首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of heterogeneous biocatalysis in industrial applications is advantageous and the enzyme stability improvement is a continuous challenge. Therefore, we designed β‐galactosidase heterogeneous biocatalysts by immobilization, involving the support synthesis and enzyme selection (from Bacillus circulans, Kluyveromyces lactis, and Aspergillus oryzae). The underivatized, tailored, macro‐mesoporous silica exhibited high surface area, offered high enzyme immobilization yields and activity. Its chemical activation with glyoxyl groups bound the enzyme covalently, which suppressed lixiviation and conferred higher pH and thermal stability (120‐fold than for the soluble enzyme), without observable reduction of activity/stability due to the presence of silica. The best balance between the immobilization yield (68%), activity (48%), and stability was achieved for Bacillus circulans β‐galactosidase immobilized on glyoxyl‐activated silica, without using stabilizing agents or modifying the enzyme. The enzyme stabilization after immobilization in glyoxyl‐activated silica was similar to that observed in macroporous agarose‐glyoxyl support, with the reported microbiological and mechanical advantages of inorganic supports. The whey lactolysis at pH 6.0 and 25°C by using this catalyst (1 mg ml?1, 290 UI g?1) was still 90%, even after 10 cycles of 10 min, in batch process but it could be also implemented on continuous processes at industrial level with similar results.  相似文献   

2.
The immobilization of heparinase to tresyl-chloride-activated cellulose hollow fibers for the removal of heparin from the bloodstream was examined. Whole blood can be circulated through cellulose hollow fibers without hemolysis and the tresyl chloride chemistry provides a strong linkage which limits the release of the enzyme from the support. The tresylation and immobilization methods were modified and optimized to improve the heparinase activity retained by cellulose. Pretreatment of the hollow fibers with 0.05/V sodium hydroxide increased the degree of tresylation and the immobilization yield by a factor of five. The use of triethylamine as the organic base in the tresyl chloride activation resulted in threefold greater activity retention by the support than when pyridine was used. Together, sodium hydroxide pretreatment and triethylamine enhanced the activity retained by cellulose to 26.2 +/- 7.0% of that bound to the support. The activity retention was also a function of the technique used for immobilization. The best results were achieved when the enzyme was applied to the activated fibers once every 12 to 24 h for a total of four times. The active enzyme loading on the fibers was 0.3 mg heparin degraded/h cm(2) when 4.5 mug protein/cm(2) was bound to the fibers.  相似文献   

3.
This paper presents two immobilization methods for the intracellular invertase (INVA), from Zymomonas mobilis. In the first method, a chimeric protein containing the invertase INVA, fused through its C-terminus to CBD Cex from Cellulomonas fimi was expressed in Escherichia coli strain BL21 (DE3). INVA was purified and immobilized on crystalline cellulose (Avicel) by means of affinity, in a single step. No changes were detected in optimal pH and temperature when INVA-CBD was immobilized on Avicel, where values of 5.5 and 30 °C, respectively, were registered. The kinetic parameters of the INVA-CBD fusion protein were determined in both its free form and when immobilized on Avicel. K m and V max were affected with immobilization, since both showed an increase of up to threefold. Additionally, we found that subsequent to immobilization, the INVA-CBD fusion protein was 39% more susceptible to substrate inhibition than INVA-CBD in its free form. The second method of immobilization was achieved by the expression of a 6xHis-tagged invertase purified on Ni-NTA resin, which was then immobilized on Nylon-6 by covalent binding. An optimal pH of 5.5 and a temperature of 30 °C were maintained, subsequent to immobilization on Nylon-6 as well as with immobilization on crystalline cellulose. The kinetic parameters relating to V max increased up to 5.7-fold, following immobilization, whereas K m increased up to 1.7-fold. The two methods were compared showing that when invertase was immobilized on Nylon-6, its activity was 1.9 times that when immobilized on cellulose for substrate concentrations ranging from 30 to 390 mM of sucrose.  相似文献   

