首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The phenomenon of dosage compensation in Drosophila melanogaster which consists in doubling of the activity of the X-chromosome genes in males as compared to those in females was studied.The specific activities of 6-phosphogluconate dehydrogenase (6PGD) and glucose-6-phosphate dehydrogenase (G6PD) determined by the sex-linked structural genes Pgd and Zw respectively were studied in flies carrying duplications for different regions of the X-chromosome. The increase in dose of Pgd and Zw in females resulting from the addition of an extra X-chromosome or X-fragments leads to a proportional rise in the specific activities of 6PGD and G6PD. On the other had the addition to females of the X-chromosome carrying no Pgd gene or X-fragments lacking Pgd and Zw has no effect on the enzyme activities. Thus we failed to reveal in the X-chromosome any compensatory genes envisaged by Muller, which would repress sex-linked structural genes proportional to their dose.The 6PGD and G6PD levels in phenotypically male-like intersexes carrying two X-chromosomes and three autosome sets (2X3A) is 30% higher than in diploid (2X2A) or triploid (3X3A) females. However the specific activities of the enzymes in female-like intersexes are the same as in regular females. The levels of 6PGD and G6PD per one X-chromosome are 1.5–2.0 times higher in the intersexes than in the normal females and metafemales (3X2A). The results indicate that the level of expression of the X-chromosome is determined by the X:A ratio. It is suggested that the decreased X:A ratio in males is responsible for the hyperactivation of their X-chromosomes.  相似文献   

2.
Different homozygous lines of similar genotype with respect to G6pd and 6Pgd were shown to have different enzyme activities for G6PD and 6PGD. Crosses between high and low lines suggested that there were modifying genes present on the autosomes, while others were probably located on the X chromosome. Allelic variation within each electrophoretic class of G6pd and 6Pgd might, however, also have contributed to this variation. An experiment on adaptation to sodium octanoate demonstrated that in adapted flies selection for lower enzyme activity had occurred, which provided further evidence for the existence of genetic differences in activity. Furthermore, a strong positive correlation between the activities of G6PD and 6PGD was found for each genotype. Since no correlation was found between MDH and the two enzymes G6PD and 6PGD, it could be concluded that this correlation was probably rather specific for G6PD and 6PGD. Interaction between genotypes with respect to activity was also found. It was shown that the variation at 6Pgd influenced the activity of G6PD within a genotype. The data are discussed in relation to fitness differences presented in foregoing articles.  相似文献   

3.
Two X-linked mutations that give rise to overproduction of glucose-6-phosphate dehydrogenase (G6PD) were found among the progenies of isogenic strains which had been subjected to selection for high G6PD activity. Mapping of the high-activity factor in these mutants was carried out using car Zw B sw males of low G6PD activity. As a result, the factor mapped 0.02–0.04 unit to the left of the Zw locus. The amount of the G6PD gene was also quantitated utilizing a cloned G6PD gene as a probe, but no significant difference was found between the mutants and low-G6PD activity flies which shared the same X, second, and third chromosomes with the mutants. These findings are consistent with our notion that the mutations might be regulatory mutations, possibly resulting from the insertion of a novel class of transposable genetic elements.This research was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.  相似文献   

4.
In this study, we investigated the effect of astaxanthin (Ast) and aluminum (Al) on the erythrocyte glucose‐6‐phosphate dehydrogenase (G6PD) and 6‐phosphogluconate dehydrogenase (6PGD) enzymes activities in vivo and on G6PD enzyme in vitro in rats. For in vitro studies, G6PD enzyme was purified from rat erythrocyte by using 2′,5′‐ADP‐Sepharose 4B affinity gel. The effects of Ast and Al3+ ion were investigated on the purified enzyme. It was determined that Ast increased the enzyme activity, whereas Al3+ inhibited the enzyme activity noncompetitively (IC50 values; 0.679 mM, Ki values 1.32 mM). For in vivo studies, the rats were divided into the groups: control (Cont.), Al, Ast, and Al + Ast. The last three groups were compared with the control group. In Al group, a significant degree of inhibition was observed in the activity of G6PD and 6PGD enzymes when compared with the control group (P < 0.05), whereas there was an increase in the activities of G6PD and 6PGD enzymes in Ast and Al + Ast groups (P < 0.05).  相似文献   

