首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Determination of Arabidopsis floral meristem identity by AGAMOUS.   总被引:18,自引:1,他引:17       下载免费PDF全文
Y Mizukami  H Ma 《The Plant cell》1997,9(3):393-408
Determinate growth of floral meristems in Arabidopsis requires the function of the floral regulatory gene AGAMOUS (AG). Expression of AG mRNA in the central region of floral meristems relies on the partially overlapping functions of the LEAFY (LFY) and APETALA1 (AP1) genes, which promote initial floral meristem identity. Here, we provide evidence that AG function is required for the final definition of floral meristem identity and that constitutive AG function can promote, independent of LFY and AP1 functions, the determinate floral state in the center of reproductive meristems. Loss-of-function analysis showed that the indeterminate central region of the ag mutant floral meristem undergoes conversion to an inflorescence meristem when long-day-dependent flowering stimulus is removed. Furthermore, gain-of-function analysis demonstrated that ectopic AG function results in precocious flowering and the formation of terminal flowers at apices of both the primary inflorescence and axillary branches of transgenic Arabidopsis plants in which AG expression is under the control of the 35S promoter from cauliflower mosaic virus. Similar phenotypes were also observed in lfy ap1 double mutants carrying a 35S-AG transgene. Together, these results indicate that AG is a principal developmental switch that controls the transition of meristem activity from indeterminate to determinate.  相似文献   

3.
Upon floral induction, the primary shoot meristem of an Arabidopsis plant begins to produce flower meristems rather than leaf primordia on its flanks. Assignment of floral fate to lateral meristems is primarily due to the cooperative activity of the flower meristem identity genes LEAFY (LFY), APETALA1 (AP1), and CAULIFLOWER. We present evidence here that AP1 expression in lateral meristems is activated by at least two independent pathways, one of which is regulated by LFY. In lfy mutants, the onset of AP1 expression is delayed, indicating that LFY is formally a positive regulator of AP1. We have found that AP1, in turn, can positively regulate LFY, because LFY is expressed prematurely in the converted floral meristems of plants constitutively expressing AP1. Shoot meristems maintain an identity distinct from that of flower meristems, in part through the action of genes such as TERMINAL FLOWER1 (TFL1), which bars AP1 and LFY expression from the influorescence shoot meristem. We show here that this negative regulation can be mutual because TFL1 expression is downregulated in plants constitutively expressing AP1. Therefore, the normally sharp phase transition between the production of leaves with associated shoots and formation of the flowers, which occurs upon floral induction, is promoted by positive feedback interactions between LFY and AP1, together with negative interactions of these two genes with TFL1.  相似文献   

4.
In Arabidopsis, floral meristems arise in continuous succession directly on the flanks of the inflorescence meristem. Thus, the pathways that regulate inflorescence and floral meristem identity must operate both simultaneously and in close spatial proximity. The TERMINAL FLOWER 1 (TFL1) gene of Arabidopsis is required for normal inflorescence meristem function, and the LEAFY (LFY), APETALA 1 (AP1), and APETALA 2 (AP2) genes are required for normal floral meristem function. We present evidence that inflorescence meristem identity is promoted by TFL1 and that floral meristem identity is promoted by parallel developmental pathways, one defined by LFY and the other defined by AP1/AP2. Our analysis suggests that the acquisition of meristem identity during inflorescence development is mediated by antagonistic interactions between TFL1 and LFY and between TFL1 and AP1/AP2. Based on this study, we propose a simple model for the genetic regulation of inflorescence development in Arabidopsis. This model is discussed in relation to the proposed interactions between the inflorescence and the floral meristem identity genes and in regard to other genes that are likely to be part of the genetic hierarchy regulating the establishment and maintenance of inflorescence and floral meristems.  相似文献   

5.
TFL1同源基因在维持植物营养生长和花序分生组织特性方面起着非常重要的作用,其功能的丧失常导致植物提早开花,花序的正常发育受到抑制,最终茎端形成顶花。至今已经有28种植物的TFL1基因被克隆到,其中包括拟南芥、金鱼草和番茄等模式植物。TFL1 蛋白的系统发育树基本符合物种的亲缘关系。作为花序分生组织特性基因的TFL1与花分生组织特性基因LFY 和AP1相互作用,抑制花序分生组织向花分生组织的转变。TFL1和LFY等基因可用来培育早花新品种,也可用于培育无果的新品种,减少悬铃木、杨、柳等果毛的污染。  相似文献   

