首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 488 毫秒
1.
Genetic variability of quantitative traits was investigated in aMoroccan population of Drosophila melanogaster, with an isofemale line design. Results were compared with data previously obtained from French populations. Although the environmental and thermal conditions are very different in France and Morocco, only two significant differences were observed: a shorter wing and a lighter abdomen pigmentation in Morocco. It is, therefore, concluded that Moroccan D. melanogaster are quite typical temperate flies, belonging to the Palaearctic region, and very different from the ancestral Afrotropical populations. Almost all traits were genetically variable, as shown by significant intraclass correlations among lines. Genetic correlations were highly significant among three size-related traits, while much lower between size and bristle numbers. Fluctuating asymmetry was greater for abdominal bristles than for sternopleural bristles. Sex dimorphism, analysed as a female/male ratio, was identical in French and Moroccan populations. Examination of the thorax length/thorax width ratio showed that the thorax is more elongated in females. Sexual dimorphism of wing length was significantly more correlated to thorax width than to thorax length. The results illustrate the value of measuring numerous quantitative traits on the same flies for characterizing the genetic architecture of a natural population. In several cases, and especially for genetic correlations, some interesting suggestions could be made, which should be confirmed, or invalidated, by more extensive investigations.  相似文献   

2.
We examined latitudinal variation in adult and larval heat tolerance in Drosophila melanogaster from eastern Australia. Adults were assessed using static and ramping assays. Basal and hardened static heat knockdown time showed significant linear clines; heat tolerance increased towards the tropics, particularly for hardened flies, suggesting that tropical populations have a greater hardening response. A similar pattern was evident for ramping heat knockdown time at 0.06 °C min?1 increase. There was no cline for ramping heat knockdown temperature (CTmax) at 0.1 °C min?1 increase. Acute (static) heat knockdown temperature increased towards temperate latitudes, probably reflecting a greater capacity of temperate flies to withstand sudden temperature increases during summer in temperate Australia. Larval viability showed a quadratic association with latitude under heat stress. Thus, patterns of heat resistance depend on assay methods. Genetic correlations in thermotolerance across life stages and evolutionary potential for critical thermal limits should be the focus of future studies.  相似文献   

3.
Phenotypic plasticity of abdomen pigmentation was investigated in populations of the sibling species Drosophila melanogaster and D. simulans, living in sympatry in two French localities. Ten isofemale lines of each population and species were grown at different constant temperatures spanning their complete thermal range from 12 to 31°C. Genetic variability between isofemale lines was not affected by growth temperature, but was consistently less in D. simulans. For all traits, the dark pigmentation of the abdominal segments decreased according to growth temperature, in agreement with the thermal budget adaptive hypothesis. The shapes of the response curves were different between the abdominal segments, but for a given segment, quite similar in the two species. On average D. simulans was lighter than D. melanogaster, but the difference was mainly expressed at higher temperatures. An interesting result was the difference observed between the two localities: flies from the colder locality (Villeurbanne) were found to be darker than flies from the warmer locality (Bordeaux). Interestingly, this difference was expressed only at low temperatures, 21°C and below, that is, at temperatures encountered in natural conditions. This suggests an adaptive response resulting in a change of the shape of reaction norm and involving genotype-environment interactions. When comparing the genetic structure of geographic populations for quantitative traits, several laboratory environments should be preferred to a single one.  相似文献   

4.
To make laboratory studies of thermal resistance in ectotherms more ecologically relevant, temperature changes that reflect conditions experienced by individuals in nature should be used. Here we describe an assay that is useful for quantifying multiple measures of thermal resistance of individual adult flies. We use this approach to assess upper and lower thermal limits and functional thermal scope for Drosophila melanogaster and also show that the method can be used to (1) detect a previously described latitudinal cline for cold tolerance in D. melanogaster populations collected along the east coast of Australia, (2) demonstrate that acclimation at variable temperatures during development increases tolerance to both low and high thermal stresses and therefore increases thermal scope compared to acclimation at a constant temperature, (3) show that temperate populations adapted to variable thermal environments have wider thermal limits compared to those from the less variable tropics, at least when flies were reared under constant temperature conditions and (4) demonstrate that different measures of cold resistance are often not strongly correlated. Based on our findings, we suggest that the method could be routinely used in evaluating thermal responses potentially linked to ecological processes and evolutionary adaptation.  相似文献   