5.
Glucose‐6‐phosphate dehydrogenase (G6PD) and 6‐phosphogluconate dehydrogenase (6PGD) play an important function in various biochemical processes as they generate reducing power of the cell. Thus, metabolic reprogramming of reduced nicotinamide adenine dinucleotide phosphate (NADPH) homeostasis is reported to be a vital step in cancer progression as well as in combinational therapeutic approaches. In this study, N‐benzoylindoles 9a‐ ‐ 9d , which form the main framework of many natural indole derivatives such as indomethacin and N‐benzoylindoylbarbituric acid, were synthesized through three easy and effective steps as an in vitro inhibitor effect of G6PD and 6PGD. The N‐benzoylindoles inhibited the enzymatic activity with IC50 in the range of 3.391505 μM for G6PD and 2.19–990 μM for 6PGD.  相似文献   

6.
Developmental profiles of the second- and third-chromosome modifiers of the activities of glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) in Drosophila melanogaster were investigated. Third-chromosome modifiers showed very strong effects on both enzyme activities at larval, pupal, and adult stages, whereas second-chromosome effects were detected mainly at larval and adult stages. For both enzyme activities and both chromosomes, the correlation over line means between larval and pupal stages was significantly positive, but the correlation between larval or pupal stage and adult stage was not significant. This result suggests that the actions of modifiers on G6PD and 6PGD activities are influenced by the change of developmental stages. Correlation between G6PD and 6PGD activities was positive and highly significant throughout the developmental stages for both sets of chromosomes, although third-chromosome correlations were slightly higher than second-chromosome correlations. The magnitude of the correlation between G6PD and 6PGD activities does not seem to be influenced by the change of development. Diallel crosses for both sets of chromosomes indicate that the action of activity modifiers is mainly additive for both sets of chromosomes, but dominance effects were detected in some cases in adult males. Significant maternal effects were detected for the third chromosome for both enzyme activities until the pupal stage. The change of the activity modifier action after emergence of the imago and the significant correlation between G6PD and 6PGD activities were also detected for diallel progeny.This work was supported by Public Health Service Grant NIH-GM11546.Paper No. 10211 of the journal series of the North Carolina Agricultural Research Service, Raleigh, North Carolina 27695.  相似文献   

7.
G6PD, 6PGD and GR have been purified separately in the single step from rat lung using 2′, 5′-ADP Sepharose 4B affinity chromatography. The purified enzymes showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of the enzymes were estimated to be 134?kDa for G6PD, 107?kDa for 6PGD and 121?kDa for GR by Sephadex G-150 gel filtration chromatography, and the subunit molecular weights was respectively found to be 66, 52 and 63?kDa by SDS-PAGE. Optimum pH, stable pH, optimum ionic strength, optimum temperature, KM and Vmax values for substrates were determined. Product inhibition studies were also performed. The enzymes were inhibited by levofloxacin, furosemide, ceftazidime, cefuroxime and gentamicin as in vitro with IC50 values in the range of 0.07–30.13?mM. In vivo studies demonstrated that lung GR was inhibited by furosemide and lung 6PGD was inhibited by levofloxacin.  相似文献   