6.
Conti L  Bradley D 《The Plant cell》2007,19(3):767-778
Shoot meristems harbor stem cells that provide key growing points in plants, maintaining themselves and generating all above-ground tissues. Cell-to-cell signaling networks maintain this population, but how are meristem and organ identities controlled? TERMINAL FLOWER1 (TFL1) controls shoot meristem identity throughout the plant life cycle, affecting the number and identity of all above-ground organs generated; tfl1 mutant shoot meristems make fewer leaves, shoots, and flowers and change identity to flowers. We find that TFL1 mRNA is broadly distributed in young axillary shoot meristems but later becomes limited to central regions, yet affects cell fates at a distance. How is this achieved? We reveal that the TFL1 protein is a mobile signal that becomes evenly distributed across the meristem. TFL1 does not enter cells arising from the flanks of the meristem, thus allowing primordia to establish their identity. Surprisingly, TFL1 movement does not appear to occur in mature shoots of leafy (lfy) mutants, which eventually stop proliferating and convert to carpel/floral-like structures. We propose that signals from LFY in floral meristems may feed back to promote TFL1 protein movement in the shoot meristem. This novel feedback signaling mechanism would ensure that shoot meristem identity is maintained and the appropriate inflorescence architecture develops.  相似文献   

7.
8.
9.
The temporal and spatial control of meristem identity is a key element in plant development. To better understand the molecular mechanisms that regulate inflorescence and flower architecture, we characterized the rice aberrant panicle organization 2 (apo2) mutant which exhibits small panicles with reduced number of primary branches due to the precocious formation of spikelet meristems. The apo2 mutants also display a shortened plastochron in the vegetative phase, late flowering, aberrant floral organ identities and loss of floral meristem determinacy. Map-based cloning revealed that APO2 is identical to previously reported RFL gene, the rice ortholog of the Arabidopsis LEAFY (LFY) gene. Further analysis indicated that APO2/RFL and APO1, the rice ortholog of Arabidopsis UNUSUAL FLORAL ORGANS, act cooperatively to control inflorescence and flower development. The present study revealed functional differences between APO2/RFL and LFY. In particular, APO2/RFL and LFY act oppositely on inflorescence development. Therefore, the genetic mechanisms for controlling inflorescence architecture have evolutionarily diverged between rice (monocots) and Arabidopsis (eudicots).  相似文献   

10.
Flowering and determinacy in Arabidopsis   总被引:6,自引:0,他引:6  
Meristems provide new cells to produce organs throughout the life of a plant, and their continuous activity depends on regulatory genes that balance the proliferation of meristem cells with their recruitment to organogenesis. During flower development, this balance is shifted towards organogenesis, causing the meristem to terminate after producing a genetically determined number of organs. In Arabidopsis, WUSCHEL (WUS) specifies the self-renewing cells at the core of the shoot meristems and is a key target in the control of meristem stability. The development of a determinate floral meristem is initiated by APETALA1/CAULIFLOWER (AP1/CAL) and LEAFY (LFY). The latter activates AGAMOUS (AG), partly in co-operation with WUS. AG then directs the development of the innermost floral organs and at the same time antagonizes WUS to terminate the meristem, although the mechanism of WUS repression remains unknown. All these genes participate in a series of regulatory feedback loops that maintain stable expression patterns or promote sharp developmental transitions. Although the regulators of meristem maintenance and determinacy in Arabidopsis are widely conserved, their interactions may vary in other species.  相似文献   

11.
Flowering plants produce floral meristems in response to intrinsic and extrinsic flowering inductive signals. In Arabidopsis, the floral meristem identity genes LEAFY (LFY) and APETALA1 (AP1) are activated to play a pivotal role in specifying floral meristems during floral transition. We show here that the emerging floral meristems require AP1 to partly specify their floral identities by directly repressing a group of flowering time genes, including SHORT VEGETATIVE PHASE (SVP), AGAMOUS-LIKE 24 (AGL24) and SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1). In wild-type plants, these flowering time genes are normally downregulated in emerging floral meristems. In the absence of AP1, these genes are ectopically expressed, transforming floral meristems into shoot meristems. By post-translational activation of an AP1-GR fusion protein and chromatin immunoprecipitation assays, we further demonstrate the repression of these flowering time genes by induced AP1 activity and in vivo AP1 binding to the cis-regulatory regions of these genes. These findings indicate that once AP1 is activated during the floral transition, it acts partly as a master repressor in floral meristems by directly suppressing the expression of flowering time genes, thus preventing the continuation of the shoot developmental program.  相似文献   