5.
We analysed reaction norms of pigmentation (thorax and abdomen) according to growth temperature for 20 isofemale lines collected near Delhi (India) and compared them to results obtained for two French populations. The climatic conditions of the two locations were strongly different, with monthly average temperature ranging between 4.2°C and 20.5°C in France and between 14.3°C and 34.3°C in India. For each segment, a decrease of the pigmentation was observed with increasing temperature and the shapes of the reaction norms were more or less parallel. On average Indian flies were lighter than French ones, in agreement with the thermal budget hypothesis. We further investigated the shapes of reaction norms by polynomial adjustment and observed significant differences. In several cases, a maximum divergence was observed at high temperature, implying a change in the shape of the norm. Characteristic values related to the thermal reactivity were also significantly different between populations but no general tendency was found. Genetic variability, estimated by the coefficient of intraclass correlation, was significantly lower in India (0.27 ±0.026) than in France (0.39 ±0.028), and we discuss the significance of this difference.  相似文献   

6.
Rako L  Anderson AR  Sgrò CM  Stocker AJ  Hoffmann AA 《Genetica》2006,128(1-3):373-384
In Drosophila melanogaster, inversion In(3R)Payne increases in frequency towards low latitudes and has been putatively associated with variation in size and thermal resistance, traits that also vary clinally. To assess the association between size and inversion, we obtained isofemale lines of inverted and standard karyotype of In(3R)Payne from the ends of the Australian D. melanogaster east coast cline. In the northern population, there was a significant association between In(3R)Payne and body size, with standard lines from this population being relatively larger than inverted lines. In contrast, the inversion had no influence on development time or cold resistance. We strengthened our findings further in a separate study with flies from populations from the middle of the cline as well as from the cline ends. These flies were scored for wing size and the presence of In(3R)Payne using a molecular marker. In females, the inversion accounted for around 30% of the size difference between cline ends, while in males the equivalent figure was 60%. Adaptive shifts in size but not in the other traits are therefore likely to have involved genes closely associated with In(3R)Payne. Because the size difference between karyotypes was similar in different populations, there was no evidence for coadaptation within populations.  相似文献   

7.
Summary The study of the first laboratory generation of isofemale lines ofDrosophila melanogaster, founded by wild flies collected in populations of various geographical origins, has shown that virgin females differ in their capacity to control egg deposition. This capacity to delay the ovulation process when no sexual partner is available is genetically determined. The present study shows that the frequency distribution of the various phenotypes varies progressively along a latitudinal cline from Afrotropical to European regions, or from neotropical to nearctic areas, while a few oriental populations appear off the cline. This variation in initial retention capacity, added to a similar variation in number of ovarioles conditioning a potential increase in fecundity for mated flies, induces variation in reactivity to insemination which may be an adaptation to a variable environment. Moreover, similar study of F1 virgin females from isofemale lines founded by wild flies collected in Spring, Summer and Autumn in two French populations over ten successive years revealed that seasonal genetic variations occur in this capacity to postpone egg-laying in case of non-insemination. The frequency of the different phenotypes follows cyclical seasonal variations. Long retention phenotypes are more frequent in Spring and Autumn samples, whereas short retention phenotypes, closer to the ancestral African type, are more common in Summer generations. This balancing selection temporarily modifies the genetic equilibrium of the population, enhancing its competitive ability. Temperature appears to be the primordial selective factor both in geographical and in seasonal variations.  相似文献   

8.
We investigated the phenotypic plasticity of sternopleural bristle (SB) number as a function of growth temperature in isofemale lines from temperate (France) and tropical (Congo) populations of Drosophila melanogaster. We found concave reaction norms with a maximum in the middle of the thermal range, except in four African lines which exhibited a regularly decreasing response curve. Genetic variability (intraclass correlation) and evolvability (genetic CV, coefficient of variation) were independent properties and did not change with temperature. Residual, within-line variability was, however, strongly influenced by growth temperature, showing a U-shaped response curve and a minimum CV of 9% at 21.5 degrees C. As expected from a previously known latitudinal cline, maximum values (MV) were higher in temperate than in tropical flies. The temperature of maximum value (TMV) was observed at a higher temperature in the tropical population, in agreement with similar adaptive trends already observed for other quantitative traits. Significant negative correlations within each population were observed between a plasticity curvature parameter and MV or TMV. No difference in curvature was, however, observed between populations, in spite of their very different MVs.  相似文献   

