首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Horton TE  Maderia M  DeRose VJ 《Biochemistry》2000,39(28):8201-8207
This study analyzes the impact of phosphorothioate substitutions on the thermodynamic stability of a 12-nt RNA hairpin containing a (5')GAAA(3') tetraloop. The thermodynamic consequences of stereospecific phosphorothioate substitutions 5' to each adenosine in the loop region are measured using optical melting and calorimetry experiments. Surprisingly, a single stereospecific phosphorothioate substitution 5' to the second adenosine of the tetraloop, R(p)-A7, results in a stabilization corresponding to a Delta(DeltaG(37)(degrees)(C)) of approximately -2.9 kcal mol(-1) (0.1 M NaCl) when compared with that of an unmodified sample. Five other phosphorothioate-substituted samples did not show significant thermodynamic differences in comparison with the unsubstituted samples. Addition of Mg(2+) to all of the hairpins studied results in increased t(m's) that are fit with a general electrostatic model to a dissociation constant of K(d)(Mg(2+)) approximately 2-3 mM (0.1 M NaCl). The R(p)-A7 phosphorothioate-substituted hairpin showed an unusual decrease in t(m) and apparent increase in enthalpy of unfolding upon addition of Cd(2+). These results may impact the interpretation of interference mapping experiments that use phosphorothioate substitutions to characterize RNAs in solution.  相似文献   

3.
This work is an in vitro study of the efficiency of catalytic antisense RNAs whose catalytic domain is the wild-type sequence of the hairpin ribozyme, derived from the minus strand of the tobacco ringspot virus satellite RNA. The sequence in the target RNA recognized by the antisense molecule was the stem-loop structure of the human immunodeficiency virus-1 (HIV-1) TAR region. This region was able to form a complex with its antisense RNA with a binding rate of 2 x 10(4) M(-1)s(-1). Any deletion of the antisense RNA comprising nucleotides of the stem-loop resulted in a decrease in binding rate. Sequences 3' of the stem in the sense RNA also contributed to binding. This stem-loop TAR-antisense segment, covalently linked to a hairpin ribozyme, enhanced its catalytic activity. The highest cleavage rate was obtained when the stem-loop structure was present in both ribozyme and substrate RNAs and they were complementary. Similarly, an extension at the 5'-end of the hairpin ribozyme increased the cleavage rate when its complementary sequence was present in the substrate. Inclusion of the stem-loop at the 3'-end and the extension at the 5'-end of the hairpin ribozyme abolished the positive effect of both antisense units independently. These results may help in the design of hairpin ribozymes for gene silencing.  相似文献   

4.
The hairpin ribozyme   总被引:4,自引:0,他引:4  
The hairpin ribozyme is a member of a family of small RNA endonucleases, which includes hammer-head, human hepatitis delta virus, Neurospora VS, and the lead-dependent catalytic RNAs. All these catalytic RNAs reversibly cleave the phosphodiester bond of substrate RNA to generate 5'-hydroxyl and 2',3'-cyclic phosphate termini. Whereas the reaction products from family members are similar, large structural and mechanistic differences exist. Structurally the hairpin ribozyme has two principal domains that interact to facilitate catalysis. The hairpin ribozyme uses a catalytic mechanism that does not require metals for cleavage or ligation of substrate RNA. In this regard it is presently unique among RNA catalysts. Targeting rules for cleavage of substrate have been determined and required bases for catalysis have been identified. The hairpin ribozyme has been developed and used for gene therapy and was the first ribozyme to be approved for human clinical trials.  相似文献   

5.
R B Waring 《Nucleic acids research》1989,17(24):10281-10293
The group I intron from the rRNA precursor of Tetrahymena undergoes self-splicing. The intron RNA catalyst contains about 400 phosphate groups. Their role in catalysis has been investigated using phosphorothioate substituted RNA. In such RNA one of the peripheral oxygens of the phosphodiesters is replaced with sulfur. Incorporation of adenosine 5' phosphorothioate in either the 5' or 3' half of the ribozyme blocked splicing whereas incorporation of uridine 5' phosphorothioate only blocked splicing if the substitution was in the 3' half of the molecule. Modification-interference assays located two major and three minor inhibitory phosphorothioate substitutions suggesting that the corresponding phosphates play a significant role in self-splicing. These are all located in the most highly conserved region of the intron.  相似文献   

