首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The neural cell adhesion molecule L1 is a phosphorylated integral membrane glycoprotein that is recovered from adult mouse brain by immunoaffinity chromatography as a set of polypeptides with apparent molecular masses of 200, 180, 140, 80, and 50 kilodaltons (L1-200, L1-180, L1-140, L1-80, and L1-50, respectively). In the present study, we show that two kinase activities are associated with immunopurified L1: One specifically phosphorylates L1-200 and L1-80 but not L1-180, L1-140, or L1-50. This pattern of phosphorylation corresponds to the one described for L1 after metabolic phosphate incorporation into cultures of cerebellar cells. In both cases, serine is the main amino acid that is labeled by radioactive phosphate. The kinase activity is not activated by Ca2+, calmodulin, phosphatidylserine, diolein, cyclic AMP, or cyclic GMP, a result suggesting that the enzyme is distinct from Ca2+/calmodulin-dependent kinases, from protein kinase C, or from cyclic AMP/cyclic GMP-dependent kinases and may belong to the independent kinase group. The other kinase phosphorylates only casein but not L1, utilizes GTP as well as ATP, and is strongly inhibited by heparin. Because the primary structure of the L1 protein does not contain consensus sequences characteristic for known kinases, we believe that the catalytic activities detectable in immunopurified L1 are due to kinases that are strongly enough associated with L1 to withstand the stringent purification procedures.  相似文献   

2.
Abstract: The cell adhesion molecule L1 is a multifunctional protein in the nervous system characterizing cell adhesion, migration, and neurite outgrowth. In addition to full-length L1, we found an alternatively spliced variant lacking both the KGHHV sequence in the extracellular part and the RSLE sequence in the cytoplasmic part of L1. This L1 variant was expressed exclusively in nonneuronal cells such as Schwann cells, astrocytes, and oligodendrocytes, in contrast to the expression of the full-length L1 in neurons and cells of neuronal origin. To investigate the functions of the L1 variant, we established cell lines transfected with a cytoplasmic short L1 (L1cs) cDNA that lacks only the 12-bp segment encoding for the RSLE sequence. The promoting activities of homophilic cell adhesion, neurite outgrowth, and neuronal cell migration of L1cs-transfected cells (L4-2) were similar to those of full-length L1-transfected cells (L3-1), but the cell migratory activity of L4-2 itself was clearly lower than that of L3-1. In conclusion, the short form of L1 is a nonneuronal type, in contrast to the neuronal type of the full-length L1. Deletion of the four amino acids RSLE in the cytoplasmic region of L1 markedly reduced cell migratory activity, suggesting an importance of the RSLE sequence for the signaling events of neuronal migration mediated by L1.  相似文献   

3.
The neural cell adhesion molecule L1 is a phosphorylated, integral membrane glycoprotein that is recovered from adult mouse brain tissue by immunoaffinity chromatography as a set of polypeptides with apparent molecular masses of 200, 180, 140, and 80 kilodaltons (L1–200, L1–180, L1–140, and L1–80, respectively). It has been shown that L1–140 and the phosphorylated L1–80 is generated from L1–200 by mild proteolytic treatment of intact cells. In the present study we have investigated the structural relationships between the different molecular forms of L1 and their location with regard to the surface membrane. We could show that L1–200 has two preferred cleavage sites, one that generates the amino terminal, extracellularly exposed L1–140 and the carboxy terminal L1–80 that spans the membrane. Cleavage at the other site leads to the generation of the amino terminally located L1–180 and the membrane-attached, phosphorylated carboxy terminal L1–30. This site is cleaved during treatment of live cultured cells with broad-spectrum, protease-free phospholipase C (but not phosphatidylinositol-specific phospholipase C) or exposure to sodium azide or cyanogen bromide. Other conditions that cause damage to cells do not lead to the generation of L1–180 and L1–30, suggesting a particular cell-intrinsic cleavage mechanism. L1–180 is truly soluble in aqueous solutions, since it can be recovered from culture supernatants and in the supernatant of a crude membrane fraction after incubation for 2 h at 37°C. Although trypsin treatment alone does not release L1–140 into the supernatant, combination of phospholipase C and mild tryptic treatment leads to the release of L1–140 and L1–50, the latter being most likely the extracellularly exposed domain of L1–80 that is complementary to the membrane-integrated phosphorylated L1–30. Phase separation experiments with Triton X-114 show that the released forms of L1–180 and L1–140 distribute into the aqueous phase, whereas they distribute into the detergent phase when in association with L1–200 or L1–80. However, when L1–80 is cleaved to yield the soluble L1–50 and membrane-anchored L1–30, L1–140 is released into the supernatant together with L1–50. A strong affinity of L1–200, L1–140, and L1–80 to each other is also indicated by the fact that they incorporate together into liposomes and separate only under strong detergent conditions. Also, a strong tendency to aggregate is observed for L1-containing liposomes, but not for those containing the adhesion molecules neural cell adhesion molecule and myelin-associated glycoprotein. Although the physiological roles of the soluble L1 forms, their mode of generation, and the strong affinity for each other remain to be investigated, the availability of soluble forms of L1 opens the possibility to use them as probes for the functional properties of L1 in assay systems involving live cells in vitro.  相似文献   