9.
Quantitative genetic analysis of the ovariole number of the Australian Hibiscus flower-breeding Drosophila hibisci Bock was conducted on populations from two localities along a latitudinal cline in ovariole number previously observed in the species (Starmer et al., in press). Parental strains, F1, F1r (reciprocal), F2, backcross, and backcross reciprocal generations were used in a line-cross (generation means) analysis. This analysis revealed both additive and epistatic effects as important determinants of variation in ovariole number when larvae were reared at 25°C. Maternal effects and maternal-by-progeny genetic interactions were not significant. These results are comparable to previous studies that document epistatic components as genetic determinants of ovariole number in D. melanogaster. Parallel studies on ovariole number in D. hibisci parental and hybrid generations (F1 and F1r) reared as larvae at three temperatures (18°, 21.5°, and 25°C) showed environmental effects and genotype-by-environment interactions as significant influences on the phenotype. Maternal effects were present when temperature of larval development was considered and significant, nonlinear environmental effects were detected. Field collections of D. hibisci females showed that field conditions result in significant departure of ovariole number from comparable laboratory reared females. The significant epistatic genetic effects, genotype-by-environment interactions, and maternal effects indicate that the genetic architecture of traits, such as ovariole number, may be more complex than often acknowledged and thus may be compatible with Wright's view of a netlike relationship between the genome and complex characters (Wright 1968).  相似文献   

10.
Isofemale lines of two populations of Drosophila melanogaster, originating from France and Tanzania, were examined over a range of temperatures. Morphological traits showed distinct patterns in phenotypic plasticity; flies of the two populations differed in shape. Genotype-by-Environment (G*E) interactions were frequently found in the Tanzania population, but were hardly present in the France population. If G*E interaction was present over temperature, estimates of additive genetic variance and additive genetic covariance were made to compare theoretical models with our data. The conclusion is that in France Drosophila melanogaster has been selected over a wider range of temperatures, resulting in parallel reaction norms of more optimal slope. In contrast, selection must have taken place over a narrower temperature range in Tanzanian flies, and will have exerted no direct influence on the slope of the reaction norm.  相似文献   

11.
Field populations of arthropods are often polymorphic for Wolbachia but the factors maintaining intermediate Wolbachia frequencies are generally not understood. In Drosophila melanogaster, Wolbachia frequencies are highly variable across the globe. We document the persistence of a Wolbachia infection frequency cline in D. melanogaster populations from eastern Australia across at least 20 years, with frequencies generally high in the tropics but lower in cool temperate regions. The results are interpreted using a model of frequency dynamics incorporating cytoplasmic incompatibility (CI), imperfect maternal transmission and Wolbachia effects on fitness. Clinal variation is less pronounced in eastern North America which may reflect annual recolonization at higher latitudes. Limited samples from Africa from latitudes matching our tropical and subtropical samples from Australia and North America show comparably high infection frequencies, but some equatorial samples show lower frequencies. Adult dormancy across cold periods may contribute to the Australian Wolbachia cline. Infected flies exposed to cold conditions for an extended period had reduced fecundity and viability, an effect not evident in unexposed controls. These fitness costs may contribute to the relatively low Wolbachia frequencies in Australian temperate areas; whereas different processes, including CI induced by young males, may contribute to higher frequencies in tropical locations.  相似文献   

12.
In Drosophila melanogaster, exposure of females to low temperature and shortened photoperiod can induce the expression of reproductive quiescence or diapause. Diapause expression is highly variable within and among natural populations and has significant effects on life-history profiles, including patterns of longevity, fecundity, and stress resistance. We hypothesized that if diapause expression is associated with overwintering mechanisms and adaptation to temperate environments, the frequency of diapause incidence would exhibit a latitudinal cline among natural populations. Because stress resistance and reproductive traits are also clinal in this species, we also examined how patterns of fecundity and longevity varied with geography and how stress resistance and associated traits differed constitutively between diapause and nondiapause lines. Diapause incidence was shown to vary predictably with latitude, ranging from 35% to 90% among natural populations in the eastern United States Survivorship under starvation stress differed between diapause and nondiapause lines; diapause phenotypes were also distinct for total body triglyceride content and the developmental distribution of oocytes in the ovary following stress exposure. Patterns of longevity, fecundity, and ovariole number also varied with geography. The data suggest that, for North American populations, diapause expression is functionally associated with overwintering mechanisms and may be an integral life-history component in natural populations.  相似文献   