4.
Enzyme immobilization using a low-cost support that allows increasing operational stability and reutilization arise as a great economic advantage for the industry. In this work, it was explored different methods of Thermomyces lanuginosus lipase (NS-40116) immobilization in flexible polyurethane foam (PU). PU polymer was synthesized using polyether and toluene diisocyanate as monomers. PU-NS-40116 immobilized was evaluated in terms of stability in a range of pH (7.0 and 9.0), temperature (24, 50 and 60?°C) for 24?h, and storage stability (room temperature and 4?°C) for 30?days. The results showed that after 30?days of storage immobilized enzyme kept 80% of initial enzyme activity. PU support before and after immobilization process was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Free and immobilized enzymes were compared in terms of hydrolysis of soybean oil. Immobilized enzyme by entrapment was evaluated in successive cycles of reuse showing catalytic activity above 50% even after 5 successive cycles of reuse, confirming the efficiency of immobilization process.  相似文献   

5.
This study demonstrates the immobilization of carbohydrate containing turnip peroxidase on an inexpensive bioaffinity adsorbent, Concanavalin A-cellulose support. The bioaffinity support was prepared simply by incubating cellulose powder with jack bean extract at 4 degrees C. Cellulose powder adsorbed 30 mg concanavalin A/g of the matrix. Concanavalin A adsorbed cellulose has been employed for the simultaneous purification and immobilization of glycoenzymes directly from ammonium sulphate fractionated proteins of turnip. The obtained bioaffinity support was quite effective in high yield immobilization of peroxidase from turnip and it retained 672 U/g. Turnip peroxidase immobilized on concanavalin A-cellulose support retained 80% of the initial activity. Immobilized turnip peroxidase preparation was quite resistant against the denaturation mediated by pH, heat, urea, guanidinium-HCl, Surf Excel, cetyltrimethylammonium bromide and water-miscible organic solvents; dimethyl formamide, dioxane and n-propanol. Low concentration of detergents like Surf Excel and cetyltrimethylammonium bromide enhanced the activity of soluble and immobilized turnip peroxidase.  相似文献   

6.
Hydrophobic silica aerogels modified with methyl group were applied as support to immobilize Candida rugosa lipase (CRL). At the adsorption process, different alcohols were used to intensify the immobilization of CRL. The results showed that n-butanol wetting the hydrophobic support prior to contacting with enzyme solution could promote lipase activity, but the adsorption quantity onto the support decreased. Based on this, a novel immobilization method was proposed: the support contacted with enzyme solution without any alcohols, and then the immobilized enzymes were activated by 90% (V) n-butanol solution. The experimental results showed that this method could keep high adsorption quantity (413.0 mg protein/g support) and increase the lipase specific activity by more than 50%. To improve the stability of immobilized lipase, the support after adsorption was contacted with n-octane to form an oil layer covering the immobilized lipases, thus the leakage can be decreased from over 30–4% within 24 h. By utilizing proper cosolvents, a high enzyme activity and loading capacity as well as little loss of lipase was achieved without covalent linkage between the lipase and the support. This is known to be an excellent result for immobilization achieved by physical adsorption only.  相似文献   

7.
Silanized palygorskite for lipase immobilization   总被引:2,自引:0,他引:2  
Lipase from Candida lipolytica has been immobilized on 3-aminopropyltriethoxysilane-modified palygorskite support. Scanning electron micrographs proved the covalently immobilization of C. lipolytica lipase on the palygorskite support through glutaraldehyde. Using an optimized immobilization protocol, a high activity of 3300 U/g immobilized lipase was obtained. Immobilized lipase retained activity over wider ranges of temperature and pH than those of the free enzyme. The optimum pH of the immobilized lipase was at pH 7.0–8.0, while the optimum pH of free lipase was at 7.0. The retained activity of the immobilized enzyme was improved both at lower and higher pH in comparison to the free enzyme. The immobilized enzyme retained more than 70% activity at 40 °C, while the free enzyme retained only 30% activity. The immobilization stabilized the enzyme with 81% retention of activity after 10 weeks at 30 °C whereas most of the free enzyme was inactive after a week. The immobilized enzyme retains high activity after eight cycles. The kinetic constants of the immobilized and free lipase were also determined. The Km and Vmax values of immobilized lipase were 0.0117 mg/ml and 4.51 μmol/(mg min), respectively.  相似文献   