8.
Summary The effects of chromosomal rearrangements pn2, pn3, TE100 and TE101 on variegation of the gene Pgd, which controls the synthesis of 6-phosphogluconate dehydrogenase (PGD), were studied in Drosophila melanogaster. The electrophoretic patterns of PGD activity were first examined at different developmental stages. The degree of variegation of Pgd caused by pn2 and pn3 was higher in adult flies (the calculated percentage of cells with inactive Pgd was 70%–80%) as compared with larvae (about 50%). This difference can be explained by the tissue-specific mosaicism of Pgd expression; variegation was high in the neural ganglia, imaginal discs, and posterior gut but relatively low in the salivary glands, fat bodies and Malpighian tubes. In the case of TE100, neither tissue specificity, nor marked differences in the degree of variegation between larvae and adults were found. None of the rearrangements examined had an effect on the expression of Pgd in the ovary cells, but repression was seen in some cells of the male gonads. The data obtained suggest that the timing of clonal initiation is influenced by the rearrangements studied. The possible mechanisms preventing changes in the expression of the Pgd gene in the nurse cells caused by these rearrangements are discussed.  相似文献   

9.
Glucose-6-phosphate dehydrogenase (E. C.: 1.1.1.49) phenotypes and 6-phosphogluconate dehydrogenase (E. C.: 1.1.1.44) phenotypes were determined by starch-gel electrophoresis of red cell hemolysates of Galago crassicaudatus subspp., Propithecus verreauxi, Lemur spp., Hapalemur griseus, and Macaca mulatta. A single glucose-6-phosphate dehydrogenase (G6PD) phenotype was found in each species. A single 6-phosphogluconate dehydrogenase (6PGD) phenotype was found in Lemur spp., Hapalemur griseus, and Galago crassicaudatus argentatus. In a group of six Propithecus verreauxi, three 6PGD phenotypes, PGD A, PGD AB, and PGD B, were found. Three phenotypes, PGD A, PGD AB, and PGD B, were found in 38 G. c. crassicaudatus. The three phenotypes in each species are apparently the products of two codominant autosomal alleles, PGDA and PGDB. The frequency of PGDA in G. c. crassicaudatus is 0.263. A population of 260 free-ranging macaques displays a polymorphism at the 6PGD locus. Three phenotypes, PGD A, PGD AB, and PGD B, were found. These also appear to be controlled by two codominant autosomal alleles, PGDA and PGDB the frequency of PGDA = 0.913. Additional analysis of three well-defined troops within the macaque population indicated that there are no significant differences between the troops or within the population at the 6PGD locus.  相似文献   

10.
Unsealed, hemoglobin-free erythrocyte ghosts contain low yet significant levels of Glucose 6-phosphate dehydrogenase (G6PD) activity. This activity is comparable in erythrocyte ghosts obtained from normal individuals and from G6PD-deficient subjects (of Mediterranean type), in spite of the marked differences found in the corresponding cytosolic compartments. The membrane preparations can bind purified human G6PD (type B) to their cytoplasmic surface according to patterns of positive cooperativity. 2.4 × 104 and 1.6 × 104 G6PD-binding sites are present on the inner surface of each ghost obtained from normal and from G6PD-deficient erythrocytes, respectively, the relevant association constants being 2.8 × 106 M?1 and 0.82 × 106 M?1. The interaction of G6PD with the ghosts is unaffected by different ionic strengths or by metabolites such as glucose 6-phosphate, NADP and NADPH.  相似文献   

11.
Five alleles with eight electrophoretic phenotypes of 6-phosphogluconate dehydrogenase were found in 1,195 blood samples from fourteen populations of nine macaque species.Macaca fascicularis from Malaya showed the most polymorphism, with three Pgd alleles resulting in five phenotypes.Macaca mulatta, M. speciosa, M. nemestrina, andM. cyclopis had two alleles each (although the last two species showed a high percentage of homozygosity). The remaining four species (M. fuscata, M. radiata, M. maura, andM. nigra) were homozygous for the Pgda allele. The predominance of Pgda was observed in all macaque species, exceptM. speciosa which showed a high (57%) frequency of Pgdd. The distinctive position ofM. speciosa with regard to 6PGD variants parallels observations that indicate that this species carries transferrin and carbonic anhydrase I alleles in different frequencies from those of the other macaque species. Other similarities between the patterns of transferrin and 6PGD variations include a tendency toward homozygosity at the Pgd locus in the insular macaque forms. However, in this case only the Pgda allele is involved, while some variation was found in the transferrin alleles fixed by the founder effect in the insular macaques.This research was supported by NSF grants GF 253, GB 7426, and GB 15060 of the U.S.-Japan Cooperative Science and Systematic Biology Programs.  相似文献   

