首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have refined the structure of the DNA Three-Way Junction complex, TWJ-TC, described in the companion paper by quantitative analysis of two 2D NOESY spectra (mixing times 60 and 200 ms) obtained in D2O solution. NOESY crosspeak intensities extracted from these spectra were used in two kinds of refinement procedure: 1) distance-restrained energy minimization (EM) and molecular dynamics (MD) and 2) full relaxation matrix back calculation refinement. The global geometry of the refined model is very similar to that of a published, preliminary model (Leontis, 1993). Two of the helical arms of the junction are stacked. These are Helix 1, defined by basepairs S1-G1/S3-C12 through S1-C5/S3-G8 and Helix 2, which comprises basepairs S1-C6/S2-G5 through S1-G10/S2-G1. The third helical arm (Helix 3), comprised of basepairs S2-C6/S3-G5 through S2-C10/S3-G1 extends almost perpendicularly from the axis defined by Helices 1 and 2. The bases S1-C5 and S1-C6 of Strand 1 are continuously stacked across the junction region. The conformation of this strand is close to that of B-form DNA along its entire length, including the S1-C5 to S1-C6 dinucleotide step at the junction. The two unpaired bases S3-T6 and S3-C7 lie outside of the junction along the minor groove of Helix 1 and largely exposed to solvent. Analysis of the refined structure reveals that the glycosidic bond of S3-T6 exists in the syn conformation, allowing the methyl group of this residue to contact the hydrophobic surface of the minor groove of Helix 1, at S3-G11.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Branched nucleic acid strands exist as intermediates in certain biological reactions, and bifurcating DNA also presents interesting opportunities in biotechnological applications. We describe here how T4 DNA ligase can be used for efficient construction of DNA molecules having one 5′ end but two distinct 3′ ends that extend from the 2′ and 3′ carbons, respectively, of an internal nucleotide. The nature of the reaction products is investigated, and optimal reaction conditions are reported for the construction of branched oligonucleotides. We discuss the utility of these branched DNA nanostructures for gene detection.  相似文献   

3.
The helix-turn-helix DNA binding motif   总被引:98,自引:0,他引:98  
  相似文献   

4.
Conotoxin gm9a, a putative 27-residue polypeptide encoded by Conus gloriamaris, was recently identified as a homologue of the "spasmodic peptide", tx9a, isolated from the venom of the mollusk-hunting cone shell Conus textile (Lirazan, M. B., Hooper, D., Corpuz, G. P., Ramilo, C. A., Bandyopadhyay, P., Cruz, L. J., and Olivera, B. M. (2000) Biochemistry 39, 1583-1588). The C. gloriamaris spasmodic peptide has been synthesized, and the refolded polypeptide was shown to be biologically active using a mouse bioassay. The chemically synthesized gm9a elicited the same symptomatology described previously for natively folded tx9a, and gm9a and tx9a were of similar potency, implying that neither the two gamma-carboxyglutamate (Gla) residues found in tx9a (Ser(8) and Ala(13) in gm9a) nor Gly(1) (Ser(1) in gm9a) are crucial for biological activity. We have determined the three-dimensional structure of gm9a in aqueous solution and demonstrated that the molecule adopts the well known inhibitory cystine knot motif constrained by three disulfide bonds involving Cys(2)-Cys(16), Cys(6)-Cys(18) and Cys(12)-Cys(23). Based on the gm9a structure, the sites of Gla substitution in tx9a are in loops located on one surface of the molecule, which is unlikely to be involved directly in receptor binding. Because this is the first structure reported for a member of the newly defined P-superfamily conotoxins, a comparison has been made with structurally related conotoxins. This shows that the structural scaffold that characterizes the P-conotoxins has the greatest potential for exhibiting structural diversity among the robust inhibitory cystine knot-containing conotoxins, a finding that has implications for functional epitope mimicry and protein engineering.  相似文献   

