首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
基质结合区 (matrixassociationregionsormatrixattachmentre gions,MARs)亦称核骨架结合区 (scaffoldassociationregionsorscaffoldattachmentregions,SARs) ,是真核基因组中能与核基质特异紧结合的DNA序列。核基质与生物体内许多重要生命活动相联系 ,而结合的MARs序列 ,参与DNA复制 ,基因转录 ,基因表达调控[1 ] 和基因边界定位[2 ] 等过程。MARs通过将染色质锚定在核基质上而使染色质形成拓扑学限制性D…  相似文献   

3.
基质结合区(MARs)与转基因植物的基因表达   总被引:1,自引:0,他引:1  
王槐  陈正华 《生命科学》1999,11(2):54-57
对动植物的研究结果表明,基质结合区(MARs)能提高转基因的表达水平,并能降低其在转基因个体之间的表达差异。本文着重综述了MARs的基本特征及其在转基因植物中的研究应用,对MARs在转基因动物方面的研究成果和MARs的作用机制也作了介绍。  相似文献   

4.
5.
Matrix attachment regions (MARs) are thought to participate in the organization and segregation of independent chromosomal loop domains. Although there are several reports on the action of natural MARs in the context of heterologous genes in transgenic plants, in our study we tested a synthetic MAR (sMAR) with the special property of unpairing when under superhelical strain, for its effect on reporter gene expression in tobacco plants. The synthetic MAR was a multimer of a short sequence from the MAR 3' end of the immunoglobulin heavy chain (IgH) enhancer. This sMAR sequence was used to flank the beta-glucuronidase (GUS) reporter gene within the T-DNA of the binary vector pBI121. Vectors with or without the sMARs were then used to transform tobacco plants by Agrobacterium tumefaciens. Transgenic plants containing the sMAR sequences flanking the GUS gene exhibited higher levels of transgene expression compared with transgenic plants which lacked the sMARs. This effect was observed independently of the position of the sMAR at the 5' side of the reporter gene. However, variation of the detected transgene expression was significant in all transformed plant populations, irrespective of the construct used.  相似文献   

6.
The matrix metalloproteinase (MMP) family is heavily implicated in many diseases, including cancer. The developmental functions of these genes are not clear, however, because the >20 mammalian MMPs can be functionally redundant. Drosophila melanogaster has only two MMPs, which are expressed in embryos in distinct patterns. We created mutations in both genes: Mmp1 mutants have defects in larval tracheal growth and pupal head eversion, and Mmp2 mutants have defects in larval tissue histolysis and epithelial fusion during metamorphosis; neither is required for embryonic development. Double mutants also complete embryogenesis, and these represent the first time, to our knowledge, that all MMPs have been disrupted in any organism. Thus, MMPs are not required for Drosophila embryonic development, but, rather, for tissue remodeling.  相似文献   

7.
8.
Use of matrix attachment regions (MARs) to minimize transgene silencing   总被引:41,自引:0,他引:41  
Matrix attachment regions (MARs) are operationally defined as DNA elements that bind specifically to the nuclear matrix in vitro. It is possible, although unproven, that they also mediate binding of chromatin to the nuclear matrix in vivo and alter the topology of the genome in interphase nuclei. When MARs are positioned on either side of a transgene their presence usually results in higher and more stable expression in transgenic plants or cell lines, most likely by minimizing gene silencing. Our review explores current data and presents several plausible models to explain MAR effects on transgene expression.  相似文献   

9.
10.
Matrix attachment regions (MARs) are DNA sequences that bind an internal nuclear network of nonhistone proteins called the nuclear matrix. Thus, they may define discrete gene-containing chromatin loops in vivo. We have studied the effects of flanking transgenes with MARs on transgene expression levels in maize callus and in transformed maize plants. Three MAR elements, two from maize (Adh1 5' MAR and Mha1 5' MAR) and one from yeast (ARS1), had very different effects on transgene expression that bore no relation to their affinity for the nuclear matrix in vitro. In callus, two of the MAR elements (Adh1 5' MAR and ARS1) reduced transgene silencing but had no effect on the variability of expression. In transgenic plants, Adh1 5' MAR had the effect of localizing beta-glucuronidase expression to lateral root initiation sites. A possible model accounting for the function of Adh1 5' MAR is discussed.  相似文献   

