首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The issue of freshwater species being threatened by invasion has become central in conservation biology because inland waters exhibit the highest species richness per unit area, but apparently have the highest extinctions rates on the planet. 2. In this article, we evaluated the effects of an exotic, invasive aquatic grass (Urochloa subquadripara– tropical signalgrass) on the diversity and assemblage composition of native macrophytes in four Neotropical water bodies (two reservoirs and two lakes). Species cover was assessed in quadrats, and plant biomass was measured in further quadrats, located in sites where tropical signalgrass dominated (D quadrats) and sites where it was not dominant or entirely absent (ND quadrats). The effects of tropical signalgrass on macrophyte species richness, Shannon diversity and number of macrophyte life forms (a surrogate of functional richness) were assessed through regressions, and composition was assessed with a DCA. The effects of tropical signalgrass biomass on the likelihood of occurrence of specific macrophyte life forms were assessed through logistic regression. 3. Tropical signalgrass had a negative effect on macrophyte richness and Shannon and functional diversity, and also influenced assemblage composition. Emergent, rooted with floating stems and rooted submersed species were negatively affected by tropical signalgrass, while the occurrence of free‐floating species was positively affected. 4. Our results suggest that competition with emergent species and reduction of underwater radiation, which reduces the number of submersed species, counteract facilitation of free‐floating species, contributing to a decrease in plant diversity. In addition, homogenisation of plant assemblages shows that tropical signalgrass reduces the beta diversity in the macrophyte community. 5. Although our results were obtained at fine spatial scales, they are cause for concern because macrophytes are an important part of freshwater diversity.  相似文献   

2.
Abstract. We studied primary succession on mobile tropical coastal sand dunes over an 8‐yr period. Every six months, we monitored changes in species composition and sand movement in permanent quadrats located on the windward slopes, the arms and the crests. Our results indicate that sand movement decreased over time but was significantly higher on the slopes and crests than on the arms. In all cases, there were seasonal fluctuations in sand movement which increased during the period with strong northerly winds and decreased during the rainy season. Sand movement was significantly correlated with species distribution. Plant cover and species richness increased at all three locations. Diversity increased on the slope, decreased on the arms and remained unchanged on the crest. However, the equitability values indicated the dominance of a few species, especially at the end of the study period. Temporal trends and species turnover rates differed among locations. Species turnover occurred first on the arms (1994), then on the crests (1998) and lastly on the slopes (at the end of the study period). In all cases the tall grass, Schizachyrium scoparium var. littoralis, became dominant over the endemic legume, Chamaecrista chamaecristoides var. chamaecristoides. Similar to temperate dunes, primary succession on tropical sand dunes was spatially and temporally heterogeneous.  相似文献   

3.
The ancient landscape of the South - West Australian Floristic Region (SWAFR) is characterized by exceptional floristic diversity, attributed to a complex mosaic of nutrient - impoverished soils. Between - soil type differences in nutrient availability are expected to affect floristic assemblage patterns in the SWAFR. We compared patterns of floristic diversity between open - forest samples from three soil types in the high - rainfall zone of the SWAFR. The importance of environmental and spatial factors for species compositional turnover within soil types were evaluated within canonical correspondence analyses using variation partitioning. Patterns of phylogenetic diversity and dispersion were contrasted between soil types and related to differences in soil nutrient availability. Between - quadrat shared phylogenetic branch length for individual life form categories was correlated with explanatory variables using Mantel tests. Species and phylogenetic diversity increased with a decline in soil nutrients and basal area. Nutrient - poorer soils were differentiated by higher species density and phylogenetic diversity, and larger phylogenetic distances between species. Species turnover was best explained by environmental factors when soil nutrient concentrations and basal area were low. Coastal and inland quadrats from the most fertile soil type were distinguished by significantly differing patterns of phylogenetic diversity. Inland quadrats were characterized by strong relationships between phylogenetic diversity and environment, while phylogenetic patterns remained largely unaccounted for by explanatory variables within coastal quadrats. Phylogenetic diversity was more strongly related with environment within upland landform types for nutrient-poor soils. We highlight the complex relationships between climatic and edaphic factors within the SWAFR, and propose that the occurrence of refugial habitat for plant phylogenetic diversity is dynamically linked with these interactions. Climate change susceptibility was estimated to be especially high for inland locations within the high - rainfall zone. Despite the strong relationship between floristic diversity and soil fertility, holistic conservation approaches are required to conserve the mosaic of soil types regardless of soil nutrient status.  相似文献   