13.
Drosophila melanogaster from Australia, Europe and North America enter an adult ovarian dormancy in response to short days and low temperatures. The independent effects of temperature and day length in the determination of dormancy have been examined only in one long-established laboratory line (Canton-S). In all other studies of natural or laboratory populations, dormancy has been assessed at either a single short day or a single moderately low temperature. Herein, we determine the relative roles of temperature, photoperiod, and their interaction in the control of ovarian dormancy in D. melanogaster from two natural populations representing latitudinal extremes in eastern North America (Florida at 27°N and Maine at 44°N). In both natural populations, temperature is the main determinant of dormancy, alone explaining 67% of the total variation among replicate isofemale lines, whereas photoperiod has no significant effect. We conclude that ovarian dormancy in D. melanogaster is a temperature-initiated syndrome of winter-tolerant traits that represents an adaptive phenotypic plasticity in temperate seasonal environments.  相似文献   

14.
Understanding how natural environments shape phenotypic variation is a major aim in evolutionary biology. Here, we have examined clinal, likely genetically based variation in morphology among 19 populations of the fruit fly (Drosophila melanogaster) from Africa and Europe, spanning a range from sea level to 3000 m altitude and including locations approximating the southern and northern range limit. We were interested in testing whether latitude and altitude have similar phenotypic effects, as has often been postulated. Both latitude and altitude were positively correlated with wing area, ovariole number, and cell number. In contrast, latitude and altitude had opposite effects on the ratio between ovariole number and body size, which was negatively correlated with egg production rate per ovariole. We also used transgenic manipulation to examine how increased cell number affects morphology and found that larger transgenic flies, due to a higher number of cells, had more ovarioles, larger wings, and, unlike flies from natural populations, increased wing loading. Clinal patterns in morphology are thus not a simple function of changes in body size; instead, each trait might be subject to different selection pressures. Together, our results provide compelling evidence for profound similarities as well as differences between phenotypic effects of latitude and altitude.  相似文献   

15.
Chromosomal inversions often contribute to local adaptation across latitudinal clines, but the underlying selective mechanisms remain poorly understood. We and others have previously shown that a clinal inversion polymorphism in Drosophila melanogaster, In(3R)Payne, underpins body size clines along the North American and Australian east coasts. Here, we ask whether this polymorphism also contributes to clinal variation in other fitness‐related traits, namely survival traits (lifespan, survival upon starvation and survival upon cold shock). We generated homokaryon lines, either carrying the inverted or standard chromosomal arrangement, isolated from populations approximating the endpoints of the North American cline (Florida, Maine) and phenotyped the flies at two growth temperatures (18 °C, 25 °C). Across both temperatures, high‐latitude flies from Maine lived longer and were more stress resistant than low‐latitude flies from Florida, as previously observed. Interestingly, we find that this latitudinal pattern is partly explained by the clinal distribution of the In(3R)P polymorphism, which is at ~ 50% frequency in Florida but absent in Maine: inverted karyotypes tended to be shorter‐lived and less stress resistant than uninverted karyotypes. We also detected an interaction between karyotype and temperature on survival traits. As In(3R)P influences body size and multiple survival traits, it can be viewed as a ‘supergene’, a cluster of tightly linked loci affecting multiple complex phenotypes. We conjecture that the inversion cline is maintained by fitness trade‐offs and balancing selection across geography; elucidating the mechanisms whereby this inversion affects alternative, locally adapted phenotypes across the cline is an important task for future work.  相似文献   

16.
In dipterans, the wing-beat frequency, and, hence, the lift generated, increases linearly with ambient temperature. If flight performance is an important target of natural selection, higher wing:thorax size ratio and wing-aspect ratio should be favored at low temperatures because they increase the lift for a given body weight. We investigated this hypothesis by examining wing: thorax size ratio and wing-aspect ratio in Drosophila melanogaster collected from wild populations along a latitudinal gradient and in their descendants reared under standard laboratory conditions. In a subset of lines, we also studied the phenotypic plasticity of these traits in response to temperature. To examine whether the latitudinal trends in wing:thorax size ratio and wing-aspect ratio could have resulted from a correlated response to latitudinal selection on wing area, we investigated the correlated responses of these characters in lines artificially selected for wing area. In both the geographic and the artificially selected lines, wing:thorax size ratio and wing-aspect ratio decreased in response to increasing temperature during development. Phenotypic plasticity for either trait did not vary among latitudinal lines or selective regimes. Wing:thorax size ratio and wing-aspect ratio increased significantly with latitude in field-collected flies. The cline in wing:thorax size ratio had a genetic component, but the cline in wing-aspect ratio did not. Artificial selection for increased wing area led to a statistically insignificant correlated increase in wing:thorax size ratio and a decrease in wing-aspect ratio. Our observations are consistent with the hypotheses that high wing-thorax size ratio and wing aspect ratio are per se selectively advantageous at low temperatures.  相似文献   