5.
Construction of three-dimensional stick figures from branched DNA   总被引:2,自引:0,他引:2  
Stable DNA branched junction molecules can be used as the building blocks for stick-figures in which the edges are double-helical DNA and the vertices correspond to the branch points of the junctions. Sticky-ended cohesion is used to direct the association of individual branched complexes. The sequences of these molecules are assigned by a sequence-symmetry minimization procedure. Successful ligation experiments include the oligomerization of individual three-arm and four-arm junctions, the assembly of a quadrilateral from four junctions with different sticky ends, and the recent construction of a molecule with the connectivity of a cube. Possible applications include the assembly of molecular electronic devices, the formation of macromolecular-scale zeolites to host biological complexes for diffraction analysis, and the development of new catalysts.  相似文献   

6.
The cyclotides are a large family of plant proteins that have a cyclic backbone and a knotted arrangement of three conserved disulfide bonds. Despite the apparent complexity of their cystine knot motif it is possible to efficiently fold these proteins, as exemplified by oxidative folding studies on the prototypic cyclotide, kalata B1. This mini-review reports on the current understanding of the folding process in cyclotides. The synthesis and folding of these molecules paves the way for their application as stable molecular templates.  相似文献   

7.
The differential binding of a number of water-soluble cationic porphyrins to a branched DNA molecule is reported. Tetrakis(4-N-methylpyridiniumyl)porphine (H2TMpyP-4) interacts near the branch point with an immobile DNA junction formed from four 16-mer strands. Its Cu(II) and Ni(II) derivatives show stronger preferential binding in the neighborhood of the branch point. Axially liganded derivatives, Zn, Co, and Mn, also interact near this branch point, but in a different way. We use the reagents methidiumpropyl-EDTA.Fe(II) [MPE.Fe(II)] and bis(o-phenanthroline)copper(I) [(OP)2Cu(I)] to cleave complexes of DNA duplex controls and the junction with these porphyrins. The resulting cleavage patterns are consistent with previous evidence that the branch point provides a strong site for intercalative binding agents, which is not available in unbranched duplexes of identical sequence. The preferential scission by (OP)2Cu(I) in the presence of Ni and Cu porphyrins near the branch point exceeds that seen for any agents we have studied. This hyperreactivity is not seen in the case of porphyrins with axial ligands, ZnTMpyP-4, CoTMpyP-4, and MnTMpyP-4, although these also interact near the branch point. The Zn derivative tends to protect sites close to the branch point from cutting, while the Co and Mn porphyrins moderately enhance cleavage of sites in this region.  相似文献   

8.
Various branched DNA structures were created from synthetic, partly complementary oligonucleotides combined under annealing conditions. Appropriate mixtures of oligonucleotides generated three specific branched duplex DNA molecules: (i) a Holliday junction analog having a fixed (immobile) crossover bounded by four duplex DNA branches, (ii) a similar Holliday junction analog which is capable of limited branch migration and, (iii) a Y-junction, with three duplex branches and fixed branch point. Each of these novel structures was specifically cleaved by bacteriophage T7 gene 3 product, endonuclease I. The cleavage reaction "resolved" the two Holliday structure analogs into pairs of duplex DNA products half the size of the original molecules. The point of cleavage in the fixed-junction molecules was predominantly one nucleotide removed to the 5' side of the expected crossover position. Multiple cleavage positions were mapped on the Holliday junction with the mobile, or variable, branch point, to sites consistent with the unrestricted movement of the phosphodiester crossover within the region of limited dyad symmetry which characterizes this molecule. Based on the cleavage pattern observed with this latter substrate, the enzyme displayed a modest degree of sequence specificity, preferring a pyrimidine on the 3' side of the cleavage site. Branched molecules that were partial duplexes (lower order complexes which possessed single-stranded as well as duplex DNA branches) were also substrates for the enzyme. In these molecules, the cleaved phosphodiester bonds were in duplex regions only and predominantly one nucleotide to the 5' side of the branch point. The phosphodiester positions 5' of the branch point in single-stranded arms were not cleaved. Under identical reaction conditions, individually treated oligonucleotides were completely refractory. Thus, cleavage by T7 endonuclease I displays great structural specificity with an efficiency that can vary slightly according to the DNA sequence.  相似文献   