4.
Julia I. Chapman  Ryan W. McEwan 《Oikos》2013,122(12):1679-1686
Understanding the factors that regulate biodiversity over spatial and temporal gradients is an important scientific objective with ramifications for theory and conservation. Species composition is known to vary across spatial gradients, but how this spatial variation is linked to temporal dynamics is less well studied. Our objective was to understand how Shannon (α) diversity, spatial species turnover (Bray–Curtis dissimilarity), and temporal species turnover (Bray–Curtis dissimilarity) varied with regard to three topographic gradients (aspect, slope and elevation) over one growing season. In April, June and August of 2011, the herbaceous layer was sampled in 320 1‐m2 plots within Big Everidge Hollow, an old‐growth forest in southeastern Kentucky. Multiple regression models revealed that Shannon diversity was linearly related to aspect (negative) and slope (positive), but unimodally related to elevation, indicating steep, mid‐elevation, and south‐facing plots were most diverse. Distance decay analysis showed that significant spatial species turnover occurred across all three topographic gradients, but aspect and elevation had a greater influence on compositional dissimilarity than slope. Mean temporal species turnover was significantly greater (p < 0.001) between April and June (0.39 ± 0.02 SE) than between June and August (0.20 ± 0.01). April‐to‐June turnover was related to aspect (linear) and elevation (quadratic; r2= 0.23, p < 0.0001), suggesting greater temporal species turnover occurred on north‐facing and mid‐elevation plots during this period; however, June‐to‐August turnover was weakly related to slope only (positive linear; r2= 0.08, p = 0.006). Environmental heterogeneity generated by topography is one of many factors that may constrain or promote biodiversity through space and across time, and a solid understanding of these spatiotemporal patterns of diversity can benefit both conservation and ecological theory.  相似文献   

5.
Questions: Primary succession, measured by changes in species composition, is slow, usually forcing a chronose‐quence approach. A unique data set is used to explore spatial and temporal changes in vegetation structure after a 1980 volcanic eruption. On the basis of data from a transect of 20 permanent plots with an altitudinal range of 250 m sampled through 2005, two questions are asked: Do changes along the transect recapitulate succession? Do plots converge to similar composition over time? Location: A ridge between 1218 and 1468 m on Mount St. Helens, Washington, USA. Methods: Repeat sampling of plots for species cover along a 1‐km transect. Floristic changes were characterized by techniques including DCA, clustering and similarity. Results: Species richness and cover increased with time at rates that decreased with increasing elevation. The establishment of Lupinus lepidus accelerated the rate of succession and may control its trajectory. Diversity (H) at first increased with richness, then declined as dominance hierarchies developed. Primary succession was characterized by overlapping phases of species assembly (richness), vegetation maturation (diversity peaks, cover expands) and inhibition (diversity declines). Each plot passed through several community classes, but by 2005, only four classes persisted. Succession trajectories (measured by DCA) became shorter with elevation. Similarity between groups of plots defined by their classification in 2005 did not increase with time. Similarity within plot groups converged slightly at the lower elevations. Despite similarities between temporal and spatial trends in composition, trajectories of higher plots do not recapitulate those of lower plots, apparently because Lupinus was not an early colonist. Any vegetation convergence has been limited to plots that are in close proximity.  相似文献   