6.
The VS ribozyme trans-cleavage substrate interacts with the catalytic RNA via tertiary interactions. To study the role of phosphate groups in the ribozyme–substrate interaction, 18 modified substrates were synthesized, where an epimeric phosphorothioate replaces one of the phosphate diester linkages. Sites in the stem–loop substrate where phosphorothioate substitution impaired reaction cluster in two regions. The first site is the scissile phosphate diester linkage and nucleotides downstream of this and the second site is within the loop region. The addition of manganese ions caused recovery of the rate of reaction for phosphorothioate substitutions between A621 and A622 and U631 and C632, suggesting that these two phosphate groups may serve as ligands for two metal ions. In contrast, significant manganese rescue was not observed for the scissile phosphate diester linkage implying that electrophilic catalysis by metal ions is unlikely to contribute to VS ribozyme catalysis. In addition, an increase in the reaction rate of the unmodified VS ribozyme was observed when a mixture of magnesium and manganese ions acted as the cofactor. One possible explanation for this effect is that the cleavage reaction of the VS ribozyme is rate limited by a metal dependent docking of the substrate on the ribozyme.  相似文献   

7.
Binding and cleavage of nucleic acids by the "hairpin" ribozyme   总被引:8,自引:0,他引:8  
B M Chowrira  J M Burke 《Biochemistry》1991,30(35):8518-8522
The "hairpin" ribozyme derived from the minus strand of tobacco ringspot virus satellite RNA [(-)sTRSV] efficiently catalyzes sequence-specific RNA hydrolysis in trans (Feldstein et al., 1989; Hampel & Triz, 1989; Haseloff & Gerlach, 1989). The ribozyme does not cleave DNA. An RNA substrate analogue containing a single deoxyribonucleotide residue 5' to the cleavage site (A-1) binds to the ribozyme efficiently but cannot be cleaved. A DNA substrate analogue with a ribonucleotide at A-1 is cleaved; thus A-1 provides the only 2'-OH required for cleavage. These results support cleavage via a transphosphorylation mechanism initiated by attack of the 2'-OH of A-1 on the scissile phosphodiester. The ribozyme discriminates between DNA and RNA in both binding and cleavage. Results indicate that the 2'-OH of A-1 functions in complex stabilization as well as cleavage. The ribozyme efficiently cleaves a phosphorothioate diester linkage, suggesting that the pro-Rp oxygen at the scissile phosphodiester does not coordinate Mg2+.  相似文献   

8.
9.
Structure and function of the hairpin ribozyme   总被引:18,自引:0,他引:18  
The hairpin ribozyme belongs to the family of small catalytic RNAs that cleave RNA substrates in a reversible reaction that generates 2',3'-cyclic phosphate and 5'-hydroxyl termini. The hairpin catalytic motif was discovered in the negative strand of the tobacco ringspot virus satellite RNA, where hairpin ribozyme-mediated self-cleavage and ligation reactions participate in processing RNA replication intermediates. The self-cleaving hairpin, hammerhead, hepatitis delta and Neurospora VS RNAs each adopt unique structures and exploit distinct kinetic and catalytic mechanisms despite catalyzing the same chemical reactions. Mechanistic studies of hairpin ribozyme reactions provided early evidence that, like protein enzymes, RNA enzymes are able to exploit a variety of catalytic strategies. In contrast to the hammerhead and Tetrahymena ribozyme reactions, hairpin-mediated cleavage and ligation proceed through a catalytic mechanism that does not require direct coordination of metal cations to phosphate or water oxygens. The hairpin ribozyme is a better ligase than it is a nuclease while the hammerhead reaction favors cleavage over ligation of bound products by nearly 200-fold. Recent structure-function studies have begun to yield insights into the molecular bases of these unique features of the hairpin ribozyme.  相似文献   

