首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial variation in absolute climatic conditions (means, maxima or minima) is widely acknowledged to play a fundamental role in controlling species diversity patterns. In contrast, while evidence is accumulating that variability around mean climatic conditions may also influence species coexistence and persistence, the importance of spatial variation in temporal climatic variability for species diversity is still largely unknown. We used a unique dataset capturing fine‐scale spatial heterogeneity in temperature variability across 2490 plots in southeast Australia to examine the comparative strength of absolute temperature and temperature variability in explaining spatial variation in plant diversity. Across all plots combined and in three of five forest types, temperature variability emerged as the better predictor of diversity. In all but one forest type, diversity also exhibited either a significant unimodal or positive linear correlation with temperature variability. This relationship is consistent with theory that predicts diversity will initially increase along a climate variability gradient due to temporal niche partitioning, but at an intermediary point, may decline as the risk of stochastic extinction exceeds competitive stabilization. These findings provide critical empirical evidence of a linkage between spatial variation in temporal climate variability and plant species diversity, and in light of changing climate variability regimes, highlight the need for ecologists to expand their purview beyond absolutes and averages.  相似文献   

2.
Predicting the fate of tropical forests under a changing climate requires understanding species responses to climatic variability and extremes. Seedlings may be particularly vulnerable to climatic stress given low stored resources and undeveloped roots; they also portend the potential effects of climate change on future forest composition. Here we use data for ca. 50,000 tropical seedlings representing 25 woody species to assess (i) the effects of interannual variation in rainfall and solar radiation between 2007 and 2016 on seedling survival over 9 years in a subtropical forest; and (ii) how spatial heterogeneity in three environmental factors—soil moisture, understory light, and conspecific neighborhood density—modulate these responses. Community‐wide seedling survival was not sensitive to interannual rainfall variability but interspecific variation in these responses was large, overwhelming the average community response. In contrast, community‐wide responses to solar radiation were predominantly positive. Spatial heterogeneity in soil moisture and conspecific density were the predominant and most consistent drivers of seedling survival, with the majority of species exhibiting greater survival at low conspecific densities and positive or nonlinear responses to soil moisture. This environmental heterogeneity modulated impacts of rainfall and solar radiation. Negative conspecific effects were amplified during rainy years and at dry sites, whereas the positive effects of radiation on survival were more pronounced for seedlings existing at high understory light levels. These results demonstrate that environmental heterogeneity is not only the main driver of seedling survival in this forest but also plays a central role in buffering or exacerbating impacts of climate fluctuations on forest regeneration. Since seedlings represent a key bottleneck in the demographic cycle of trees, efforts to predict the long‐term effects of a changing climate on tropical forests must take into account this environmental heterogeneity and how its effects on regeneration dynamics play out in long‐term stand dynamics.  相似文献   

3.
Understanding the temporal dynamics of communities is crucial to predict how communities respond to climate change. Several factors can promote variation in phenology among species, including tracking of seasonal resources, adaptive responses to other species, demographic stochasticity, and physiological constraints. The activities of ectothermic vertebrates are sensitive to climatic variations due to the effect of temperature and humidity on species physiology. However, most studies on temporal dynamics have analyzed multi‐year data and do not have resolution to discriminate within‐year patterns that can determine community assembly cycles. Here, we tested the temporal stability and synchrony of calling activity and also how climatic variables influence anuran species composition throughout the year in a metacommunity in the Atlantic Forest of southern Brazil. Using a multivariate method, we described how the relationship between species composition and climatic variables changes through time. The metacommunity showed a weak synchronous spatial pattern, meaning that species responded independently to environmental variation. Interestingly, species composition exhibited a nonstationary response to climate, suggesting that climate affects species composition differently depending on the season. The species‐climate relationship was stronger during the spring, summer, and winter, mainly influenced by temperature, rainfall, and humidity. Thus, temporal community dynamics seem to be mediated by species life‐history traits, in which independent fluctuations promote community stability in temporally varying environments.  相似文献   