4.
Abstract: Growth-associated phosphoprotein B-50 is a neural protein kinase C (PKC) substrate enriched in nerve growth cones that has been implicated in growth cone plasticity. Here we investigated whether B-50 is a physiological substrate for casein kinase II (CKII) in purified rat cortical growth cone preparations. Using site-specific proteolysis and known modulators of PKC, in combination with immunoprecipitation, mass spectrometry, and phosphoamino acid analysis, we demonstrate that endogenous growth cone B-50 is phosphorylated at multiple sites, on both serine and threonine residues. Consistent with previous reports, stimulation of PKC activity increased the phosphorylation of only those proteolytic fragments containing Ser41. Under basal conditions, however, phosphorylation was predominantly associated with fragments not containing Ser41. Mass spectrometry of tryptic digests of B-50, which had been immunoprecipitated from untreated growth cones, revealed that in situ phosphorylation occurs within peptides B-50181–198 and B-5082–98. These peptides contain the major and minor in vitro CKII phosphosites, respectively. In addition, cyanogen bromide digestion of immunoprecipitated chick B-50 generated a 4-kDa C-terminal B-50 phosphopeptide, confirming that phosphorylation of the CKII domain occurs across evolutionary diverse species. We conclude that B-50 in growth cones is not only a substrate for PKC, but also for CKII.  相似文献   

5.
The kinetics of neural cell adhesion molecule (NCAM) binding to heparin were studied in a heparin-Sepharose-based solid-phase binding assay. The observed binding is time dependent and saturable. A binding constant of 5.2 +/- 1.4 X 10(-8) M is observed for binding of newborn rat NCAM to heparin. This is approximately 25 times lower than the binding constant determined for newborn rat NCAM homophilic binding. Both Scatchard and Hill plot analyses suggest the presence of only one binding site. Fab' fragments of antibodies to rat NCAM significantly inhibit binding, a result indicating that a specific site on NCAM is involved in binding to heparin. The binding is inhibited by heparin (IC50, approximately 5 micrograms/ml), whereas chondroitin sulfate is a less potent inhibitor (IC50, approximately 15 micrograms/ml).  相似文献   

6.
Abstract: The differential expression of the cell adhesion molecule L1 by chromaffin cells has recently been suggested to be responsible for the segregation of chromaffin cells into homotypic catecholaminergic groups in the adrenal gland. The present study was undertaken to test the hypothesis that glucocorticoids, which increase in the adrenal gland during development, could be responsible for the repression of L1 in adrenergic chromaffin cells. PC12 cells were used as the experimental model, and relative L1 protein and mRNA levels were examined after treating the cells with glucocorticoids or NGF. Analysis of western blots indicated that glucocorticoids decreased the L1 protein levels by one-half, whereas NGF increased L1 protein levels ∼2.3-fold. In addition, the glucocorticoids inhibited both the NGF induction of the neurite outgrowth and the increase in L1 expression. Analysis of the mRNA levels by PCR and northern blots indicated that glucocorticoids reduced the L1 mRNA, whereas NGF increased the level of L1 mRNA. Maximal inhibition of L1 expression was observed at concentrations of 10−7 M dexamethasone, and the decrease occurred during the second day of treatment. The effects of dibutyryl cyclic AMP and phorbol ester on the glucocorticoid and NGF regulation of L1 protein were also examined. This is the first report indicating that L1 expression can be down-regulated by glucocorticoids. The results support the hypothesis that during development the repression of L1 in adrenergic chromaffin cells may be, in part, linked to the increase in glucocorticoid levels in the adrenal gland.  相似文献   