6.
Question: Does the relative importance of stochastic and deterministic factors change during primary succession? Location: Small depressions (potholes) located on Mount St. Helens, Washington (46°13′51″N, 122°09′10″W, 1290 m). Methods: Pothole vegetation was described in 1993, 1997 and from 2001 to 2008. Explanatory variables included location and elevation (spatial factors), soil factors and Lupinus lepidus cover from prior years (a fertility surrogate). RDA assessed species‐variable relationships. DCA calculated β diversity and within‐year heterogeneity. Flexible sorting classified the vegetation. Species composition, richness, cover, H′ and evenness were also calculated. Results: Vegetation cover increased through 2001, and then fluctuated due to changes in L. lepidus cover. Richness peaked in 2005, after which pioneer species began to decline as persistent evergreen species increased. The six CTs recognized in 2008 were more scattered than were the six different CTs from 2001. DCA demonstrated that woody and rhizomatous species increased as pothole vegetation became less variable. RDA revealed weak spatial relationships in 1993, 1997 and 2001; thereafter, environmental and biological factors became important. The species‐explanatory data relationship increased during this study from 10.2% to 36.0%, leaving 64.0% of the variation unexplained. Conclusions: This is the first temporal study to demonstrate that deterministic control of vegetation development increases during succession. Pothole vegetation has converged somewhat due to deterministic factors, but the initial effects of chance, local disturbances and history remain large and may prevent strong convergence.  相似文献   

7.
Eighteen black spruce (Picea mariana) stands, representing postfire ages of 26 to 120 yr, were surveyed for understorey vegetation and site/microsite characteristics at two spatial scales. This enabled comparison of within- versus among-stand compositional variation.Detrended correspondence analysis (DCA) ordination among the 18 stands revealed a complex age/moisture gradient. DCA ordination among 1 800 quadrats within the stands indicated a similar gradient with much compositional overlap. Quadrats were grouped, using two-way indicator species analysis (TWINSPAN), into 9 classes each representing a phase in understorey vegetation composition. These phases shifted in abundance from young to old stands with a high degree of concordance among replicates in the same age class. Understorey succession is strongly linked to the stages in tree growth, mortality and thinning coupled with the accumulation of site moisture.Abbreviations DCA Detrended Corrospondence Analysis  相似文献   

8.
The vegetation within an ombrotrophic mire expanse in SE Norway is studied in detail. Percentage cover of 45 species in 436 sample plots (16 ×16 cm), dispersed on 26 transects, are recorded. In addition, species abundance in 6976 subplots (4×4 cm) are recorded. 14 variables are recorded for each of the sample plots, while only distance to the water-table is estimated for the subplots. Spatial co-ordinates are supplied for all sample- and subplots. DCA ordination of a data-set consisting of 412 sample plots reveals two ecologically interpretable vegetational gradients: the hummock-hollow gradient (DCA 1), and a gradient associated with the peat-production of the bottom layer (DCA 2). Passive DCA of subplots is used to get an impression of within sample plot heterogeneity, and shows that the fine-scale compositional turnover may be considerable. Partitioning of the variation in species abundance data is done by use of (partial) CCA. The fraction of unexplained variation is rather large for all the tested data-sets, but within the total variation explained, both distance to the water-table and spatial structure explain large parts.  相似文献   

9.
Early post-fire vegetation dynamics following large, severe forest fires are largely unknown for the southern California mountains owing to historic fire suppression. Vegetation in 38 forest stands was surveyed (2004, 2005, and 2007) following the 2003 Cedar Fire in the Cuyamaca Mountains, Peninsular Ranges, San Diego County, California, USA. Each stand was sampled using four 10-m radius plots for the tree stratum, and 20 1-m2 quadrats for shrub and herb strata. Changes in canopy cover by species, origin (native and exotic) and life form were analyzed. 2007 data were subjected to clustering to examine the divergence in species composition of the stands with time. Shrub cover increased from 3 to 31%, and exotic herbaceous cover increased from 3 to 40%. Cover of native annuals had increased from 2004 (17%) to 2005 (33%), but then dropped to 15% in 2007. Forty percent of the stands were dominated by the shrub species Ceanothus palmeri, and associated with higher pre-fire conifer cover and fire severity. More than 50% of the stands were dominated by exotic annuals and associated with lower fire severity and less steep slopes. The remaining stands (<10%) were dominated by chaparral shrubs and occurred on lower elevation, steep west-facing slopes. Species traits predict their dynamics following disturbance, as environmental conditions change. Establishment and increasing abundance of species dependent on dispersal to reach a site, including exotic and native herbaceous species, occurred in years 2–4. Differences among stands in species composition 4 years post-fire were associated with topographic and fire severity gradients.  相似文献   