9.
Homologous recombination is a fundamental cellular process that shapes and reshapes the genomes of all organisms and promotes repair of damaged DNA. A key step in this process is the resolution of Holliday junctions formed by homologous DNA pairing and strand exchange. In Escherichia coli , a Holliday junction is processed into recombinant products by the concerted activities of the RuvA and RuvB proteins, which together drive branch migration, and RuvC endonuclease, which resolves the structure. In the absence of RuvABC, recombination can be promoted by increasing the expression of the RusA endonuclease, a Holliday junction resolvase encoded by a cryptic prophage gene. Here, we describe the DNA binding properties of RusA. We found that RusA was highly selective for branched molecules and formed complexes with these structures even in the presence of a large excess of linear duplex DNA. However, it does bind weakly to linear duplex DNA. Under conditions where there was no detectable binding to duplex DNA, RusA formed a highly structured complex with a synthetic Holliday junction that was remarkably stable and insensitive to divalent metal ions. The duplex arms were found to adopt a specific alignment within this complex that approximated to a tetrahedral conformation of the junction.  相似文献   

10.
M Lu  Q Guo  N C Seeman  N R Kallenbach 《Biochemistry》1990,29(13):3407-3412
The thiacarbocyanine dye Stains-All (4,5:4',5'-dibenzo-3,3'-diethyl-9-methylthiacarbocyanine bromide) is one of a large number of cyanine dyes introduced as photosensitizers in the photographic industry. Stains-All is used in histology as a stain for nucleic acids, proteins, polysaccharides, and lipids. We report here that the dye colors branched DNA molecules differently from linear duplexes and use footprinting experiments with methidiumpropyl-EDTA-Fe(II) [MPE.Fe(II)] and bis(o-phenanthroline)copper(I) [(O-P)2Cu(I)] to show that Stains-All interacts preferentially at the branch point of a four-arm DNA structure. A titration experiment allows us to estimate that the interaction of the dye with the branch has a dissociation constant below 45 nM, tighter than that of ethidium or methidium by over 2 orders of magnitude. Probing the interaction with the purine-specific reagent diethyl pyrocarbonate (DEPC) implies that the dye induces an asymmetric distortion near the branch in the major grooves of double helix in the junction.  相似文献   

11.
12.
Characterization of a bimobile DNA junction   总被引:1,自引:0,他引:1  
We present here a chemical and enzymatic footprinting analysis of a branched DNA molecule formed from four complementary 50-mer strands. These strands are designed to form a stable junction, in which two steps of branch point migration freedom are possible. Exposure of the junction to Fe(II).EDTA shows protection of 3 or 4 residues in each strand at the branch, while two resolvase enzymes (endonuclease VII from phage T4 and endonuclease I from phage T7), cleave all four strand near the branch. Chemical footprinting of this junction using the reagents MPE.Fe(II) and (OP)2Cu(I) shows that the branch site is hyper-reactive to cutting induced by these probes as it is in an immobile four-arm junction. The effects involve more residues than in the immobile case. In the absence of divalent cations, the structure of the junction alters, sites of enhanced cleavage by MPE.Fe(II) and (OP)2Cu(I) disappear, and purines at the branch become reactive to diethyl pyrocarbonate. Our interpretation of these results is based on the properties of immobile junction analogs and their response to these probes. In the presence of Mg2+, the three migrational isomers coexist, each probably in the form of a 2-fold symmetric structure with two helical arms stacked.  相似文献   

13.
Branched DNA structures interact with drugs differently from unbranched control duplexes of similar sequence. A specific interaction between the reagent (methidiumpropyl-EDTA).Fe(II) [MPE.Fe(II)] and a branched DNA molecule formed from 16-mer oligonucleotide strands has been reported [Guo, Q., Seeman, N. C., & Kallenbach, N. R. (1989) Biochemistry 28, 2355-2359]. The structure of the branched molecule is thought to be made up of two double-helical stacking domains with an overall twofold symmetry across the branch site. The MPE-Fe(II) interaction occurs predominantly at or adjacent to the branch site and is eliminated by a second intercalator, propidium iodide. Further studies on the nature and properties of this site are presented here. Comparison of the patterns of scission of linear duplex and branched tetramer by EDTA.Fe(II), MPE.Fe(II), and Cu(I)-(o-phenanthroline)2 [(OP)2Cu(I)] provides a higher resolution picture of the site of enhanced binding. In particular, the sensitive footprinting afforded by (OP)2Cu(I) allows us to localize the major site of preferential interaction with propidium precisely to the branch point itself, with a roughly twofold symmetric pattern of cuts resulting. In detail, the differential pattern with respect to each duplex control is distinct for each arm of the junction. Excess propidium results in apparent reversal of the crossover isomer of the junction, indicating a possible additional avenue for the action of drugs in biological systems--effects on the products of recombination.  相似文献   