4.
Question: Are trees sensitive to climatic variability, and do tree species differ in their responses to climatic variability? Does sensitivity of forest communities to climatic variability depend on stand composition? Location: Mixed young forest at Walker Branch Watershed near Oak Ridge, East Tennessee, USA. Methods: Using a long‐term dataset (1967–2006), we analyzed temporal forest dynamics at the tree and species level, and community dynamics for forest stands that differed in initial species composition (i.e., chestnut oak, oak–hickory, pine, and yellow poplar stands). Using summer drought and growing season temperature as defined climate drivers, we evaluated relationships between forest dynamics and climate across levels of organization. Results: Over the four‐decade study period, forest communities underwent successional change and substantially increased in biomass. Variation in summer drought and growing season temperature contributed to temporal biomass dynamics for some tree species, but not for others. Stand‐level responses to climatic variability were related to the responses of component species, except in pine stands. Pinus echinata, the dominant species in pine stands, decreased over time due to periodic outbreaks of pine bark beetle (Dendroctonus frontalis). These outbreaks at Walker Branch could not be directly related to climatic conditions. Conclusions: The results indicate that sensitivity of developing forests to climatic variability is stand type‐dependent, and hence is a function of species composition. However, in the long term, direct effects of climatic variability on forest dynamics may be small relative to autogenic successional processes or climate‐related insect outbreaks. Empirical studies testing for interactions between forest succession and climatic variability are needed.  相似文献   

5.
Several temperate tree species are expected to migrate northward and colonize boreal forests in response to climate change. Tree migrations could lead to transitions in forest types, but these could be influenced by several non‐climatic factors, such as disturbances and soil conditions. We analysed over 10,000 forest inventory plots, sampled from 1970 to 2018 in meridional Québec, Canada, to identify what environmental conditions promote or prevent regional‐scale forest transitions. We used a continuous‐time multi‐state Markov model to quantify the probabilities of transitions between forest states (temperate, boreal, mixed, pioneer) as a function of climate (mean temperature and climate moisture index during the growing season), soil conditions (pH and drainage) and disturbances (severity levels of natural disturbances and logging). We further investigate how different disturbance types and severities impact forests' short‐term transient dynamics and long‐term equilibrium using properties of Markov transition matrices. The most common transitions observed during the study period were from mixed to temperate states, as well as from pioneer to boreal forests. In our study, transitions were mainly driven by natural and anthropogenic disturbances and secondarily by climate, whereas soil characteristics exerted relatively minor constraints. While major disturbances only promoted transitions to the pioneer state, moderate disturbances increased the probability of transition from mixed to temperate states. Long‐term projections of our model under the current environmental conditions indicate that moderate disturbances would promote a northward shift of the temperate forest. Moreover, disturbances reduced turnover and convergence time for all transitions, thereby accelerating forest dynamics. Contrary to our expectation, mixed to temperate transitions were not driven by temperate tree recruitment but by mortality and growth. Overall, our results suggest that moderate disturbances could catalyse rapid forest transitions and accelerate broad‐scale biome shifts.  相似文献   

6.
We review observational, experimental, and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied, although potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational, and/or modeling studies have the potential to overcome important caveats of the respective individual approaches.  相似文献   

7.
Abstract. The Mediterranean Basin harbours paleo‐endemic species with a highly restricted and fragmented distribution. Many of them might also be of the remnant type, for which the regional dynamics depends on the persistence of extant populations. Therefore, a key issue for the long‐term persistence of these species is to assess the variability and effects of ecological factors determining plant performance. We investigated the spatio‐temporal variability in plant traits and ecological factors of Ramonda myconi, a preglacial relict species with remnant dynamics, in 5 populations over 4–7 yr. Ecological factors contributing to fecundity showed a high degree of between‐year variability. Pre‐dispersal fruit predation had a minor influence on total reproductive output, and most of the variability was found among individuals within populations and years. Spatio‐temporal variability in growth and survival was rather low but significant, whereas recruitment showed important between‐population variability. Among‐year variability in fecundity and growth was related to climatic fluctuations on a regional scale, notably rainfall and temperature in a particular period, while the spatial variability in survival and recruitment was explained by within‐population (patch) habitat quality. Although R. myconi is able to withstand repeated periods of drought, water availability seems to be the most important factor affecting plant performance in all the study populations. These findings suggest that the long‐term persistence of species showing remnant population dynamics in habitats under the influence of Mediterranean climate might be threatened by increased aridity as a result of climate change.  相似文献   