11.
The DNA of three previously cloned interband regions (85D9/D10, 86B4/B6, and 61C7/C8) of Drosophila melanogaster polytene chromosomes has been tested for the presence of matrix association regions (MAR), using the in vitro matrix-binding assay of Cockerill and Garrard. MARs were found in all three interband regions under study. These results are discussed in frames of a model postulating that interband regions of polytene chromosomes correspond to the chromosomal DNA loop borders, which can be identified in interphase nuclei using biochemical approaches.  相似文献   

12.
In Drosophila melanogaster, former studies based on structural brain mutants have suggested that the central complex is a higher control center of locomotor behavior. Continuing this investigation we studied the effect of the central complex on the temporal structure of spontaneous locomotor activity in the time domain of a few hours. In an attempt to dissect the internal circuitry of the central complex we perturbed a putative local neuronal network connecting the four neuropil regions of the central complex, the protocerebral bridge, the fan-shape body, the noduli and the ellipsoid body. Two independent and non-invasive methods were applied: mutations affecting the neuroarchitecture of the protocerebral bridge, and the targeted expression of tetanus toxin in small subsets of central complex neurons using the binary enhancer trap P[GAL4] system. All groups of flies with a disturbed component of this network exhibited a common phenotype: a drastic decrease in locomotor activity. While locomotor activity was still clustered in bouts and these were initiated at the normal rate, their duration was reduced. This finding suggests that the bridge and some of its neural connections to the other neuropil regions of the central complex are required for the maintenance but not the initiation of walking. Accepted: 21 June 1999  相似文献   

13.
14.
The entire set of six closely related Drosophila actin genes was isolated using recombinant DNA methodology, and the structures of the respective coding regions were characterized by gene mapping techniques and by nucleotide sequencing of selected portions. Structural comparisons of these genes have resulted in several unexpected findings. Most striking is the nonconservation of the positions of intervening sequences within the protein-encoding regions of these genes. One of the Drosophila actin genes, DmA4, is split within a glycine codon at position 13; none of the remaining five genes is interrupted in the analogous position. Another gene, DmA6, is split within a glycine codon at position 307; at least two of the Drosophila actin genes are not split in the analogous position. Additionally, none of the Drosophila actin genes is split within codon four, where the yeast actin gene is interrupted. The six Drosophila actin genes encode several different proteins, but the amino acid sequence of each is similar to that of vertebrate cytoplasmic actins. None of the genes encodes a protein comparable in primary sequence to vertebrate skeletal muscle actin. Surprisingly, in each of these derived actin amino acid sequences in the initiator methionine is directly followed by a cysteine residue, which in turn precedes the string of three acidic amino acids characteristic of the amino termini of mature vertebrate cytoplasmic actins. We discuss these findings in the context of actin gene evolution and function.  相似文献   

15.
Skeletal muscles are a mosaic of slow and fast twitch myofibers. During embryogenesis, patterns of fiber type composition are initiated that change postnatally to meet physiological demand. To examine the role of the protein phosphatase calcineurin in the initiation and maintenance of muscle fiber types, we used a "Flox-ON" approach to obtain muscle-specific overexpression of the modulatory calcineurin-interacting protein 1 (MCIP1/DSCR1), an inhibitor of calcineurin. Myo-Cre transgenic mice with early skeletal muscle-specific expression of Cre recombinase were used to activate the Flox-MCIP1 transgene. Contractile components unique to type 1 slow fibers were absent from skeletal muscle of adult Myo-Cre/Flox-MCIP1 mice, whereas oxidative capacity, myoglobin content, and mitochondrial abundance were unaltered. The soleus muscles of Myo-Cre/Flox-MCIP1 mice fatigued more rapidly than the wild type as a consequence of the replacement of the slow myosin heavy chain MyHC-1 with a fast isoform, MyHC-2A. MyHC-1 expression in Myo-Cre/Flox-MCIP1 embryos and early neonates was normal. These results demonstrate that developmental patterning of slow fibers is independent of calcineurin, while the maintenance of the slow-fiber phenotype in the adult requires calcineurin activity.  相似文献   