7.
Abstract: We have shown recently that mouse small cerebellar neurons adhere to a short amino acid sequence of the G2 domain of the laminin α1 chain via the cell surface-expressed HNK-1 carbohydrate. Therefore, we were interested in identifying glycoproteins carrying the HNK-1 carbohydrate at the cell surface of these neurons. Adhesion of small cerebellar neurons to laminin is partially dependent on Ca2+, Mn2+, and Mg2+, indicating the involvement of integrins, which were identified as β1, α3, and α6. They could be shown to bind to laminin by a β1-dependent adhesion mechanism. None of these subunits was found to carry the HNK-1 carbohydrate. HNK-1-immunoreactive glycoproteins were immunoprecipitated and shown to consist of predominantly one molecular species, which was identified as the neural cell recognition molecule L1. L1 was demonstrated to bind in a concentration-dependent and saturating manner to laminin. The binding could be partially inhibited by Fab fragments of monoclonal antibodies against the HNK-1 carbohydrate and against the Ig-like domains of L1. Furthermore, antibodies to the Ig-like domains of L1 and β1 integrin inhibited partially cell adhesion to laminin. Determination of the association of L1, β1 integrin, and the HNK-1 carbohydrate on the cell surface of live cerebellar neurons by antibody-induced patching and copatching revealed HNK-1 to be linked to L1, but less so to β1 integrin. However, only negligible association was found between L1 and β1 integrin. Furthermore, it could be shown that adhesion to laminin is mediated by L1/HNK-1- and β1 integrin-dependent mechanisms that act at least partially independent of each other.  相似文献   

8.
Abstract: Neural cell adhesion molecule (N-CAM) is involved in cell-cell interactions during synaptogenesis, morphogenesis, and plasticity of the nervous system. Disturbances in synaptic restructuring and neural plasticity may be related to the pathogenesis of several neuropsychiatric diseases, including mood disorders and schizophrenia. Disturbances in brain cellular function may alter concentrations of N-CAM in the CSF. Soluble human N-CAM proteins are detectable in the CSF but are minor constituents of serum. We have recently found an increase in N-CAM content in the CSF of patients with schizophrenia. Although the pathogenesis of both schizophrenia and mood disorders is unknown, ventriculomegaly, decreased temporal lobe volume, and subcortical structural abnormalities have been reported for both disorders. We have therefore measured N-CAM concentrations in the CSF of patients with mood disorder. There were significant increases in amounts of N-CAM immunoreactive proteins, primarily the 120-kDa band, in the CSF of psychiatric inpatients with bipolar mood disorder type I and recurrent unipolar major depression. There were no differences in bipolar mood disorder type II patients as compared with normals. There were no significant effects of medication treatment on N-CAM concentrations. It is possible that the 120-kDa N-CAM band present in the CSF is derived from CNS cells as a secreted soluble N-CAM isoform. Our results suggest the possibility of latent state-related disturbances in N-CAM cellular function, i.e., residue from a previous episode, or abnormal N-CAM turnover in the CNS of patients with mood disorder.  相似文献   

9.
Abstract: Previous experiments suggested that the human cell adhesion molecule L1 interacts with different integrins via its sixth immunoglobulin-like domain in an RGD-dependent manner. Here we have described the expression of this domain from early postnatal mouse brain, analyzed the structure of the recombinant protein by circular dichroism and fluorescence spectroscopy, and performed solid-phase binding studies to αvβ3, αIIbβ3, and α5β1 integrins. The domain was found to have the expected β-sheet organization, which was lost in the presence of guanidine hydrochloride. The midpoint of the single-step transition occurred at 1.5 M guanidine hydrochloride. The sixth immunoglobulin-like domain of mouse brain L1 contains two RGD motifs and was found to bind in a concentration-dependent and saturable way to αvβ3, αIIbβ3, and α5β1 integrins, suggesting specific interactions with these ligands. However, only the interaction to αvβ3 could be inhibited in a concentration-dependent manner by an RGD-containing peptide, and the IC50 was determined to be ∼20 n M . Mutants of the domain, which lack either one or both of the RGD sites, demonstrated that the RGD site comprising residues 562–564 is involved in the interaction to αvβ3. Our findings indicate an RGD-independent mechanism for the interactions to αIIbβ3 and α5β1, as no involvement of any RGD motif could be demonstrated.  相似文献   