8.
Humans are increasingly influencing global climate and regional predator assemblages, yet a mechanistic understanding of how climate and predation interact to affect fluctuations in prey populations is currently lacking. Here we develop a modelling framework to explore the effects of different predation strategies on the response of age-structured prey populations to a changing climate. We show that predation acts in opposition to temporal correlation in climatic conditions to suppress prey population fluctuations. Ambush predators such as lions are shown to be more effective at suppressing fluctuations in their prey than cursorial predators such as wolves, which chase down prey over long distances, because they are more effective predators on prime-aged adults. We model climate as a Markov process and explore the consequences of future changes in climatic autocorrelation for population dynamics. We show that the presence of healthy predator populations will be particularly important in dampening prey population fluctuations if temporal correlation in climatic conditions increases in the future.  相似文献   

9.
In this paper we ask whether succession in a rocky subtidal community varies in space and time, and if so how much affect that variation has on predictions of community dynamics and structure. We describe succession by Markov chain models based on observed frequencies of species replacements. We use loglinear analysis to detect and quantify spatio‐temporal variation in the transition matrices describing succession. The analysis shows that space and time, but not their interaction, have highly significant effects on transition probabilities. To explore the ecological importance of the spatio‐temporal variability detected in this analysis, we compare the equilibria and the transient dynamics among three Markov chain models: a time‐averaged model that includes the effects of space on succession, a spatially averaged model that include the effects of time, and a constant matrix that averages over the effects of space and time. All three models predicted similar equilibrium composition and similar rates of convergence to equilibrium, as measured by the damping ratio or the subdominant Lyapunov exponent. The predicted equilibria from all three models were very similar to the observed community structure. Thus, although spatial and temporal variation is statistically significant, at least in this system this variation does not prevent homogeneous models from predicting community structure.  相似文献   

10.
Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well‐documented, there is a paucity of studies on climate‐mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human‐dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20‐year period using data from the New York State Breeding Atlases collected during 1980–1985 and 2000–2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change, whereas those changes are likely to be greater in contiguous and unfragmented habitats.  相似文献   

11.
Experimental manipulation of climate provides a powerful tool for studying plant community dynamics with respect to current climate change. We experimentally investigated the vegetation dynamics of a Mediterranean shrubland under directional climate change by manipulating rain and temperature at stand level throughout 7 years. We focused on seedling establishment in relation to the between-year variability of drought conditions. We also compared seedling dynamics to changes in the established adult vegetation to assess the coupling between both dynamics. We used multivariate techniques (principal response curves (PRC) and redundancy analysis (RDA)) to explore changes in the whole community, and Generalized Linear Model (GLZM) to analyse the influence of drought on the abundance and survival of the most abundant species.Drought treatment induced significant changes in the species composition of the seedlings, via a differential decrease in the seedling density of most species. No species was particularly favoured in terms of seedling abundance under water-deficit conditions. Warming only explained a low percentage of the variability in seedling species composition. The emergence of seedlings in control plots – which may be considered an estimation of the between-year variability in the conditions for seedling establishment – was a better predictor of seedling emergence in experimental plots than climate manipulation treatments. The PRC analysis of the adults showed dynamics that were different from those recorded for seedlings, and it also showed that drought treatment significantly explained species composition. This result is reinforced by the change in the relative abundance of seedling and adults of the more common species in the drought and warming treatments, supporting the hypothesis that climatic directional change heightens discrepancies between recruitment and the adult performance. The RDA analysis applied to species composition at the end of the experiment failed, however, to attain any statistical significance. The warming treatment did not produce any significant shifts in adult vegetation.In conclusion, directional climate change – particularly drier conditions in Mediterranean shrublands – would result in a change in the recruitment of the plant community. This change in seedling recruitment tends to be different from the dynamics of adults, suggesting that potential adult mortality would not be compensated by actual seedling recruitment, thus enhancing shifts in community composition.  相似文献   