16.
17.
Peripheral nerve development involves multiple classes of glia that cooperate to form overlapping glial layers paired with the deposition of a surrounding extracellular matrix (ECM). The formation of this tubular structure protects the ensheathed axons from physical and pathogenic damage and from changes in the ionic environment. Integrins, a major family of ECM receptors, play a number of roles in the development of myelinating Schwann cells, one class of glia ensheathing the peripheral nerves of vertebrates. However, the identity and the role of the integrin complexes utilized by the other classes of peripheral nerve glia have not been determined in any animal. Here, we show that, in the peripheral nerves of Drosophila melanogaster, two integrin complexes (αPS2βPS and αPS3βPS) are expressed in the different glial layers and form adhesion complexes with integrin-linked kinase and Talin. Knockdown of the common beta subunit (βPS) using inducible RNAi in all glial cells results in lethality and glial defects. Analysis of integrin complex function in specific glial layers showed that loss of βPS in the outermost layer (the perineurial glia) results in a failure to wrap the nerve, a phenotype similar to that of Matrix metalloproteinase 2-mediated degradation of the ECM. Knockdown of βPS integrin in the innermost wrapping glia causes a loss of glial processes around axons. Together, our data suggest that integrins are employed in different glial layers to mediate the development and maintenance of the protective glial sheath in Drosophila peripheral nerves.  相似文献   

18.
《Epigenetics》2013,8(9):1071-1078
In plants, RNA-directed DNA methylation (RdDM) can target both transgene promoters and coding regions/gene bodies. RdDM leads to methylation of cytosines in all sequence contexts: CG, CHG and CHH. Upon segregation of the RdDM trigger, at least CG methylation can be maintained at promoter regions in the progeny. So far, it is not clear whether coding region methylation can be also maintained. We showed that the body of Potato spindle tuber viroid (PSTVd) transgene constructs became densely de novo methylated at CG, CHG and CHH sites upon PSTVd infection. In this study, we demonstrate that in viroid-free progeny plants, asymmetric CHH and CHG methylation was completely lost. However, symmetric CG methylation was stably maintained for at least two generations. Importantly, the presence of transgene body methylation did not lead to an increase of dimethylation of histone H3 lysine 9 or a decrease of acetylation of H3. Our data supports the view that CG methylation can be maintained not only in promoters but also in the body of transgenes. They further suggest that maintenance of methylation may occur independently of tested chromatin modifications.  相似文献   

19.
In plants, RNA-directed DNA methylation (RdDM) can target both transgene promoters and coding regions/gene bodies. RdDM leads to methylation of cytosines in all sequence contexts: CG, CHG and CHH. Upon segregation of the RdDM trigger, at least CG methylation can be maintained at promoter regions in the progeny. So far, it is not clear whether coding region methylation can be also maintained. We showed that the body of Potato spindle tuber viroid (PSTVd) transgene constructs became densely de novo methylated at CG, CHG and CHH sites upon PSTVd infection. In this study, we demonstrate that in viroid-free progeny plants, asymmetric CHH and CHG methylation was completely lost. However, symmetric CG methylation was stably maintained for at least two generations. Importantly, the presence of transgene body methylation did not lead to an increase of dimethylation of histone H3 lysine 9 or a decrease of acetylation of H3. Our data supports the view that CG methylation can be maintained not only in promoters but also in the body of transgenes. They further suggest that maintenance of methylation may occur independently of tested chromatin modifications.  相似文献   

20.
Dietary restriction extends lifespan in a wide variety of animals, including Drosophila, but its relationship to functional and cognitive aging is unclear. Here, we study the effects of dietary yeast content on fly performance in an aversive learning task (association between odor and mechanical shock). Learning performance declined at old age, but 50‐day‐old dietary‐restricted flies learned as poorly as equal‐aged flies maintained on yeast‐rich diet, even though the former lived on average 9 days (14%) longer. Furthermore, at the middle age of 21 days, flies on low‐yeast diets showed poorer short‐term (5 min) memory than flies on rich diet. In contrast, dietary restriction enhanced 60‐min memory of young (5 days old) flies. Thus, while dietary restriction had complex effects on learning performance in young to middle‐aged flies, it did not attenuate aging‐related decline of aversive learning performance. These results are consistent with the hypothesis that, in Drosophila, dietary restriction reduces mortality and thus leads to lifespan extension, but does not affect the rate with which somatic damage relevant for cognitive performance accumulates with age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号