8.
This work reports the immobilization of a multimeric d-hydantoinase (DHTase) from Vigna angularis (E.C. 3.5.2.2.) on agarose beads activated with glyoxyl groups aiming to improve its stability via multipoint covalent attachment. The final reduction with sodium borohydride resulted in a drop in enzyme activity that could be decreased by adding Zn2+ or Mg2+. The optimal preparation with high activity (58 % recovered activity) and stability (around 86-fold more stable than the free enzyme) was obtained by DHTase immobilization on glyoxyl agarose for 24 h at 25 °C and pH 10.05, and a borohydride reduction step in the presence of 10 mM Zn2+ (DHTase-Glx). The enzyme was almost fully immobilized on glyoxyl agarose (19.8 mg/g of support) when offering 20 mg/g. This immobilized biocatalyst was used to catalyze the hydrolysis of d,l-phenylhydantoin under substrate racemization conditions, which produced 99 % of N-carbamoyl-d-phenylglycine after 9 h reaction.  相似文献   

9.
Abstract

Surface interactions between an enzyme and support influence the retention of activity after immobilization. Chemical modification of enzymes prior to immobilization may be used to alter these interactions and enhance activity retention. Lactase (A. oryzae) was covalently conjugated to P(S/V-COOH) microspheres, with surface carboxylic acid densities of 9 μeq/g and 137 μeq/g, using carbodiimide chemistry. Under optimum pH and temperature conditions, activity retention was greater when the enzyme was conjugated to microspheres containing a lower density of surface carboxylic acid groups (32% activity retention) than when the enzyme was conjugated to microspheres having a greater density of surface carboxylic acid groups (11% activity retention). Chemical modification of lactase carboxylic acid groups with glucosamine prior to immobilization was evaluated as a means to increase activity retention. Under optimal conditions, modification resulted in a 17% decrease in soluble enzyme activity compared to the native enzyme. However, immobilization of the modified enzyme yielded 85% and 64% activity retention after conjugation to microspheres with a lower and higher density of surface carboxylic acid groups, respectively. The results suggest that increases in surface carboxylic acid density on the carrier promote the loss of lactase activity after immobilization, and chemical modification of the enzyme with glucosamine provides a means to retain catalytic activity after attachment to these supports.  相似文献   

10.
Attempts were made to evaluate the chemical properties of cross-linked cellulose beads in order to utilize them as a support material for the large scale purification of specific immunoglobulins via immunosorbent chromatography with goat anti-human IgG serving as the model affinity ligand. Since these cellulose beads have sufficient mechanical strength to sustain a high flow rate of viscous fluids, they are ideal for rapid purification of large fluid volumes. The beads were activated with cyanogen bromide, tosyl chloride, cyanuric chloride or oxidation reagents such as chromium trioxide, sodium periodate and dimethylsulfoxide-carbodiimide before the antibodies were immobilized under mild conditions. The inert hydroxyl groups were thus converted into more active cyanate ester, tosylate, reactive acyl-like chlorines, and carbonyl groups which readily react with amino groups of antibodies. Antibodies were immobilized on the activated cellulose beads under mild conditions with an average yield of 42.3%. Every immobilization method had disadvantages. The binding activity of the immobilized antibody depended on its concentration. Very high binding efficiency was achieved when the concentration was less than 0.2 mg/ml; however, the efficiency was only about 5% when the concentration was greater than 2 mg/ml. The binding activity of immobilized antibodies was affected by the steric factors imposed by the support material but not affected by the immobilization methods. Although some non-specific interaction between plasma components and the cellulose bead immunosorbent occurred, specific immunoglobulin could be purified from plasma in a single step.  相似文献   