12.
Our data, collected in the extreme east of Europe, show that a significant biological effect of climate change has been experienced even in territories where temperature increase has been the lowest. This study documents the climatic response of pedunculate oak (Quercus robur) growing near its north-eastern limits in Europe. It demonstrates the potential of oak trees in old-growth forest to act as proxy climate indicators. Many factors may influence the temporal stability of the growth-climate, acorn crop-climate and first leafing-climate relationships. Climate data, climatic fluctuations, reproduction, genetics and tree-age may relate to this instability. Our results stress that an increase in climate variability or climatic warming resulting from warmer winters or summers could affect the oak population in eastern Europe in a similar way to that in western Europe. These findings, from remnants of oak forest in the middle Volga region of Russia, allow a further understanding of how species could be affected by future climates.  相似文献   

13.
Questions: Are there interspecific differences in mortality and recruitment rates across life stages between two shade‐tolerant dominant trees in a sub‐alpine old‐growth forest? Do such differences in demography contribute to the coexistence and co‐dominance of the two species? Location: Sub‐alpine, old‐growth forest on Mt. Ontake, central Honshu, Japan. Methods: From 1980 to 2005, we recorded DBH and status (alive or dead) of all Abies mariesii and A. veitchii individuals (DBH ≥ 5 cm) in a 0.44‐ha plot. Based on this 25 year census, we quantified mortality and recruitment rates of the two species in three life stages (small tree, 5 cm ≤ DBH < 10 cm; subcanopy tree, 10 cm ≤ DBH < 20 cm; canopy tree, DBH ≥ 20 cm). Results: Significant interspecific differences in mortality and recruitment rates were observed in both the small tree and sub‐canopy tree stages. In this forest, saplings (< 5 cm DBH) are mostly buried by snow‐pack during winter. As a consequence, saplings of A. mariesii, which is snow and shade tolerant, show higher rates of recruitment into the small tree stage than do those of A. veitchii. Above the snow‐pack, trees must tolerate dry, cold temperatures. A. veitchii, which can more readily endure such climate conditions, showed lower mortality rate at the subcanopy stage and a higher recruitment rate into the canopy tree stage. This differential mortality and recruitment among life‐stages determines relative dominance of the two species in the canopy. Conclusion: Differential growth conditions along a vertical gradient in this old forest determine survival of the two species prior to reaching the canopy, and consequently allow co‐dominance at the canopy stage.  相似文献   

14.
Spatial responses of species to past climate change depend on both intrinsic traits (climatic niche breadth, dispersal rates) and the scale of climatic fluctuations across the landscape. New capabilities in generating and analysing population genomic data, along with spatial modelling, have unleashed our capacity to infer how past climate changes have shaped populations, and by extension, complex communities. Combining these approaches, we uncover lineage diversity across four codistributed lizards from the Australian Monsoonal Tropics and explore how varying climatic tolerances interact with regional climate history to generate common vs. disparate responses to late Pleistocene change. We find more divergent spatial structuring and temporal demographic responses in the drier Kimberley region compared to the more mesic and consistently suitable Top End. We hypothesize that, in general, the effects of species’ traits on sensitivity to climate fluctuation will be more evident in climatically marginal regions. If true, this points to the need in climatically marginal areas to craft more species‐(or trait)‐specific strategies for persistence under future climate change.  相似文献   