12.
The pentose phosphate cycle is considered as a major source of NADPH and pentose needed for nucleic acid biosynthesis. 6-Phosphogluconate dehydrogenase (6PGD), an enzyme participating in this cycle, catalyzes the oxidative decarboxylation of 6PGD to ribulose 5-phosphate with the subsequent release of CO2 and the reduction of NADP. We have determined the amino acid sequence of 6PGD of Bactrocera oleae and constructed a three-dimensional model based on the homologous known sheep structure. In a comparative study of 6PGD sequences from numerous species, all the conserved and variable regions of the enzyme were analyzed and the regions of functional importance were localized, in an attempt promoted also by the direct involvement of the enzyme in various human diseases. Thus, analysis of amino acid variability of 37 6PGD sequences revealed that all regions important for the catalytic activity, such as those forming the substrate and coenzyme binding sites, are highly conserved in all species examined. Moreover, several amino acid residues responsible for substrate and coenzyme specificity were also found to be identical in all species examined. The higher percentage of protein divergence is observed at two regions that accumulate mutations, located at the distant parts of the two domains of the enzyme with respect to their interface. These peripheral regions of nonfunctional importance are highly variable and are predicted as antigenic, thus reflecting possible regions for antibody recognition. Furthermore, locating the differences between diptera 6PGD sequences on the three-dimensional model suggests probable positions of different amino acid residues appearing at B. oleae fast, intermediate, and slow allozymic variants. Abbreviations used: 6Pgd, 6-Phosphogluconate dehydrogenase gene; 6PGD, 6-Phosphogluconate dehydrogenase enzyme; NADPH, nicotinamide adenine dinucleotide phosphate; ADP, adenine dinucleotide phosphate; TNBS, 2,4,6 trinitrobenzensulfonic acid.  相似文献   

13.
In this study, the effects of astaxanthin (AST) that belongs to carotenoid family and cadmium (Cd), which is an important heavy metal, on rat erythrocyte G6PD, 6PGD, GR, and TrxR enzyme activities in vivo and on rat erythrocyte 6PGD enzyme activity in vitro were studied. In in vitro studies, 6PGD enzyme was purified from rat erythrocytes with 2′,5′‐ADP Sepharose4B affinity chromatography. Results showed inhibition of enzyme by Cd at IC50; 346.5 μM value and increase of 6PGD enzyme activity by AST. In vivo studies showed an increase in G6PD, 6PGD, and GR enzyme activities (P ? 0.05) and no chance in TrxR enzyme activity by AST. Cd ion inhibited G6PD, 6PGD, and GR enzyme activities (P ? 0.05) and also decreased TrxR enzyme activity (P ? 0.05). AST + Cd group G6PD enzyme activity was statistically low compared with control group (P ? 0.05). 6PGD and TrxR enzyme activities decreased without statistical significance (P ? 0.05); however, GR enzyme activity increased statistically significantly (P ? 0.05).  相似文献   

14.
Summary The molecular nature of lethal and semilethal mutations in the Pgd locus of D. melanogaster coding for 6-phosphogluconate dehydrogenase (6PGD) was studied. All the 11 mutations affect the structural gene of the Pgd locus: 3 semilethal mutations resulted in altered 6PGD molecules with decreased catalytic activities; the rest 8 lethals were null alleles characterized by mutant polypeptides capable of reacting with antisera against highly purified 6PGD.Null or low activity alleles for glucose-6-phosphate dehydrogenase induced by ethyl methanesulfonate were shown to be suppressors for the lethal mutations in the Pgd locus.A monocistronic type of organization of the Pgd locus is suggested taking into account the biochemical mechanism of suppression of the Pgd-lethals and their location in the structural gene coding for 6PGD.  相似文献   