12.
M Lenhard  A Bohnert  G Jürgens  T Laux 《Cell》2001,105(6):805-814
Floral meristems and shoot apical meristems (SAMs) are homologous, self-maintaining stem cell systems. Unlike SAMs, floral meristems are determinate, and stem cell maintenance is abolished once all floral organs are initiated. To investigate the underlying regulatory mechanisms, we analyzed the interactions between WUSCHEL (WUS), which specifies stem cell identity, and AGAMOUS (AG), which is required for floral determinacy. Our results show that repression of WUS by AG is essential for terminating the floral meristem and that WUS can induce AG expression in developing flowers. Together, this suggests that floral determinacy depends on a negative autoregulatory mechanism involving WUS and AG, which terminates stem cell maintenance.  相似文献   

13.
We present the initial phenotypic characterization of an Arabidopsis mutation, terminal flower 1-1 (tfl1-1), that identifies a new genetic locus, TFL1. The tfl1-1 mutation causes early flowering and limits the development of the normally indeterminate inflorescence by promoting the formation of a terminal floral meristem. Inflorescence development in mutant plants often terminates with a compound floral structure consisting of the terminal flower and one or two subtending lateral flowers. The distal-most flowers frequently contain chimeric floral organs. Light microscopic examination shows no structural aberrations in the vegetative meristem or in the inflorescence meristem before the formation of floral buttresses. The wild-type appearance of lateral flowers and observations of double mutant combinations of tfl1-1 with the floral morphogenesis mutations apetala 1-1 (ap1-1), ap2-1, and agamous (ag) suggest that the tfl1-1 mutation does not affect normal floral meristems. Secondary flower formation usually associated with the ap1-1 mutation is suppressed in the terminal flower, but not in the lateral flowers, of tfl1-1 ap1-1 double mutants. Our results suggest that tfl1-1 perturbs the establishment and maintenance of the inflorescence meristem. The mutation lies on the top arm of chromosome 5 approximately 2.8 centimorgans from the restriction fragment length polymorphism marker 217.  相似文献   

14.
15.
Flowering of many plants is induced by environmental signals, but these responses can depend on the age of the plant. Exposure of Arabidopsis thaliana to vernalization (winter temperatures) at germination induces flowering, whereas a close perennial relative Arabis alpina only responds if exposed when at least 5 weeks old. We show that vernalization of these older A. alpina plants reduces expression of the floral repressor PEP1 and activates the orthologs of the Arabidopsis flowering genes SOC1 (Aa SOC1) and LFY (Aa LFY). By contrast, when younger plants are vernalized, PEP1 and Aa SOC1 mRNA levels change as in older plants, but Aa LFY is not expressed. We demonstrate that A. alpina TFL1 (Aa TFL1) blocks flowering and prevents Aa LFY expression when young plants are exposed to vernalization. In addition, in older plants, Aa TFL1 increases the duration of vernalization required for Aa LFY expression and flowering. Aa TFL1 has similar functions in axillary shoots, thus ensuring that following a flowering episode vegetative branches are maintained to continue the perennial life cycle. We propose that Aa TFL1 blocks flowering of young plants exposed to vernalization by setting a threshold for a flowering pathway that is increased in activity as the shoot ages, thus contributing to several perennial traits.  相似文献   

