 or 313-338 resulted in a similar increase in the apparent Ca(2+) affinity of the pump although the increase was somewhat lower than that obtained by the deletion 300-349 suggesting that both deletions affected the same structural determinant. The results show that alterations in the region of the alternative splicing site A change the sensitivity to Ca(2+) of the human isoform 4 of the PMCA.  相似文献   

9.
One cause of sepsis is systemic maladaptive immune response of the host to bacteria and specifically, to Gram-negative bacterial outer-membrane glycolipid lipopolysaccharide (LPS). On the host myeloid cell surface, proinflammatory LPS activates the innate immune system via Toll-like receptor-4/myeloid differentiation factor-2 complex. Intracellularly, LPS is also sensed by the noncanonical inflammasome through caspase-11 in mice and 4/5 in humans. The minimal functional determinant for innate immune activation is the membrane anchor of LPS called lipid A. Even subtle modifications to the lipid A scaffold can enable, diminish, or abolish immune activation. Bacteria are known to modify their LPS structure during environmental stress and infection of hosts to alter cellular immune phenotypes. In this review, we describe how mass spectrometry-based structural analysis of endotoxin helped uncover major determinations of molecular pathogenesis. Through characterization of LPS modifications, we now better understand resistance to antibiotics and cationic antimicrobial peptides, as well as how the environment impacts overall endotoxin structure. In addition, mass spectrometry-based systems immunoproteomics approaches can assist in elucidating the immune response against LPS. Many regulatory proteins have been characterized through proteomics and global/targeted analysis of protein modifications, enabling the discovery and characterization of novel endotoxin-mediated protein translational modifications.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号