14.
A Holliday junction (HJ) consists of four DNA double helices, with a branch point discontinuity at the intersection of the component strands. At low ionic strength, the HJ adopts an open conformation, with four widely spaced arms, primarily due to strong electrostatic repulsion between the phosphate groups on the backbones. At high ionic strength, screening of this repulsion induces a switch to a more compact (closed) junction conformation. Fluorescent labelling with dyes placed on the HJ arms allows this conformational switch to be detected optically using fluorescence resonance energy transfer (FRET), producing a sensitive fluorescent output of the switch state. This paper presents a systematic and quantitative survey of the switch characteristics of such a labelled HJ. A short HJ (arm length 8 bp) is shown to be prone to dissociation at low switching ion concentration, whereas an HJ of arm length 12 bp is shown to be stable over all switching ion concentrations studied. The switching characteristics of this HJ have been systematically and quantitatively studied for a variety of switching ions, by measuring the required ion concentration, the sharpness of the switching transition and the fluorescent output intensity of the open and closed states. This stable HJ is shown to have favourable switch characteristics for a number of inorganic switching ions, making it a promising candidate for use in nanoscale biomolecular switch devices.  相似文献   

15.
Separation of branched from linear DNA by two-dimensional gel electrophoresis   总被引:13,自引:0,他引:13  
A general method for separating branched DNA molecules, such as replication forks and recombination intermediates, from linear forms has been developed. Using as a model a stable X-shaped molecule constructed in vitro, it was found that this branched form migrated more slowly during agarose gel electrophoresis than did a linear form of the same mass. Higher agarose concentrations and higher electrophoretic voltages enhanced the extent of retardation. These properties provided the basis for an electrophoretic method of separating branched from linear molecules by variation of agarose concentration and voltage over two dimensions. In the first dimension, concentration and voltage were low; in the second, both parameters were increased, thereby forcing X-shaped molecules to migrate to positions distinct from a diagonal arc of linear molecules. In addition, two-dimensional electrophoresis was capable of separating X-shaped forms of different mass from each other, as well as from linear molecules.  相似文献   

16.
The stereochemistry of a four-way DNA junction: a theoretical study.   总被引:11,自引:7,他引:11       下载免费PDF全文
The stereochemical conformation of the four-way helical junction in DNA (the Holliday junction; the postulated central intermediate of genetic recombination) has been analysed, using molecular mechanical computer modelling. A version of the AMBER program package was employed, that had been modified to include the influence of counterions and a global optimisation procedure. Starting from an extended planar structure, the conformation was varied in order to minimise the energy, and we discuss three structures obtained by this procedure. One structure is closely related to a square-planar cross, in which there is no stacking interaction between the four double helical stems. This structure is probably closely similar to that observed experimentally in the absence of cations. The remaining two structures are based on related, yet distinct, conformations, in which there is pairwise coaxial stacking of neighbouring stems. In these structures, the four DNA stems adopt the form of two quasi-continuous helices, in which base stacking is very similar to that found in standard B-DNA geometry. The two stacked helices so formed are not aligned parallel to each other, but subtend an angle of approximately 60 degrees. The strands that exchange between one stacked helix and the other are disposed about the smaller angle of the cross (i.e. 60 degrees rather than 120 degrees), generating an approximately antiparallel alignment of DNA sequences. This structure is precisely the stacked X-structure proposed on the basis of experimental data. The calculations indicate distortions from standard B-DNA conformation that are required to adopt the stacked X-structure; a widening of the minor groove at the junction, and reorientation of the central phosphate groups of the exchanging strands. An important feature of the stacked X-structure is that it presents two structurally distinct sides. These may be recognised differently by enzymes, providing a rationalisation for the points of cleavage by Holliday resolvases.  相似文献   