10.
A serine/threonine protein kinase was partially purified from Neurospora crassa. Its physical and catalytic properties were typical of casein kinase II. In vitro, the kinase phosphorylated a calpain like protease from Allomyces arbuscula with higher affinity than a mixture of caseins.  相似文献   

11.
Ubiquitination of integral membrane proteins is a common posttranslational modification used to mediate endocytosis and endocytic sorting of cell surface proteins in eukaryotic cells. Ubiquitin (Ub)-binding proteins (UBPs) regulate the stability, function, and localization of ubiquitinated cell surface proteins in the endocytic pathway. Here, I report that the immunoglobulin superfamily cell adhesion molecule L1 undergoes ubiquitination and dephosphorylation on the plasma membrane upon L1 antibody-induced clustering, which mimics L1-L1 homophilic binding, and that these modifications are critical for obtaining the maximal rate of internalization and trafficking to the lysosome, but not to the proteasome. Notably, L1 antibody-induced clustering leads to the association of ubiquitinated L1 with Rabex-5, a UBP and guanine nucleotide exchange factor for Rab5, via interaction with the motif interacting with Ub (MIU) domain, but not the A20-type zinc finger domain. This interaction specifically depends on the presence of an Ub moiety on lysine residues in L1. Rabex-5 expression accelerates the internalization rates of L1WT and L1Y1176A, a tyrosine-based motif mutant, but not L1K11R, an ubiquitination-deficient mutant, leading to the accumulation of ubiquitinated L1 on endosomes. In contrast, RNA interference-mediated knockdown of Rabex-5 impairs the internalizations of L1WT and L1Y1176A, but not L1K11R from the plasma membrane. Overall, these results provide a novel mechanistic insight into how Rabex-5 regulates internalization and postendocytic trafficking of ubiquitinated L1 destined for lysosomal degradation.  相似文献   

12.
We recently described a new protein associated exclusively with neuronal clathrin-coated vesicles (CCVs), and characterized two monoclonal antibodies that react with it (S-8G8 and S-6G7). In this report, the association of neuronal protein of 185 kilodaltons (NP185) with CCV kinases and its interaction with tubulin are described. The affinity of NP185 for tubulin is significantly enhanced when tubulin is phosphorylated by CCV-associated casein kinase II. In contrast, phosphorylation of tubulin by a kinase activity associated with purified brain tubulin decreases its affinity for NP185. Together, these data suggest that the interaction of NP185 with tubulin is modulated by protein phosphorylation. Recent evidence has suggested that tubulin is phosphorylated by casein kinase II during neurite development. The enhanced affinity of NP185 for tubulin phosphorylated by casein kinase II could be important for proper intracellular sorting of this protein in the developing neuron.  相似文献   

13.
粘附分子通过介导细胞间相互作用发挥其在发育、再生和突触修饰等方面的重要作用.神经细胞粘附分子CHL1(close homologue of L1)是近年发现的粘附分子,属于粘附分子免疫球蛋白超家族,集中表达于神经系统,通过亲异性作用(heterophilic interaction)介导细胞与细胞、细胞与胞外基质的相互作用,进而参与神经系统的发育、轴突的生长、迁移及导向等过程.  相似文献   

14.
The expression and activity of factors influencing early neuronal development are altered by ethanol. Such factors include growth factors, for example, platelet-derived growth factor and basic fibroblast growth factor (for cell proliferation), and cell adhesion molecules (for neuronal migration). One agent, transforming growth factor beta1 (TGFbeta1), may affect both events. We tested the hypothesis that ethanol alters myriad TGFbeta1-mediated activities [i.e., cell proliferation and neural cell adhesion molecule (N-CAM) expression] using B104 neuroblastoma cells. TGFbeta1 inhibited the proliferation of B104 cells as evidenced by decreases in cell number and [3H]thymidine ([3H]dT) incorporation. TGFbeta1 induced sustained activation of extracellular signal-regulated kinases (ERKs), which are part of the family of mitogen-activated protein kinases (MAPKs). Treatment with PD98059 (a MAPK kinase blocker) abolished TGFbeta1-regulated inhibition of [3H]dT incorporation. TGFbeta1-mediated growth inhibition was potentiated by ethanol exposure. Ethanol also produced prolonged activation of ERK, an effect that was partially eliminated by treatment with PD98059. On the other hand, TGFbeta1 up-regulated N-CAM expression, and this up-regulation was not affected by treatment with PD98059. Ethanol inhibited the TGFbeta1-induced up-regulation of N-CAM expression in a concentration-dependent manner. Thus, TGFbeta1 affects ERK-dependent cell proliferation and ERK-independent N-CAM expression in B104 cells. Both activities are sensitive to ethanol and may underlie the ethanol-induced alterations in the proliferation and migration of CNS neurons.  相似文献   