11.
In this study, polyacrylic acid‐based nanofiber (NF) membrane was prepared via electrospinning method. Acetylcholinesterase (AChE) from Electrophorus electricus was covalently immobilized onto polyacrylic acid‐based NF membrane by demonstrating efficient enzyme immobilization, and immobilization capacity of polymer membranes was found to be 0.4 mg/g. The novel NF membrane was synthesized via thermally activated surface reconstruction, and activation with carbonyldiimidazole upon electrospinning. The morphology of the polyacrylic acid‐based membrane was investigated by scanning electron microscopy, Fourier Transform Infrared Spectroscopy, and thermogravimetric analysis. The effect of temperature and pH on enzyme activity was investigated and maxima activities for free and immobilized enzyme were observed at 30 and 35°C, and pH 7.4 and 8.0, respectively. The effect of 1 mM Mn2+, Ni2+, Cu2+, Zn2+, Mg2+, Ca2+ ions on the stability of the immobilized AChE was also investigated. According to the Michaelis–Menten plot, AChE possessed a lower affinity to acetylthiocholine iodide after immobilization, and the Michaelis–Menten constant of immobilized and free AChE were found to be 0.5008 and 0.4733 mM, respectively. The immobilized AChE demonstrated satisfactory reusability, and even after 10 consecutive activity assay runs, AChE maintained ca. 87% of its initial activity. Free enzyme lost its activity completely within 60 days, while the immobilized enzyme retained approximately 70% of the initial activity under the same storage time. The favorable reusability of immobilized AChE enables the support to be employable to develop the AChE‐based biosensors.  相似文献   

12.
Bacterial cellulose (BC) was obtained by static cultivation using commercial BC gel from scoby. BC membranes (oven dried and freeze‐dried) were swelled with 8% NaOH, in the absence and in the presence of ultrasound (US), for 30, 60, and 90 min. The influence of swelling conditions on both physico‐chemical properties and molecules entrapment was evaluated. Considering the highest levels of entrapment, an optimum swelling procedure was established: 8% NaOH for 30 min at room temperature in the presence of US. Native and PEGylated laccase from Myceliophthora thermophila was immobilized on BC membranes and a different catalytic behaviour was observed after immobilization. Native laccase presented activity values similar to published reports (5–7 U/gBC) after immobilization whereas PEGylated enzymes showed much lower activity (1–2 U/gBC). BC swelled membranes are presented herein as a potential support for the preparation of immobilized enzymes for industrial applications, like phenolics polymerization.  相似文献   

13.
A simultaneous saccharification and fermentation (SSF) process was investigated to produce ethanol using two kinds of cellulose carriers that were respectively suitable for immobilization of Aspergillus awamori and Saccharomyces pastorianus. The maximum ethanol concentration attained by the batch operation was 25.5 g l−1. Under suitable conditions, both cellulose carriers with immobilized cells could be reused efficiently for three cycles. The total amount of ethanol production was 66.0 g (per 1 l working volume) after the repeated operation. Ethanol productivity mainly depends on a saccharification process. There is a limit in durability in the repeated batch operation, and it is important to maintain high activity of the fungus in order to produce ethanol efficiently. Journal of Industrial Microbiology & Biotechnology (2001) 27, 52–57. Received 11 December 2000/ Accepted in revised form 02 June 2001  相似文献   

14.
Thermostable β‐galactosidase from Bacillus coagulans RCS3 was purified by successive column chromatography using DEAE‐cellulose and Sephadex G‐50. Immobilization of the purified enzyme was studied with DEAE‐cellulose and calcium alginate. The efficiency of β‐galactosidase retention was 87 % with DEAE‐cellulose (17 mg protein/mL of matrix) and 80 % with calcium alginate (2.2 mg protein/g bead). Comparative studies of immobilization displayed a shift in the optimum temperature from 65 °C to 70 °C provoked by DEAE‐cellulose, although no effect was observed with calcium alginate. The heat inactivation curve revealed an improvement in the stability (t1/2 of 14.5 h for the immobilized enzyme as compared to 2 h for the free enzyme at 65 °C) in a calcium alginate system. This immobilized enzyme has a wide pH stability range (6.5–11). β‐Galactosidase immobilized by DEAE‐cellulose and calcium alginate allowed a 57 and 70 % lactose hydrolysis, respectively, to be achieved within 48 h after repeated use for twenty times.  相似文献   