10.
Geometric models of vegetation (conceptual spaces) are reviewed. Spaces with samples or species as axes are termed flortistic spaces, as opposed to ecological space with environmental gradients as axes. The terms floristic and ecological relationships are defined as relationships in floristic and ecological spaces, respectively. Compositional turnover is pointed out as the essence of ecological gradients, and arguments in favour of measuring ecological distance in units of compositional turnover are given. The most important criteria for evaluation of ecological distance measures are considered to be linear response to separation along ecological gradients and robustness. Theoretical disadvantages of measures of floristic relationships used as ecological distance measures are discussed. A new measure of ecological distance, separation along a DCA ordination axis, is proposed. This measure and four measures of floristic relationships were tested on four simulated coenoclines (high and low beta diversity, high and low noise) using four weighting functions. The new measure was generally superior, particularly with noisy data. The distance measures generally performed best with intermediate weighting of a percentage cover scale. Application of DCA to calculation of ecological distances in multi-gradient systems is briefly discussed. The potential of DCA for rescaling of ecological gradients is emphasized, and some possible applications of rescaling are suggested.  相似文献   

11.
Questions: Have predictable relationships between environmental variables and vegetation developed in primary succession following a volcanic eruption? Has the rate of succession changed? Have vegetation trajectories converged or diverged? Location: The Abraham Plain of Mount St. Helens, Washington, USA (46°12′42″N, 122°08′27″W, elevation 1360 m), was sterilized in 1980 by a blast, scoured by lahars and buried by pumice. Method: We monitored 400 100 m2 contiguous permanent plots annually (1988–2008), and classified each plot from every year into ten community types (CTs). We characterized the terrain by topography and surface features. Redundancy analysis assessed relationships between vegetation and possible explanatory variables, which included sample location. We used detrended correspondence analysis (DCA) to assess successional rates and trends. Results: Relationships between species composition and explanatory variables were only significant after 1996, when position and presence of rills became significant. By 2006, explained variation remained low (13%) but significant. Species accumulated slowly, restricted by stress and isolation. Changes in mean DCA position slowed. Composition shifted from pioneer to persistent species and vegetation became more stable with time. Species accumulated for two decades and then stabilized, while cover has continued to increase. Diversity increased and then declined slightly as dominance developed and pioneer species became less common. Conclusions: We demonstrate weak but increasingly predictable trends in species composition using environmental variables. The rate of succession slowed and trajectories formed a reticulate network of transitions dominated by divergence. Convergence was not evident because vegetation responded distinctively to minor topographic features that allowed alternative stable communities to develop.  相似文献   

12.
Abstract. Vegetation science has relied on untested paradigms relating to the shape of species response curves along environmental gradients. To advance in this field, we used the HOF approach to model response curves for 112 plant species along six environmental gradients and three ecoclines (as represented by DCA ordination axes) in SE Norwegian swamp forests. Response curve properties were summarized in three binary response variables: (1) model unimodal or monotonous (determinate) vs. indeterminate; (2) for determinate models, unimodal vs. monotonous and (3) for unimodal models, skewed vs. symmetric. We used logistic regression to test the influence, singly and jointly, of seven predictor variables on each of three response variables. Predictor variables included gradient type (environmental or ecocline) and length (compositional turnover); species category (vascular plant, moss, Sphagnum or hepatic), species frequency and richness, tolerance (the fraction of the gradient along which the species occurs) and position of species along each gradient. The probability for fitting a determinate model increased as the main occurrence of species approached gradient extremes and with increasing species tolerance and frequency and gradient length. Appearance of unimodal models was favoured by low species tolerance and disfavoured by closeness of species to gradient extremes. Appearance of skewed models was weakly related to predictors but was slightly favoured by species optima near gradient extremes. Contrary to the results of previous studies, species category, gradient type and variation in species richness along gradients did not contribute independently to model prediction. The overall best predictors of response curve shape were position along the gradient (relative to extremes) and tolerance; the latter also expressing gradient length in units of compositional turnover. This helps predicting species responses to gradients from gradient specific species properties. The low proportion of skewed response curves and the large variation of species response curves along all gradients indicate that skewed response curves is a smaller problem for the performance of ordination methods than often claimed. We find no evidence that DCA ordination increases the unimodality, or symmetry, of species response curves more than expected from the higher compositional turnover along ordination axes. Thus ordination axes may be appropriate proxies for ecoclines, applicable for use in species response modelling.  相似文献   