10.
The transition state of the group I intron self-splicing reaction is stabilized by three metal ions. The functional groups within the intron substrates (guanosine and an oligoribonucleotide mimic of the 5'-exon) that coordinate these metal ions have been systematically defined through a series of metal ion specificity switch experiments. In contrast, the catalytic metal ligands within the ribozyme active site are unknown. In an effort to identify them, stereospecific (R(P) or S(P)) single-site phosphorothioate substitutions were introduced at five phosphates predicted to be in the vicinity of the catalytic center (A207, C208, A304, U305, and A306) within the Tetrahymena intron. Of the 10 ribozymes that were studied, four phosphorothioate substitutions (A207 S(P), C208 S(P), A306 R(P), and A306 S(P)) exhibited a significant reduction in the cleavage rate. Only the effect of the C208 S(P) phosphorothioate substitution could be significantly rescued by the addition of a thiophilic metal ion, either Mn(2+) or Zn(2+), when tested with an all-oxy substrate. The effect was not rescued with Cd(2+). To determine if one of the catalytic metal ions is coordinated to the C208 pro-S(P) oxygen, the phosphorothioate-substituted ribozymes were also assayed using oligonucleotide substrates with a 3'-phosphorothiolate or an S(P) phosphorothioate substitution at the scissile phosphate. This resulted in a second metal specificity switch, in that Mn(2+) or Zn(2+) no longer rescued the C208 S(P) ribozyme, but Cd(2+) provided efficient rescue in the context of either sulfur-containing substrate. The 3'-oxygen and the pro-S(P) oxygen of the scissile phosphate are both known to coordinate the same metal ion, M(A), which stabilizes the negative charge on the leaving group 3'-oxygen in the transition state. Taken together, these data suggest that metal M(A) is coordinated to the C208 pro-S(P) phosphate oxygen, which constitutes the first functional link between a specific catalytic metal ion and a particular functional group within the group I ribozyme active site.  相似文献   

11.
The bacterial RNase P ribozyme can accept a hairpin RNA with CCA-3' tag sequence as well as a cloverleaf pre-tRNA as substrate in vitro, but the details are not known. By switching tRNA structure using an antisense guide DNA technique, we examined the Escherichia coli RNase P ribozyme specificity for substrate RNA of a given shape. Analysis of the RNase P reaction with various concentrations of magnesium ion revealed that the ribozyme cleaved only the cloverleaf RNA at below 10 mM magnesium ion. At 10 mM magnesium ion or more, the ribozyme also cleaved a hairpin RNA with a CCA-3' tag sequence. At above 20 mM magnesium ion, cleavage site wobbling by the enzyme in tRNA-derived hairpin occurred, and the substrate specificity of the enzyme became broader. Additional studies using another hairpin substrate demonstrated the same tendency. Our data strongly suggest that raising the concentration of metal ion induces a conformational change in the RNA enzyme.  相似文献   

12.
The secondary structures proposed for the cis-acting hepatitis delta virus (HDV) ribozymes contain four duplex regions, three sequences joining the duplexes and two hairpin loops. The core and active site of the ribozyme could be formed by portions of the joining sequences, J1/4 and J4/2, together with one of the hairpin loops, L3. To establish the core region and define essential bases within this putative active site 28 single base changes at 15 positions were made and tested for effects on ribozyme cleavage. At 14 of the 15 positions all of the changes resulted in detectable decreased rates of cleavage. At seven of the positions one or more of the changes resulted in a 500-fold or greater decrease in the observed rate constant for cleavage. Mutations that resulted in 10(3)-fold effects were found in all three regions hypothesized to form the core. At the cleavage site substitutions of the cytosine 5' of the site of cleavage did not provide strong support for a sequence-specific interaction involving this nucleotide. In contrast, an A-C combination was the most effective substitution for a potential G-U pair 3' of the cleavage site, suggesting a requirement for a wobble pair at that position.  相似文献   

13.
In recent years major progress has been made in elucidating the mechanism and structure of catalytic RNA molecules, and we are now beginning to understand ribozymes well enough to turn them into useful tools. Work in our laboratory has focused on the development of twin ribozymes for site-specific RNA sequence alteration. To this end, we followed a strategy that relies on the combination of two ribozyme units into one molecule (hence dubbed twin ribozyme). Here, we present reverse-joined hairpin ribozymes that are structurally optimized and which, in addition to cleavage, catalyse efficient RNA ligation. The most efficient variant ligated its appropriate RNA substrate with a single turnover rate constant of 1.1 min(-1) and a final yield of 70%. We combined a reverse-joined hairpin ribozyme with a conventional hairpin ribozyme to create a twin ribozyme that mediates the insertion of four additional nucleotides into a predetermined position of a substrate RNA, and thus mimics, at the RNA level, the repair of a short deletion mutation; 17% of the initial substrate was converted to the insertion product.  相似文献   