15.
Summary A specific immobilization of laccase (EC 1.10.3.2) onto a ready-to-usep-benzoquinone-activated agarose support is described. The single-step procedure leads to a laccase protein coupling of I8% and an enzyme activity immobilization yield of 27%, while the retained specific activity of the immobilized enzyme was 150% of the specific activity of the free laccase. This peculiar result is thought to be related to the fact that during the process of support activation byp-benzoquinone, a significant amount of the hydroquinone by-product of the activation process is coupled to the support. These coupled derivatives constitute substrate (hydroquinone) analogues for which laccase exhibits a high affinity. Therefore, simultaneous affinity retention on the hydroquinone groups and covalent coupling on the p-benzoquinone groups allow the binding of the enzyme in an advantageous conformation which can generate this increase specific activity by immobilization. The entire process can be considered as an affinity immobilization. The immobilized enzyme is much more stable to the inhibitory action of chloride and azide ions, with a recovery of 100% of the activity, than the free laccase, with a recovery of 67% and 32%, respectively, after removal of the inhibitors by dialysis. The stability was 95% after storage for 14 months at 4° C.Abbreviations HQ hydroquinone - p-BQ p-benzoquinone - U enzyme units Part of the work was presented at the Satellite FEBS 1989 Symposium onBiochemical and biophysical approaches to the study of copper proteins, Camerino, Italy.  相似文献   

16.
Immobilization of Bacillus licheniformis l-arabinose isomerase (BLAI) on aminopropyl glass modified with glutaraldehyde (4 mg protein g support−1) was found to enhance the enzyme activity. The immobilization yield of BLAI was proportional to the quantity of amino groups on the surface of support. Reducing particle size increased the adsorption capacity (q m) and affinity (k a). The pH and temperature for immobilization were optimized to be pH 7.1 and 33°C using response surface methodology (RSM). The immobilized enzyme was characterized and compared to the free enzyme. There is no change in optimal pH and temperature before and after immobilization. However, the immobilized BLAI enzyme achieved 145% of the activity of the free enzyme. Correspondingly, the catalytic efficiency (k cat/K m) was improved 1.47-fold after immobilization compared to the free enzyme. The thermal stability was improved 138-fold (t 1/2 increased from 2 to 275 h) at 50°C following immobilization.  相似文献   

17.
Dextransucrase from Leuconostoc mesenteroides was produced in a semicontinuous culture with slow addition of a concentrated sucrose solution. The resulting high activity of the fermentation broth allowed a one-step purification method, by gel permeation chromatography (GPC) in 96.4% yield. This procedure resulted in 140-fold purification, with specific activity of 122 U/mg. The enzyme was immobilized onto an amino-Spherosil support activated with glutaraldehyde. Preparations with dextransucrase activities as high as 40.5 U/g of support were obtained, when low specific area supports were used and maltose was added during the enzyme coupling. Diffusional limitations were found during enzyme reaction, as shown by a kinetic study. As a consequence of immobilization, the average molecular weight of dextrans seems to increase. Immobilized dextransucrase looks promising for low-molecular-weight dextran production. Clinical dextran was synthesized when the polysaccharides produced in the presence of maltose were used as acceptor of a second synthesis reaction. The molecular weight distribution of the resulting production was less disperse than when clinical dextran was produced by acid hydrolysis of high-molecular-weight dextran.  相似文献   