17.
The effects of rearing and acclimation on the response of adultDrosophila to temperature were investigated in a gradient.D. melanogaster flies preferred a higher mean temperature and were distributed over a wider range of temperatures thanD. simulans flies. Acclimating adults at different temperatures for a week did not influence the response of either species. Adults reared at 28°C as immatures had a lower mean preference than those reared at cooler temperatures, suggesting that flies compensated for the effects of rearing conditions. Adults from tropical and temperate populations ofD. melanogaster andD. simulans did not differ in the mean temperature they preferred in a gradient, suggesting little genetic divergence for this trait within species. The species differences and environmental responses may be related to changes in optimal physiological conditions for the flies.  相似文献   

18.
Reaction norms to growth temperature of two size-related traits, wing and thorax length, were compared in tropical (West Indies) and temperate (France) populations of the two sibling species, Drosophila melanogaster and D. simulans. A major body size difference was found in D. melanogaster, with much smaller Caribbean flies, while D. simulans exhibited little size variation between geographical populations. The concave norms of reaction were adjusted to second- or third-degree polynomials, and characteristic points calculated i.e. maximum value (MV) and temperature of maximum value (TMV). TMVs were confirmed to be higher for thorax than for wing length, higher in D. melanogaster than in D. simulans, and higher in females than in males. For both traits Caribbean populations exhibited higher TMVs in the two species, strongly suggesting an adaptive shift of the reaction norms toward higher temperature in warm-adapted populations. The wing/thorax ratio was also analysed, and found to be significantly lower in tropical populations of both species. This ratio, which is related to wing loading and flight capacity, might evolve independently of body weight itself.  相似文献   

19.
The number of ovarioles of the Drosophila melanogaster ovary is a trait thought to be associated with female fecundity, and therefore is expected to be under strong natural selection. This hypothesis may be tested by examining patterns of genetic and environmental variation for ovariole number in natural populations, and by determining the association between ovariole number and fitness in isogenic lines derived from a natural population. We measured ovariole number, and competitive fitness and its components, for 48 homozygous chromosome 3 substitution lines in a standard inbred background; and body size in a sample of 15 chromosome 3 substitution lines. We found significant segregating genetic variation for ovariole number, with a broad-sense heritability (H2) of 0.403 and correspondingly high coefficients of genetic variation (CVC = 20.8) and residual variation (CVR = 25.3). Estimates of quantitative genetic parameters for body size (H2 = 0.191, CVG = 2.15, and CVR = 3.87) are similar to those previously reported for this trait. Although the isogenic chromosome 3 substitution lines varied significantly for components of fitness, there was no significant linear or quadratic association of ovariole number and body size with fitness. There was, however, highly significant sex × genotype interaction for fitness among these lines. This special case of genotype × environment interaction for fitness may contribute to the maintenance of genetic variation for fitness in natural populations.  相似文献   

20.
Reproductive traits of Drosophila hibisci collected at 18 sites in the Northern Territory (NT) of Australia in May, 1998, as well as at two sites in north Queensland, in June, 1998, were compared to those from earlier work on a cline in ovariole number in D. hibisci along the east coast of Australia. The flies in the NT were considerably smaller, but had more ovarioles than comparably-sized flies on the east coast. Although the flies on the east coast showed an increasing number of ovarioles in populations at increasing distances from the equator, these new populations, both on the east coast and in the NT, reversed this trend, producing a generally U-shaped pattern of ovariole number with latitude among all populations. The northernmost and southernmost populations allocate more to ovariole numbers than populations in intermediate latitudes. Ovariole number is closely related to body size of females in all populations, but the regression coefficient is small at intermediate latitudes and increases at the northern and southern ends of the distribution. Egg volumes primarily varied with body size of the female (positive) and number of ovarioles per female (negatively), producing a generally inverted U-shaped pattern of egg volumes with latitude. Reproductive allocation patterns, but not thorax size or ovariole number, varied significantly in two samples taken 10 days apart at one NT site. This variation probably results from environmental differences across generations of developing larvae and is consistent with our earlier suggestion of substantial effects of the environment, primarily rainfall and temperature, on reproductive allocation in D. hibisci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号