15.
Summary 1. The cell adhesion molecule L1 has been implicated in adhesion and migration of cells, in axon growth, guidance, and fasciculation, in myelination and synaptic plasticity. The cytoplasmic domain of neuronal L1 is highly conserved between species and has been shown to be phosphorylated at serine and tyrosine residues. 2. To investigate the significance of L1 serine phosphorylation, mutants of L1 were generated in which ser-1152, ser-1181, ser-1204, and ser-1248 were exchanged for leucine and rat B35 neuroblastoma cells were stably transfected with the L1-cDNA constructs. 3. Neurite outgrowth on poly-l-lysine (PLL) as substrate was determined either with or without differentiation into a neuronal phenotype with dbcAMP. In addition, antibody-induced endocytosis and cell migration were examined. 4. Our observations indicate that phosphorylation of single serine residues of the cytoplasmic domain of L1 contributes to neurite outgrowth through different mechanisms. Neurite growth is increased when ser-1152 or ser-1181 is replaced by a non-phosphorylatable leucine and decreased when ser-1204 or ser-1248 is mutated to leucine. Furthermore, mutation of ser-1181 to leucine results in strongly enhanced antibody-induced endocytosis of L1 and also in enhanced cell migration.  相似文献   

16.
Abstract: Highly purified casein kinase II (CK II) isozymes from bovine brain gray matter (BBGM) were obtained by means of a new purification procedure consisting of one phosphocellulose and three Mono-Q steps. The phosphocellulose eluate showed two BBGM-CK II activities. The first minor component (BBGM-CK IIa) was eluted with 0.9 M NaCl and the major component was eluted at 1.1 M NaCl (BBGM-CK IIb). The protein complexes responsible for these two activities were comprised of three subunits, i.e., α (40 kDa), α' (38 kDa), and β (28 kDa), with various subunit ratios. The two isozymes displayed the same behavior on Superose 12 fast protein liquid chromatographic gel filtration and sucrose density centrifugation. BBGM-CK IIa and b showed chromatographic and biochemical differences including differing K m for ATP and GTP and K i for heparin and 2,3-bisphosphoglycerate. The properties of the main peak (BBGM-CK IIb) were studied in detail. The stimulatory effect of Mg2+, Mn2+, and Co2+ was highly dependent both on the nature of the substrate and on ionic type and concentration. It is surprising that with phosvitin as substrate, BBGM-CK IIb was fully active even in the absence of Mg2+ and NaCl. The inhibitory effect of heparin and the stimulatory effects of NaCl, KCl, spermine, and polylysine were highly dependent on the ionic strength, buffer type, and substrate. BBGM-CK II isozymes phosphorylated stathmine in the presence of polylysine, but the requirement for polybasic compounds was not absolute, as is the case with calmodulin and clathrin β-light chain. The unusual chromatographic behavior and biochemical properties of these BBGM-CK II isozymes, compared with the classical CK II, could be explained at least in part by their subunit ratios.  相似文献   

17.
Abstract: Casein kinase II (CKII) is a protein kinase acting in the intracellular cascade of reactions activated by growth factor receptors, and that has a profound influence on cell proliferation and survival. In this investigation, we studied the changes in the activity and levels of CKII in the rat brain exposed to 10. 15 and 20 min of transient forebrain ischemia followed by variable periods of reperfusion. The cytosolic CKII activity decreased during reperfusion by ∼ 30 and ∼ 50% in the selectively vulnerable areas, striatum and the CA1 region of the hippocampus, respectively. In the resistant CA3 region of hippocampus and neocortex, the activity increased by ∼ 20 and ∼ 60%, respectively. The postischemic changes in CKII activity were dependent on the duration of the ischemic insult. The levels of CKII did not change after ischemia, suggesting that the enzyme is modulated by covalent modification or is interacting with an endogenous inhibitor/activator. Treatment of the cytosolic fraction from cortex of rats exposed to ischemia and 1 h of reperfusion with agarose-bound phosphatase decreased the activity of CKII to control levels, suggesting that CKII activation after ischemia involves a phosphorylation of the enzyme. The correlation between postischemic CKII activity and neuronal survival implies that preservation or activation of CKII activity may be important for neuronal survival after cerebral ischemia.  相似文献   