13.
While best practices for evaluating restoration ecology projects are emerging rapidly, budget constraints often limit postrestoration monitoring, which emphasizes the need for practical and efficient monitoring strategies. We examined the postrestoration outcome for an ENGO (Nature Conservancy of Canada) project, to assess retroactively how variation in intensity and frequency of sampling would have affected estimates of plant species composition, diversity, and richness over time. The project restored four habitat types (mesic forest, oak woodland, wet meadow, and sand barren) using sculptured seeding of tallgrass prairie and woody species. Species‐level plant cover was monitored annually for 10 years in 168 2 × 2–m quadrats. We performed randomization tests to examine estimates of species diversity and richness as a function of the number of quadrats sampled, and assessed the necessity of annual sampling for describing changes in species composition and successional trajectories. The randomization tests revealed that sampling 10–17 quadrats, depending on habitat type, was sufficient to obtain estimates of species diversity that were at least 95% of values obtained from the whole dataset. Species richness as a function of number of quadrats sampled did not plateau, which suggests that rather than increasing the number of sampling quadrats, richness could be estimated more efficiently using nonquadrat based sampling techniques. Nonmetric multidimensional scaling analysis revealed that plant species composition largely stabilized by 3–5 years postrestoration depending on habitat type. By that time, native, seeded species dominated the restoration, and the benefits of annual sampling for tracking changes in species composition diminished.  相似文献   

14.
Invasive plant species succeed because they are able to propagate and disperse into unoccupied habitat, outcompete and suppress other plant species or use a combination of these two strategies. Ecosystems are often invaded by multiple species and it is important to determine which species are likely to dominate plant communities through competition and which species will succeed by other means. We assessed frequency and abundance of 65 invasive species over 1700 km of riparian zone in the Burdekin catchment of North Queensland, Australia and established a dominance hierarchy for those species. The cover of every invasive and one native shrub known to have increased in abundance in historical times, was surveyed in quadrats as part of a nested hierarchical design consisting of 8030 quadrats, within 803 transects, within 90 sites. Total species cover and species frequency were derived from the results of this survey. We estimated the pairwise interactions between individual species and used a non‐parametric David Score to rank species and construct a competition hierarchy of invasive species at the quadrat and transect levels. Species frequency and cover were highly correlated (r2 = 0.81). The competition hierarchy of species at the quadrat level was moderately related to species cover, but poorly related to species frequency (r2 = 0.24 and 0.02). The competition rank of many species, including Urochloa mosambicensis and Parthenium hysterophorus, changed markedly with scale when assessed at the quadrat and transect levels. This suggests different processes influenced their competitive success at different scales. This technique enabled us to explore and accept the hypothesis that abundant species are often the most competitive. However, some exceptions were identified in this study and these species may in time become more abundant in the catchment.  相似文献   