17.
Asymmetric structure of a three-arm DNA junction   总被引:6,自引:0,他引:6  
We present here experimental evidence that three-arm branched DNA molecules form an asymmetric structure in the presence of Mg2+. Electrophoretic mobility and chemical and enzymatic footprinting experiments on a three-arm branched DNA molecule formed from three 16-mer strands are described. The electrophoretic mobilities of three species of a three-arm junction in which pairs of arms are extended are found to differ in the presence of Mg2+: one combination of elongated arms migrates significantly faster than the other two. This effect is eliminated in the absence of Mg2+, leading us to suggest that the three-arm DNA junction forms an asymmetric structure due to preferential stacking of two of the arms at the junction in the presence of Mg2+. The pattern of self-protection of each 16-mer strand of the core complex exposed to Fe(II).EDTA and DNase I scission is unique, consistent with formation of an asymmetric structure in the presence of Mg2+. We conclude that three-arm junctions resemble four-arm junctions in showing preferential stacking effects at the branch site. Comparison of the scission patterns of linear duplexes and the branched trimer by the reactive probes methidiumpropyl-EDTA.Fe(II) [MPE.Fe(II)] and Cu(I)-[o-phenanthroline]2 [(OP)2CuI] further indicates that the branch point represents a site of enhanced binding for drugs, as it does in the four-arm case. Reaction with diethyl pyrocarbonate (DEPC), a purine-specific probe sensitive to conformation, is enhanced at the branch site, consistent with loosening of base pairing or unpairing at this point.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Previous studies have shown that thymidine deprivation causes the formation of multiply branched molecules among bacteriophage lambda DNA replicative intermediates. In the present report, we present supporting evidence indicating that the induction of the SOS response is involved in this process. Moreover, close inspection of the DNA replicatives intermediates present in a recA deficient strain, shows an accumulation of gapped replicative intermediates. From these observations we postulate a model by which multiply branched DNA molecules may be intermediates or derived intermediates of a post-replicational repair pathway.  相似文献   

19.
Manipulation of individual DNA molecules by optical tweezers has made it possible to tie these molecules into knots. After stretching the DNA molecules the knots become highly localized. In their recent study, Quake and co-authors investigated diffusion of such knots along stretched DNA molecules. We used these data to test the accuracy of a Brownian dynamics simulation of DNA bending motion. We simulated stretched DNA molecules with knots 3(1), 4(1), and 7(1), and determined their diffusion coefficients. Comparison of the simulated and experimental results shows that Brownian dynamics simulation is capable of predicting the rates of large-scale DNA rearrangements within a factor of 2.  相似文献   

20.
The interaction of a stable branched DNA molecule with an intercalative drug is probed by hydroxyl radical scission. Methidiumpropyl-EDTA.Fe(II) [MPE.Fe(II)], consisting of an intercalating ring system tethered to EDTA.Fe(II), produces the hydroxyl radicals by means of a Fenton reaction. The cleavage patterns of each labeled strand in a branched tetramer of four 16-mers are compared with those of the same strands in unbranched duplex controls. Strong differences between the profiles corresponding to scission of branched and duplex DNA molecules are seen in each of the strands at low MPE/DNA ratios. A specific site in the branched structure interacts preferentially with the drug, while other regions of the molecule are protected from cleavage. At 4 degrees C, cutting at strand positions demarcating the site of enhanced affinity is observed to be 60-100% more efficient than at the corresponding sequence positions in the control duplex DNA molecules; the degree of protection is comparable. Cleavage in the vicinity of the preferred site occurs at residues flanking the branch point. The reactive Fe(II) group appears to be centered within two residues of the branch point, and the site of preferential intercalation may be between the two base pairs abutting the branch point in one of the two helical domains. The pattern of preferential cutting at this site is eliminated in the presence of excess propidium diiodide, another intercalative drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号