18.
Feruloyl esterase (FAE)-catalyzed esterification reaction is as a potential route for the biosynthesis of feruloylated oligosaccharides as functional ingredients. Immobilization of FAE from Humicola insolens on metal chelate-epoxy supports was investigated. The study of effects of immobilization parameters using response surface methodology revealed the significance of enzyme/support ratio (3.25-29.25 mg/g support), immobilization time (14-38 h), buffer molarity (0.27-1.25 M) and pH (4.0-8.0). The interactions between enzyme-to-support ratio/buffer molarity and enzyme-to-support ratio/pH were found to be critical for the modulation of the immobilization activity yield and the retention of specific activity, respectively. Optimum conditions for FAE-immobilization on metal chelate Sepabeads® EC-EP R were identified to be 22.75 mg FAE/g support, pH of 5.0, 27.7 h and buffer molarity of 0.86 M. At these conditions, an activity yield of 82.4%, a specific activity retention of 143.4%, and an enzyme activity of 395.4 μmol/min. g support were achieved. Further incubation of the immobilized FAE at pH 10.0 improved its thermostability. Increasing the pore size of the epoxy support improved the retention of FAE hydrolytic activity and the esterifying efficiency of the immobilized biocatalyst. Optimally immobilized and stabilized FAE on metal chelate-epoxy support retained up to 92.9% of the free enzyme feruloylation efficiency to xylooligosaccharides..  相似文献   

19.
Novozyme 435, which is a commercial immobilized lipase B from Candida antarctica (CALB), has been proven to be inadequate for the kinetic resolution of rac‐indanyl acetate. As it has been previously described that different immobilization protocols may greatly alter lipase features, in this work, CALB was covalently immobilized on epoxy Immobead‐350 (IB‐350) and on glyoxyl‐agarose to ascertain if better kinetic resolution would result. Afterwards, all CALB biocatalysts were utilized in the hydrolytic resolution of rac‐indanyl acetate and rac‐(chloromethyl)‐2‐(o‐methoxyphenoxy) ethyl acetate. After optimization of the immobilization protocol on IB‐350, its loading capacity was 150 mg protein/g dried support. Furthermore, the CALB‐IB‐350 thermal and solvent stabilities were higher than that of the soluble enzyme (e.g., by a 14‐fold factor at pH 5–70°C and by a 11‐fold factor in dioxane 30%–65°C) and that of the glyoxyl‐agarose‐CALB (e.g., by a 12‐fold factor at pH 10–50°C and by a 21‐fold factor in dioxane 30%–65°C). The CALB‐IB‐350 preparation (with 98% immobilization yield and activity versus p‐nitrophenyl butyrate of 6.26 ± 0.2 U/g) was used in the hydrolysis of rac‐indanyl acetate using a biocatalyst/substrate ratio of 2:1 and a pH value of 7.0 at 30°C for 24 h. The conversion obtained was 48% and the enantiomeric excess of the product (e.e.p) was 97%. These values were much higher than the ones obtained with Novozyme 435, 13% and 26% of conversion and e.e.p, respectively. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:878–889, 2018  相似文献   

20.
Alcalase was scarcely immobilized on monoaminoethyl-N-aminoethyl (MANAE)-agarose beads at different pH values (<20% at pH 7). The enzyme did not immobilize on MANAE-agarose activated with glutaraldehyde at high ionic strength, suggesting a low reactivity of the enzyme with the support functionalized in this manner. However, the immobilization is relatively rapid when using low ionic strength and glutaraldehyde activated support. Using these conditions, the enzyme was immobilized at pH 5, 7, and 9, and in all cases, the activity vs. Boc-Ala-ONp decreased to around 50%. However, the activity vs. casein greatly depends on the immobilization pH, while at pH 5 it is also 50%, at pH 7 it is around 200%, and at pH 9 it is around 140%. All immobilized enzymes were significantly stabilized compared to the free enzyme when inactivated at pH 5, 7, or 9. The highest stability was always observed when the enzyme was immobilized at pH 9, and the worst stability occurred when the enzyme was immobilized at pH 5, in agreement with the reactivity of the amino groups of the enzyme. Stabilization was lower for the three preparations when the inactivation was performed at pH 5. Thus, this is a practical example on how the cooperative effect of ion exchange and covalent immobilization may be used to immobilize an enzyme when only one independent cause of immobilization is unable to immobilize the enzyme, while adjusting the immobilization pH leads to very different properties of the final immobilized enzyme preparation. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2768, 2019.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号