15.
Secondary succession is an increasing phenomenon due to global changes in agriculture policies and practices. The empirical findings are biased towards the temperate zone. Abandonment of agriculture fields is less frequent in the subtropical and tropical zones where agriculture areas are, in general, expanding. But there are exceptions; a rapid rate of abandonment of agricultural fields have taken place in the arid trans-Himalayan region, due to today’s globalization of economy. We analysed agriculture fields that were abandoned between 1950 and 2003 in a large u-valley in central Nepal (3400 m a.s.l.). The potential forest vegetation is dominated by Pinus wallichina and shrubs of junipers and cotoneaster species. We tested the intermediate richness hypothesis in relation to vegetation cover, soil development and whether old-field succession is convergent or divergent with species data from 242 1 m2 plots in 5 age-classes. The main species compositional turnover expressed by Detrended Correspondence Analyses (DCA) correlated, as expected, with time after abandonment. Fields that were abandoned a long time ago are closer to forest at the periphery of the agricultural landscape. Moisture of the soil significantly increased with age of abandonment, but total vegetation cover and pH were negatively related to age. Beta diversity expressed in DCA SD-units showed an increasing trend with age of abandonment, supporting the divergence pattern in old-field succession. The reason why the succession is not converging may be due to browsing by domestic animals that prevent a closed canopy of pines and juniper to develop. There was a significant hump-shaped pattern in species richness along the temporal gradient, which agrees with the intermediate species-richness hypothesis. There was a rapid increase in species richness in plots close to the villages that were used for haymaking which increased the seed input significantly.  相似文献   

16.
Abundances of eleven Sphagnum species in 800 sample plots are used to investigate the effect of DCA rescaling on Levins' measure of niche breadth relative to three partitions of the water-table gradient in a boreal Norwegian mire: (1) sample plots classified into 15 categories, each spanning an interval of 2 cm vertical extent, (2) as (1), but sequence of categories rescaled by DCA and sample plots reorganized into 15 categories with uniform beta diversity, and (3), sample plots ordinated by DCA and classified into 15 categories with uniform beta diversity by subdivision of an ordination axis highly correlated with median water-table. Habitat niche breadth is shown to be dependent on four issues (in order of supposedly decreasing importance): (1) scale, (2) noise level of data, (3) homogeneity of individual samples, and (4), weighting function. Six problems relevant to interpretation of measurements of niche breadth are discussed: (1) range of measures, (2) spacing of categories, (3) scale, (4) choice of gradients, (5) number of samples, and (6), comparability of studies. For measures of habitat niche breadth to be biologically meaningful, four conditions have to be satisfied: (1) the gradients studied have important impact on the studied species, (2) sampling is adequate, (3) scaling of gradients is in compositional turnover, and (4), comparability is demonstrated prior to comparison with other studies. Revisions of current methods are proposed. The role of DCA in niche studies is particularly emphasized.  相似文献   

17.
Plant succession theory underpins the development of strategies for the conservation and regeneration of native communities. Current theory has been based largely on space‐for‐time rather than long‐term monitoring data, which have known limitations. There is general consensus that more site‐specific studies are needed to corroborate existing hypotheses. The target vegetation is a brigalow (Acacia harpophylla, Mimosaceae) forest in one of Australia's most endangered ecosystems, which was cleared and burnt in 1963. Forty quadrats were placed systematically within each of six 20 m × 20 m permanent plots. Presence, density and per cent canopy cover data were recorded for each species at 18 times over 46 years. Brigalow dominated the original vegetation, assumed dominance soon after clearing through massive root suckering and remained dominant throughout the study. It achieved maximum density within two years when severe intraspecific competition led to self‐thinning. After approximately 30 years, vacant niches appeared. Woody understorey species were slow to recolonise. Species richness and other diversity indices increased rapidly to a maximum after 2–4 years, declined until the 30th year when they again increased. This was the pattern of the species‐rich herbaceous layer; woody species showed a steady monotonic increase. The ‘hump‐shaped’ relationship between cover (biomass) and species richness was confirmed. This example fits the inhibition model for which few examples have been described. While the long‐term successional pattern is slightly confounded by climatic variability preceding sample surveys, this space‐for‐time study not only supports a bimodal pattern of diversity over time but also indicates that the relative species richness of the herbaceous and woody layers may explain the extreme variability reported in the literature.  相似文献   