18.
Abstract: Ethanol inhibits L1-mediated cell-cell adhesion in fibroblast cell lines stably transfected with human L1. Here we show that this action of ethanol is present in only a subset of transfected NIH/3T3 and L cell clonal cell lines. All L1-expressing cell lines had higher levels of cell adhesion than cell lines transfected with empty vector. In all ethanol-sensitive cell lines, L1-mediated adhesion was inhibited by ethanol (IC50 5–10 m M ), 2 m M butanol, but not 5 m M pentanol. In contrast, ethanol-insensitive cell lines were not inhibited by up to 200 m M ethanol, 2 m M butanol, or 5 m M pentanol. Ethanol sensitivity or insensitivity was a stable property of each cell line and was not associated with differences in electrophoretic mobility, abundance, or cell surface localization of L1. Fab fragments prepared from anti-L1 polyclonal antisera inhibited cell adhesion only in the ethanol-sensitive cell lines. These data suggest that L1 may exist in an alcohol-sensitive or an alcohol-insensitive state that may be governed by host cell factors.  相似文献   

19.
Cyclin/cyclin-dependent kinases (Cdks) are critical protein kinases in regulating cell cycle progression. Among them, cyclin D1/Cdk4 exerts its function mainly in the G1 phase. By using the tandem affinity purification tag approach, we identified a set of proteins interacting with Cdk4, including NDR1/2. Interestingly, confirming the interactions between NDR1/2 and cyclin D1/Cdk4, we observed that NDR1/2 interacted with cyclin D1 independent of Cdk4, but NDR1/2 and cyclin D1/Cdk4 did not phosphorylate each other. In addition, we found that NDR1/2 did not affect the kinase activity of cyclin D1/Cdk4 upon phosphorylation of GST-Rb. However, cyclin D1 but not Cdk4 promoted the kinase activity of NDR1/2. We also demonstrated that cyclin D1 K112E, which could not bind Cdk4, enhanced the kinase activity of NDR1/2. To test whether cyclin D1 promotes G1/S transition though enhancing NDR1/2 kinase activity, we performed flow cytometry analysis using cyclin D1 and cyclin D1 K112E Tet-On inducible cell lines. The data show that both cyclin D1 and cyclin D1 K112E promoted G1/S transition. Importantly, knockdown of NDR1/2 almost completely abolished the function of cyclin D1 K112E in promoting G1/S transition. Consistently, we found that the protein level of p21 was reduced in cells overexpressing cyclin D1 K112E but not when NDR1/2 was knocked down. Taken together, these results reveal a novel function of cyclin D1 in promoting cell cycle progression by enhancing NDR kinase activity independent of Cdk4.  相似文献   

20.
Abstract: Transient and time-dependent modulations of neural cell adhesion molecule (NCAM) polysialylation in the dentate gyrus of the rodent hippocampus are a feature of spatial and nonspatial forms of learning. In the hippocampal formation, polysialic acid immunoreactivity was localized to granule-like cells and their mossy fibre axons. We now demonstrate the latter to extend to the CA3 region where apparent recurrent and Schaffer collaterals were labelled. The axons of the CA1 pyramidal cell layer were immunopositive, as was the subiculum that they innervate. Layers I and III of the entorhinal cortex stained intensely for polysialic acid; however, these were not visible in the more lateral aspect of this region and were replaced by a single band of immunopositive neurons that extended to include the perirhinal and piriform cortices. After Morris water maze training, the number of polysialylated neurons within the entorhinal cortex exhibited a two- to threefold increase at the 10–12-h posttraining time with respect to that observed immediately after training. This increase was task specific, as no change was observed in freely swimming animals or those required to locate a visible platform. These results suggest the presence of a corticohippocampal pathway involved in the eventual consolidation of memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号