14.
M Wecker  D Smith    L Gold 《RNA (New York, N.Y.)》1996,2(10):982-994
An in vitro RNA selection for catalytic activity was used to co-select for binding activity to a small peptide. 5'-phosphorothioate-modified RNA (GMPS-RNA) sequences were selected from a randomized pool of oligoribonucleotides for their ability to accelerate a halide substitution reaction with N-bromoacetyl-bradykinin (BrBK). One RNA selected shows a 2,420-fold increase in rate of reaction with BrBK relative to the starting pool. This reaction is specifically inhibited by free bradykinin (Ki 230 microM), indicating that interactions with bradykinin contribute to the rate enhancement. Inhibition of the reaction by the peptide requires both the amino- and carboxy-terminal arginine residues of the peptide for optimal inhibition activity. Reaction with N-bromoacetamide is not enhanced, indicating that the intrinsic reactivity of the 5' phosphorothioate is not increased in the selected RNA. Through 3'-end boundary analysis, much of the catalytic activity of the selected GMPS-RNA is shown to reside in a hairpin structure in the selected region of the molecule. This hairpin structure is also implicated in the recognition of the peptide substrate.  相似文献   

15.
We have reconstituted a group I self-splicing reaction between two RNA molecules with different functional RNA parts: a substrate molecule containing the 5' splice site and a functional internal guide sequence (IGS), and a ribozyme molecule with core structure elements and splice sites but a mutated IGS. The 5' exon of the substrate molecule is ligated in trans to the 3' exon of the ribozyme molecule, suggesting that the deficient IGS in the ribozyme can be replaced by an externally added IGS present on the substrate molecule. This result is different from catalysis mediated by proteins where it is not possible to dissect the specificity of an enzyme from its catalytic activity.  相似文献   

16.
Shih Ih  Been MD 《The EMBO journal》2001,20(17):4884-4891
Hepatitis delta virus (HDV) ribozymes employ multiple catalytic strategies to achieve overall rate enhancement of RNA cleavage. These strategies include general acid-base catalysis by a cytosine side chain and involvement of divalent metal ions. Here we used a trans-acting form of the antigenomic ribozyme to examine the contribution of the 5' sequence in the substrate to HDV ribozyme catalysis. The cleavage rate constants increased for substrates with 5' sequence alterations that reduced ground-state binding to the ribozyme. Quantitatively, a plot of activation free energy of chemical conversion versus Gibb's free energy of substrate binding revealed a linear relationship with a slope of -1. This relationship is consistent with a model in which components of the substrate immediately 5' to the cleavage site in the HDV ribozyme-substrate complex destabilize ground-state binding. The intrinsic binding energy derived from the ground-state destabilization could contribute up to 2 kcal/mol toward the total 8.5 kcal/mol reduction in activation free energy for RNA cleavage catalyzed by the HDV ribozyme.  相似文献   

17.
M J Fedor 《Biochemistry》1999,38(34):11040-11050
The hairpin ribozyme catalyzes a reversible RNA cleavage reaction that participates in processing intermediates of viral satellite RNA replication in plants. A minimal hairpin ribozyme consists of two helix-loop-helix segments. These segments associate noncoaxially in the active folded structure in a way that brings catalytically important loop nucleotides into close proximity. The hairpin ribozyme in the satellite RNA of Tobacco Ringspot Virus assembles in the context of a four-way helical junction. Recent physical characterization of hairpin ribozyme structures using fluorescence resonance energy transfer demonstrated enhanced stability of the folded structure in the context of a four-way helical junction compared to minimal hairpin ribozyme variants. Analysis of the functional consequences of this modification of the helical junction has revealed two changes in the hairpin ribozyme kinetic mechanism. First, ribozymes with a four-way helical junction bind 3' cleavage products with much higher affinity than minimal hairpin ribozymes, evidence that tertiary interactions within the folded structure contribute to product binding energy. Second, the balance between ligation and cleavage shifts in favor of ligation. The enhanced ligation activity of hairpin ribozymes that contain a four-way helical junction supports the notion that tertiary structure stability is a major determinant of the hairpin ribozyme proficiency as a ligase and illustrates the link between RNA structure and biological function.  相似文献   