15.
Madagascar''s rainforests are among the most biodiverse in the world. Understanding the population dynamics of important species within these forests in response to past climatic variability provides valuable insight into current and future species composition. Here, we use a population-level approach to analyse palaeoecological records over the last 5300 years to understand how populations of Symphonia cf. verrucosa became locally extinct in some rainforest fragments along the southeast coast of Madagascar in response to rapid climate change, yet persisted in others. Our results indicate that regional (climate) variability contributed to synchronous decline of S. cf. verrucosa populations in these forests. Superimposed on regional fluctuations were local processes that could have contributed or mitigated extinction. Specifically, in the forest with low soil nutrients, population model predictions indicated that there was coexistence between S. cf. verrucosa and Erica spp., but in the nutrient-rich forest, interspecific effects between Symphonia and Erica spp. may have pushed Symphonia to extinction at the peak of climatic change. We also demonstrate that Symphonia is a good indicator of a threshold event, exhibiting erratic fluctuations prior to and long after the critical climatic point has passed.  相似文献   

16.
Aim How important are frequent, low‐intensity disturbances to tree community dynamics of a cyclone‐prone forest? We tested the following hypotheses concerning the ‘inter‐cataclysm’ period on a remote Polynesian island: (1) tree turnover would be high and recruitment rates would be significantly higher than mortality; (2) low‐intensity disturbance would result in a marginal increase in tree mortality in the short term; (3) turnover would vary among species and would be associated with plant traits linked to differences in life history; and (4) mortality and recruitment events would be spatially non‐random. Location Tutuila, a volcanic island in the Samoan Archipelago, Polynesia. Methods We censused the tree (stem diameter ≥ 10 cm) community in 3.9 ha of tropical forest three times over a 10‐year period, 1998–2008. We calculated annual mortality, recruitment and turnover rates for 36 tree species. We tested for non‐random spatial patterns and predictors of mortality, and non‐random spatial patterns of tree recruitment. A 2004 cyclone passing within 400 km allowed us to measure the effects of a non‐cataclysmic disturbance on vital rates. Results Annual turnover was 2.8% and annual recruitment was 3.6%; these are some of the highest rates in the tropics, and likely to be a response to a cyclone that passed < 50 km from Tutuila in 1991. Species turnover rates over 10 years were negatively correlated with wood specific gravity, and positively correlated with annual stem diameter increment. Mortality was spatially aggregated, and a function of site, species and an individual’s growth rate. Recruitment was highest on ground with low slope. The low‐magnitude cyclone disturbance in 2004 defoliated 29% of all trees, but killed only 1.8% of trees immediately and increased annual mortality over 5 years by 0.7%. Main conclusions The inter‐cataclysm period on Tutuila is characterized by frequent, low‐amplitude disturbances that promote high rates of tree recruitment and create a dynamic, non‐equilibrium or disturbed island disequilibrium tree community. Species with low wood density and fast growth rates have enhanced opportunities for recruitment between cataclysms, but also higher probabilities of dying. Our results suggest that increases in the frequency of cyclone activity could shift relative abundances towards disturbance‐specialist species and new forest turnover rates.  相似文献   

17.
The local spatial congruence between climate changes and community changes has rarely been studied over large areas. We proposed one of the first comprehensive frameworks tracking local changes in community composition related to climate changes. First, we investigated whether and how 12 years of changes in the local composition of bird communities were related to local climate variations. Then, we tested the consequences of this climate‐induced adjustment of communities on Grinnellian (habitat‐related) and Eltonian (function‐related) homogenization. A standardized protocol monitoring spatial and temporal trends of birds over France from 2001 to 2012 was used. For each plot and each year, we used the spring temperature and the spring precipitations and calculated three indices reflecting the thermal niche, the habitat specialization, and the functional originality of the species within a community. We then used a moving‐window approach to estimate the spatial distribution of the temporal trends in each of these indices and their congruency with local climatic variations. Temperature fluctuations and community dynamics were found to be highly variable in space, but their variations were finely congruent. More interestingly, the community adjustment to temperature variations was nonmonotonous. Instead, unexplained fluctuations in community composition were observed up to a certain threshold of climate change intensity, above which a change in community composition was observed. This shift corresponded to a significant decrease in the relative abundance of habitat specialists and functionally original species within communities, regardless of the direction of temperature change. The investigation of variations in climate and community responses appears to be a central step toward a better understanding of climate change effects on biodiversity. Our results suggest a fine‐scale and short‐term adjustment of community composition to temperature changes. Moreover, significant temperature variations seem to be responsible for both the Grinnellian and Eltonian aspects of functional homogenization.  相似文献   