18.
Phragmites or Common Reed (Phragmites australis) is a natural component of many wetlands but can be highly invasive. Phragmites is encroaching into important mudflat habitat areas of the Ramsar‐listed Seaford Wetlands (Melbourne, Victoria), which are critical for migratory birds. We assessed the efficacy of slashing as a means of controlling Phragmites by establishing twelve 5 m × 5 m quadrats within mature Phragmites reed beds and slashing half of them. The response of Phragmites to slashing was highly variable and dependent on the elevation (i.e. subsequent flooding) of the slashed quadrats. Phragmites regrowth was minimal in lower‐lying quadrats which were wholly inundated for several months each of the following two years (to a mean depth of ~22 cm). In contrast, in quadrats of higher elevation, which were mostly only partially or shallowly inundated, Phragmites recovered almost completely within 10 months. In quadrats that were not slashed there was no change in Phragmites cover (i.e. it remained ~100%) irrespective of flooding extent. It is suspected that prolonged flooding above the height of the remaining stubble is necessary to prevent recovery. Thus, slashing may be a successful means of controlling Phragmites when low‐lying areas are targeted and these are subsequently flooded to a sufficient depth (e.g. >20 cm) for at least several months.  相似文献   

19.
Question: What is the relative importance of environmental and spatial factors for species compositional and phylogenetic turnover? Location: High‐rainfall zone of the Southwest Australian Floristic Region (SWAFR). Methods: Correlates of species compositional turnover were assessed using quadrat‐based floristic data, and establishing relationships with environmental and spatial factors using canonical correspondence analyses and Mantel tests. Between‐quadrat phylogenetic distance measures were computed and examined for correlations with environmental and spatial attributes. Processes structuring pa2t2terns of beta diversity were also evaluated within four broad floristic assemblages defined a priori. Results: Floristic diversity was strongly related to environmental attributes. A low significance of spatial variables on assemblage patterns suggested no evident effect of dispersal limitations. Species compositional turnover was especially high within the swamp and outcrop assemblage. Phylogenetic turnover was closely coupled to species compositional turnover, implying the occurrence of many locally endemic and phylogenetically relict taxa. Beta diversity patterns within assemblages were also significantly correlated with the local environment, and relevant correlates differed between floristic assemblage types. Conclusion: Phylogenetic diversity in the SWAFR high‐rainfall zone is clustered within edaphic microhabitats in a generally subdued landscape. A clustered rather than dispersed distribution of phylogenetic diversity increases the probability of significant plant diversity loss during periods of climate change. Climate change susceptibility of the region's flora is accordingly estimated to be high. We highlight the conservation significance of swamp and outcrops that are characterized by distinct hydrological properties and may provide refugial habitat for plant diversity during periods of moderate climate change.  相似文献   

20.
Plant censuses are known to be significantly affected by observers’ biases. In this study, we checked whether the magnitude of observer effects (defined as the % of total variance) varied with quadrat size: we expected the census repeatability (% of the total variance that is not due to measurement errors) to be higher for small quadrats than for larger ones. Variations according to quadrat size of the repeatability of species richness, Simpson equitability and reciprocal diversity indices, Ellenberg indicator values, plant cover and plant frequency were assessed using 359 censuses of vascular plants. These were carried out independently by four professional botanists during spring 2002 on the same 18 forest plots, each comprising one 400-m2 quadrat, four 4-m2 and four 2-m2 quadrats. Time expenditure was controlled for. General Linear Models using random effects only were applied to the ecological indices to estimate variance components and magnitude of the following effects (if possible): plot, quadrat, observer, plant species and two-way interactions. High repeatability was obtained for species richness and Ellenberg indicator values. Species richness and Ellenberg indicator values were generally more accurate but also more biased in large quadrats. Simpson reciprocal diversity and equitability indices were poorly repeatable (especially equitability) probably because plant cover estimates varied widely among observers, irrespective of quadrat size. Grouping small quadrats usually increased the repeatability of the variable considered (e.g. species richness, Simpson diversity, plant cover) but the number of plant species found on those pooled 16 m2 was much lower than if large plots were sampled. We therefore recommend to use large, single quadrats for forest vegetation monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号