18.
Mutagenesis of the hairpin ribozyme.   总被引:6,自引:1,他引:5       下载免费PDF全文
Extensive in vitro mutagenesis studies have been performed on the hairpin ribozyme and substrate in an effort to refine the overall secondary structure of the molecule and provide further insight into what elements are essential for activity. A secondary structure consisting of four helices and five loop regions remains the basic model as originally proposed. Two helices, helix 1 and 2, form between the substrate and ribozyme while helices 3 and 4 are within the ribozyme itself. Our results suggest that helices 3 and 4 are smaller than previously proposed, consisting of four base pairs and three base pairs respectively. Helix 4 can be extended without loss of activity and loop 3 at the closed end of the hairpin model can be varied in sequence with retention of activity. There is an unpaired nucleotide between helices 2 and 3 consisting of a single A base, suggesting the opportunity for flexibility within the tertiary structure at this point. Comparisons are made between the new data and previously published mutagenesis and phylogenetic data. Substrate targeting rules require base pairing between helices 1 and 2 with cleavage (*) occurring in a preferred 5'(g/c/u)n*guc3' sequence of the substrate.  相似文献   

19.
Haruki M  Tsunaka Y  Morikawa M  Iwai S  Kanaya S 《Biochemistry》2000,39(45):13939-13944
To investigate the role of the phosphate group 3' to the scissile phosphodiester bond of the substrate in the catalytic mechanism of Escherichia coli ribonuclease HI (RNase HI), we have used modified RNA-DNA hybrid substrates carrying a phosphorothioate substitution at this position or lacking this phosphate group for the cleavage reaction. Kinetic parameters of the H124A mutant enzyme, in which His(124) was substituted with Ala, as well as those of the wild-type RNase HI, were determined. Substitution of the pro-R(p)-oxygen of the phosphate group 3' to the scissile phosphodiester bond of the substrate with sulfur reduced the k(cat) value of the wild-type RNase HI by 6.9-fold and that of the H124A mutant enzyme by only 1. 9-fold. In contrast, substitution of the pro-S(p)-oxygen of the phosphate group at this position with sulfur had little effect on the k(cat) value of the wild-type and H124A mutant enzymes. The results obtained for the substrate lacking this phosphate group were consistent with those obtained for the substrates with the phosphorothioate substitutions. In addition, a severalfold increase in the K(m) value was observed by the substitution of the pro-R(p)-oxygen of the substrate with sulfur or by the substitution of His(124) of the enzyme with Ala, suggesting that a hydrogen bond is formed between the pro-R(p)-oxygen and His(124). These results allow us to propose that the pro-R(p)-oxygen contributes to orient His(124) to the best position for the catalytic function through the formation of a hydrogen bond.  相似文献   

20.
D B Olsen  G Kotzorek  F Eckstein 《Biochemistry》1990,29(41):9546-9551
The inhibitory effect of phosphorothioate residues, located within one strand of double-stranded DNA, on the hydrolytic activity of the restriction endonuclease EcoRV was investigated. Specific incorporation of a phosphorothioate group at the site of cleavage yielded the sequence 5'-GATsATC-3'. This modified sequence was cleaved at a relative rate of 0.1 compared to the unmodified substrate. Substrates 5'-GATsAsTC-3' and 5'-GsATsATC-3', both containing one additional phosphorothioate substitution, were linearized at a rate of 0.04 relative to unmodified DNA. However, under the same conditions, fully dAMPS-substituted DNA was found to be virtually resistant to the hydrolytic activity of EcoRV. Further experiments showed that double-stranded DNA fragments generated by PCR containing phosphorothioate groups within both strands are potent inhibitors of EcoRV catalysis. The inhibition was independent of whether the inhibitor fragment contained an EcoRV recognition site. We concluded that substitution of the phosphate group at the site of cleavage by a phosphorothioate residue decreases the rate of EcoRV-catalyzed hydrolysis most significantly. Substitution of other phosphate groups within the recognition sequence plays a limited role in enzyme inhibition. The presence of multiple dNMPS residues at regions of the DNA removed from the EcoRV recognition site may decrease the amount of enzyme available for catalysis by nonspecific binding to EcoRV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号