18.
The effect of patch demography on the structure of forest tree communities was examined using a patch-age and tree-size structured model of forest dynamics. Changes in abundance of species of different types (four different maximum tree-size classes each in two or three shade-tolerance classes) were numerically modeled in response to changes in the duration of the gap-formation-free lag phase. Average patch mortality was identical in all simulations. Tolerant species were more abundant without a lag phase due to larger variation in patch longevity, while subtolerant or intolerant species were successful when patch longevity was fixed with a long duration of lag phase. Variation in patch-age distribution facilitated species coexistence. Increasing ‘advance regeneration’, or surviving fraction at gap formation, brought about the exclusive dominance of the tolerant species. Results suggest that patch demography plays a significant role in the community organization of forest trees. In species-rich systems like tropical rain forests, longevity or canopy duration of large trees can differ among species, which brings about the variation in patch longevity, thus promoting further coexistence of species.  相似文献   

19.
Matías L  Zamora R  Castro J 《Oecologia》2012,169(3):833-844
The understanding of the impact of extreme climatic events under a global climate change scenario is crucial for the accurate forecast of future plant community dynamics. We have experimentally assessed the effect of drier and wetter summer conditions on the recruitment probabilities and the growth of seedlings from eight woody species representative of the most important functional groups in the community, pioneer shrubs, mid-successional shrubs and trees, across the main habitats in the study area (open habitat, shrubland, and forest). Our hypothesis proposes that wet summer conditions would represent a good opportunity for tree species regeneration, enhancing both forest maintenance and expansion. A drier summer scenario, on the other hand, would limit forest regeneration, and probably hinder the colonization of nearby habitats. We found a habitat effect on the emergence, survival, and final biomass, whereas different climate scenarios affected seedling survival and biomass. A wet summer boosted growth and survival, whereas greater drought reduced survival only in some cases. These results were modulated by the habitat type. Overall, shrub species presented higher survival and growth and were less affected by more severe drought, whereas some tree species proved to be extremely dependent on wet summer conditions. We conclude that the reduction in frequency of wet summers predicted for the coming decades in Mediterranean areas will have greater consequences for species recruitment than will increased drought. The different response of the species from the various functional groups has the potential to alter the composition and dominance of future plant communities.  相似文献   

20.
How canopy gaps promote tree species coexistence in temperate and tropical forests is reviewed. Given that evidence for traditional resource-based niche partitioning of canopy gaps is weak, lottery recruitment, whereby colonization of vacant living space is random with respect to species identity, may be key to maintaining diversity. Gap formation events are not highly predictable and species’ propagules tend to be patchily distributed. For these reasons the predictability of gap-phase recruitment is low and lottery principles apply. Recruitment limitation from discontinuities in species’ propagule supplies in space and time may permit lottery recruitment in temperate and tropical forests. However, the relative importance of recruitment limitation in species-rich versus species-poor communities is unclear. Although lottery models with purely random recruitment in vacant sites can be applied, relatively complex models appear to better capture the essential features of forest community dynamics. For example, models with recruitment probabilities weighted by species abundance can produce the non-random trajectories often observed in communities. Models with local competitive displacement by individuals of dominant species can also produce non-random trajectories. Models with spatial structure, localized competition, and dispersal limitations may provide further insight into the effects of biotic interactions and recruitment limitation on forest dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号