15.
The activity of glucose-6-phosphate dehydrogenase (G6PD) was studied in five brain areas of rats aged 5 to 90 days. The areas studied were: the olfactory bulb (OB), cortex, hippocampus, striatum and septum. The G6PD activity increased more than 2-fold from 5 to 90 days in the OB, while it was almost constant in the other areas. At every stage of development, the G6PD activity was significantly higher in the OB than in the other areas. The G6PD pattern was compared with 6-phosphogluconate dehydrogenase (6PGD), glutathione reductase (GR); glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) in order to find synergistic interactions among activities of these enzymes during development. Over the considered period, the activity of 6PGD increased significantly in the OB, while no significant difference in activity was detected in the other areas. GR increased significantly and progressively at each developmental stage in all areas. GPX showed a progressive increase in the OB, while in other areas a significant increase was detected at 90 days only. CAT and SOD showed a different and independent pattern which differred from the G6PD pattern. CAT showed the highest level of activity at 5 days then progressively decreased or was constant until 90 days; SOD had the highest value at 5 days, than it decreased at 10 days and increased from 10 to 90 days. In all areas, G6PD activity showed three electrophoretic bands, whose relative activity changed with development. At histochemical level, we found a marked G6PD activity in the periglomerular zone of the OB, which increased with age, while other areas showed a homogeneous staining. The present results demonstrate that G6PD activity increases in the OB during the developmental stages and there is a coordinated simultaneous activation of 6PGD, GPX and GR. It is likely that this enzyme induction increases the antioxidant defense of periglomerular cells that are subject to a rapid renewal and thus much more exposed to oxidant stress.  相似文献   

16.
Glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) were separated and partially purified from glucose-grown cells of Lactobacillus casei. The enzymes had similar pH optima, thermosensitivity and molecular weights. They had different net charges and their pI values were 5.38 and 4.52, respectively. Histidine, arginine, lysine and cysteine residues were essential for the activity of G6PD, and all the above amino acids with the exception of lysine were required for 6PGD activity. Mg2+ activated 6PGD up to 15 mM concentration, above which it was inhibitory. It had no effect on G6PD activity. G6PD was specific for NADP+, but 6PGD showed some activity with NAD+ as the cofactor, although it was essentially NADP(+)-preferring. Both the enzymes, were inhibited by NADPH. 6PGD was also inhibited by its product, ribulose 5-phosphate. ATP inhibited 6PGD only at subsaturating concentrations of NADP+. The inhibition was sigmoidal in the absence of Mg2+ and hyperbolic in its presence.  相似文献   

17.
The sex-linked Pgd + and Zw + genes of Drosophila melanogaster and their associated enzyme activities 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase were employed in an analysis of the relationship between dosage compensation and the location of genes in the genome. In the genotypes examined, the enzyme activity specified by each copy of the gene is twice in males what it is in females. This is true of normal, structurally rearranged, and duplication genotypes. Dosage compensation, therefore, is a regulatory function associated with single structural genes or small chromosomal segments and does not depend on the gene's physical location on the X chromosome.This research was supported by NIH Grant No. 5-R01-HD04859.  相似文献   

18.
Isogenic lines, in which chromosomes sampled from natural populations of D. melanogaster are substituted into a common genetic background, were used to detect and partially characterize autosomal factors that affect the activities of the two pentose phosphate pathway enzymes, glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD). The chromosome 3 effects on G6PD and 6PGD are clearly correlated; the chromosome 2 effects, which are not so great, also appear to be correlated, but the evidence in this case is not so strong. Examination of activity variation of ten other enzymes revealed that G6PD and 6PGD are not the only pair of enzymes showing a high positive correlation, but it is among the highest in both sets of lines. In addition, there was some evidence that the factor(s) affecting G6PD and 6PGD may also affect two other metabolically related enzymes, transaldolase and phosphoglucose isomerase.—Rocket immunoelectrophoresis was used to estimate specific CRM levels for three of the enzymes studied: G6PD, 6PGD and ME. This experiment shows that a large part of the activity variation is accounted for by variation in CRM level (especially for chromosome 3 lines), but there remains a significant fraction of the genetic component of activity variation that is not explained by CRM level.—These results suggest that the autosomal factors are modifiers involved in regulation of the expression of the X-linked structural genes for G6PD and 6PGD, but a role in determining part of the enzymes' primary structure cannot be excluded with the present evidence.  相似文献   