16.
Meristems may be determinate or indeterminate. In maize, the indeterminate inflorescence meristem produces three types of determinate meristems: spikelet pair, spikelet and floral meristems. These meristems are defined by their position and their products. We have discovered a gene in maize, indeterminate floral apex1 (ifa1) that regulates meristem determinacy. The defect found in ifa1 mutants is specific to meristems and does not affect lateral organs. In ifa1 mutants, the determinate meristems become less determinate. The spikelet pair meristem initiates more than a pair of spikelets and the spikelet meristem initiates more than the normal two flowers. The floral meristem initiates all organs correctly, but the ovule primordium, the terminal product of the floral meristem, enlarges and proliferates, expressing both meristem and ovule marker genes. A role for ifa1 in meristem identity in addition to meristem determinacy was revealed by double mutant analysis. In zea agamous1 (zag1) ifa1 double mutants, the female floral meristem converts to a branch meristem whereas the male floral meristem converts to a spikelet meristem. In indeterminate spikelet1 (ids1) ifa1 double mutants, female spikelet meristems convert to branch meristems and male spikelet meristems convert to spikelet pair meristems. The double mutant phenotypes suggest that the specification of meristems in the maize inflorescence involves distinct steps in an integrated process.  相似文献   

17.
The ULTRAPETALA gene controls shoot and floral meristem size in Arabidopsis   总被引:3,自引:0,他引:3  
The regulation of proper shoot and floral meristem size during plant development is mediated by a complex interaction of stem cell promoting and restricting factors. The phenotypic effects of mutations in the ULTRAPETALA gene, which is required to control shoot and floral meristem cell accumulation in Arabidopsis thaliana, are described. ultrapetala flowers contain more floral organs and whorls than wild-type plants, phenotypes that correlate with an increase in floral meristem size preceding organ initiation. ultrapetala plants also produce more floral meristems than wild-type plants, correlating with an increase in inflorescence meristem size without visible fasciation. Expression analysis indicates that ULTRAPETALA controls meristem cell accumulation partly by limiting the domain of CLAVATA1 expression. Genetic studies show that ULTRAPETALA acts independently of ERA1, but has overlapping functions with PERIANTHIA and the CLAVATA signal transduction pathway in controlling shoot and floral meristem size and meristem determinacy. Thus ULTRAPETALA defines a novel locus that restricts meristem cell accumulation in Arabidopsis shoot and floral meristems.  相似文献   

18.
19.
Mechanisms and function of flower and inflorescence reversion   总被引:8,自引:0,他引:8  
Flower and inflorescence reversion involve a switch from floral development back to vegetative development, thus rendering flowering a phase in an ongoing growth pattern rather than a terminal act of the meristem. Although it can be considered an unusual event, reversion raises questions about the nature and function of flowering. It is linked to environmental conditions and is most often a response to conditions opposite to those that induce flowering. Research on molecular genetic mechanisms underlying plant development over the last 15 years has pinpointed some of the key genes involved in the transition to flowering and flower development. Such investigations have also uncovered mutations which reduce floral maintenance or alter the balance between vegetative and floral features of the plant. How this information contributes to an understanding of floral reversion is assessed here. One issue that arises is whether floral commitment (defined as the ability to continue flowering when inductive conditions no longer exist) is a developmental switch affecting the whole plant or is a mechanism which assigns autonomy to individual meristems. A related question is whether floral or vegetative development is the underlying default pathway of the plant. This review begins by considering how studies of flowering in Arabidopsis thaliana have aided understanding of mechanisms of floral maintenance. Arabidopsis has not been found to revert to leaf production in any of the conditions or genetic backgrounds analysed to date. A clear-cut reversion to leaf production has, however, been described in Impatiens balsamina. It is proposed that a single gene controls whether Impatiens reverts or can maintain flowering when inductive conditions are removed, and it is inferred that this gene functions to control the synthesis or transport of a leaf-generated signal. But it is also argued that the susceptibility of Impatiens to reversion is a consequence of the meristem-based mechanisms controlling development of the flower in this species. Thus, in Impatiens, a leaf-derived signal is critical for completion of flowering and can be considered to be the basis of a plant-wide floral commitment that is achieved without accompanying meristem autonomy. The evidence, derived from in vitro and other studies, that similar mechanisms operate in other species is assessed. It is concluded that most species (including Arabidopsis) are less prone to reversion because signals from the leaf are less ephemeral, and the pathways driving flower development have a high level of redundancy that generates meristem autonomy even when leaf-derived signals are weak. This gives stability to the flowering process, even where its initiation is dependent on environmental cues. On this interpretation, Impatiens reversion appears as an anomaly resulting from an unusual combination of leaf signalling and meristem regulation. Nevertheless, it is shown that the ability to revert can serve a function in the life history strategy (perenniality) or reproductive habit (pseudovivipary) of many plants. In these instances reversion has been assimilated into regular plant development and plays a crucial role there.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号