19.
SYNOPSIS. The activities of glucose-6-phosphate dehydrogenase (G-6-PD) (EC No. 1.1.1.49), 6-phosphogluconate dehydrogenase (PGD) (EC No. 1.1.1.44), and isocitrate dehydrogenase (ICD) (EC No. 1.1.1.42) from promastigotes of Leishmania donovani strain 3S grown at 25 C in modified Tobie's (mT) medium and from promastigotes of the 37 C-adapted substrain of this strain cultivated in the mT at 37 C were assayed at 25 and 37 C. At 25 C ICD from both the strain and the substrain had the highest, and PGD, the lowest activity; the activity of G-6-PD was intermediate, but much closer to that of ICD. Irrespective of the temperature of the assay, the activities of G-6-PD and ICD from the 37 C substrain were significantly higher than those of these enzymes from the parental strain; however, the activity of PGD from the 25 C strain was slightly higher than that of this dehydrogenase from the 37 C-adapted stock. No significant activity losses of G-6-PD and ICD from either the strain or the substrain were noted after incubation of the extracts in the presence of 0.25 M sucrose at 37 C for 2 hr. PGD was unstable in such extracts, but it could be rendered stable by the addition of 4 mM 6-phosphogluconate. G-6-PD was the least and ICD the most dependent on Mg2+ ions. In the 15–25 C range, the Q10 values of the enzymes from the 25 C strain were 2.83, 2.5, and 2.63 for G-6-PD, PGD, and ICD, respectively. These values for the respective enzymes in the 25–35 C range were 2.06, 1.67, and 1.62. The Q10 values of the enzymes from the 37 C substrain in the 15–25 C range were 2.06 for G-6-PD, 3.25 for PGD, and 2.77 for ICD; in the 25–35 C range, the corresponding values were 1.67, 1.46, and 1.83. Cultivation of the 37 C substrain at 25 C was accompanied by a drop in G-6-PD and ICD activities.  相似文献   

20.
Tumor metabolism, an emerging hallmark of cancer, is characterized by aberrant expression of enzymes from various metabolic pathways including glycolysis and PPP (pentose phosphate pathway). Glucose 6 phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD), oxidative carboxylases of PPP, have been reported to accomplish different biosynthetic and energy requirements of cancer cells. G6PD and 6PGD have been proposed as potential therapeutic targets for cancer therapy during recent years due to their overexpression in various cancers. Here, we have employed enzymatic assay based screening using in-house G6PD and 6PGD assay protocols for the identification of mushroom extracts which could inhibit G6PD or 6PGD enzymatic activity for implications in cancer therapy. For the fulfillment of the objectives of present study, nine edible mushrooms were subjected to green extraction for preparation of ethanolic extracts. 6xhis-G6PD and pET-28a-h6PGD plasmids were expressed in BL21-DE3 E. coli cells for the expression and purification of protein of interests. Using purified proteins, in house enzymatic assay protocols were established. The preliminary screening identified two extracts (Macrolepiota procera and Terfezia boudieri) as potent and selective G6PD inhibitors, while no extract was found highly active against 6PGD. Further, evaluation of anticancer potential of mushroom extracts against lung cancer cells revealed Macrolepiota procera as potential inhibitor of cancer cell proliferation with IC50 value of 6.18 μg/ml. Finally, screening of M. procera-derived compounds against G6PD via molecular docking has identified paraben, quercetin and syringic acid as virtual hit compounds possessing good binding affinity with G6PD. The result of present study provides novel findings for possible mechanism of action of M. procera extract against A549 via G6PD inhibition suggesting that M. procera might be of therapeutic interest for lung cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号