首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new procedure using an asymmetrically tailed linker-primer plasmid has been developed to prepare extremely high complexity cDNA libraries. This procedure yields plasmid primed libraries with a final form equivalent to those made by the procedure of Okayama and Berg. However, the number of steps involved in library preparation is decreased. The form of the vector is such that one end of the linearized linker-primer plasmid has a 3' terminal extension of 40 deoxythymidylate residues (the dT end). The other end has a 3' terminal extension of 10 deoxycytidylate residues (the dC end). The dC end of the plasmid is blocked to further 3' extension by a 3' phosphate group. This configuration enables one to prime first strand cDNA synthesis at the dT end, tail the 3' end of the cDNA with deoxyguanylate residues without tailing the dC end (due to the 3' phosphate block). The plasmid primed cDNA can then be self-annealed and the 3' phosphate blocking group removed during the synthesis of double stranded cDNA. The efficiency of this procedure is significantly higher than other methods (including phage based libraries): linker-primer libraries have 15 to 900-fold higher complexity than libraries prepared by other methods. A cloning efficiency of 9 x 10(8) colonies per microgram of linker-primer DNA was achieved. This method should be useful for the cloning of cDNAs corresponding to extremely rare mRNAs.  相似文献   

2.
3.
4.
Polymerase chain reaction (PCR) is a powerful method to produce linear DNA fragments. Here we describe the Tma thermostable DNA ligase-mediated PCR production of circular plasmid (PPCP) and its application in directed evolution via in situ error-prone PCR. In this thermostable DNA ligase-mediated whole-plasmid amplification method, the resultant DNA nick between the 5′ end of the PCR primer and the extended newly synthesized DNA 3′ end of each PCR cycle is ligated by Tma DNA ligase, resulting in circular plasmid DNA product that can be directly transformed. The template plasmid DNA is eliminated by ‘selection marker swapping’ upon transformation. When performed under an error-prone condition with Taq DNA polymerase, PPCP allows one-step construction of mutagenesis libraries based on in situ error-prone PCR so that random mutations are introduced into the target gene without altering the expression vector plasmid. A significant difference between PPCP and previously published methods is that PPCP allows exponential amplification of circular DNA. We used this method to create random mutagenesis libraries of a xylanase gene and two cellulase genes. Screening of these libraries resulted in mutant proteins with desired properties, demonstrating the usefulness of in situ error-prone PPCP for creating random mutagenesis libraries for directed evolution.  相似文献   

5.
W S Liao  G A Ricca  J M Taylor 《Biochemistry》1981,20(6):1646-1652
Double-stranded complementary deoxyribonucleic acid (cDNA) was synthesized from rat yolk sac alpha-fetoprotein (AFP) mRNA, inserted into the PstI site of plasmid pBR322 by an oligo(deoxyguanylic acid).oligo(deoxycytidylic acid) joining technique, and cloned in Escherichia coli chi 1776. A plasmid containing an inserted AFP double-stranded cDNA with a contiguous poly(adenylic acid) [poly(A)] segment was identified and subsequently employed in a new method for preparing AFP-specific hybridization probe. Following an initial digestion of the AFP plasmid with HindIII to create an open, recessed 3' end, lambda exonuclease III was employed to remove the DNA strand opposite the coding strand of the cDNA insert. Oligo(thymidylic acid) was then annealed to the poly(A) segment and employed as primer for E. coli DNA polymerase I to synthesize a 32P-labeled cDNA copy of the AFP coding strand. The single-stranded cDNA product was easily isolated by sedimentation through isokinetic alkaline sucrose gradients. Hybridization with this AFP-specific cDNA probe showed that the yolk sac contained a 6-fold greater concentration of AFP mRNA than that of the fetal liver. AFP mRNA was also found in the normal adult liver, but at a much lower level than in the fetal liver. The concentrations of AFP mRNA in Morris hepatomas 7777 and 8994, however, were significantly elevated to a 2- to 3-fold higher concentration that in the fetal liver.  相似文献   

6.
This article describes a simple method for accurate rapid amplification of complementary deoxyribonucleic acid (cDNA) ends (RACE), the distinctive feature being that only a gene-specific primer is used, without an anchor or adapter primer. Under these conditions, Thermus aquaticus (Taq) polymerase synthesizes cDNA ends exactly, so that amplified products obtain a characteristic structure: a terminal inverted repeat composed of a gene-specific primer and occasionally several nucleotides from its 3′ flanking sequence. These structures suggest a hypothetical mechanism of cDNA end synthesis in which Taq DNA polymerase synthesizes a sequence complementary to the gene-specific primer at the 3′ end of the daughter strand by switching the template to the 5′ terminal region through circularization of the DNA. As a result, the targeted cDNA will be efficiently amplified with only a single gene-specific primer. This technique, which provides highly specific amplification of the 5′ and 3′ ends of a cDNA, is especially useful for isolation of cDNA when the corresponding messenger ribonucleic acid is scarce.  相似文献   

7.
Two tomato cDNA libraries were synthesized from poly(A)+ RNAs isolated from unwounded and wounded tomato stems. These cDNA libraries were packaged in gt10 and screened by in situ plaque hybridization with a tomato extensin gene clone (pTom 5.10). Several cDNA clones were identified and isolated from both libraries in this manner and subjected to restriction enzyme digestion, Southern gel blot hybridization, RNA gel blot hybridization, and DNA sequence analyses. From these analyses, the various cDNA clones were found to fall into one of five distinct classes (classes I–V). Class I clones hybridized to a 4.0 kb mRNA which accumulated markedly after wounding and encoded an extensin characterized largely by Ser-(Pro)4-Ser-Pro-Ser-(Pro)4-(Tyr)3-Lys repeats. Class II clones hybridized to a 2.6 kb mRNA which showed no accumulation following wounding and encoded an extensin containing Ser-(Pro)4-Ser-Pro-Ser-(Pro)4-Thr-(Tyr)1–3-Ser repeats. Class III clones hybridized to a 0.6 kb mRNA which greatly accumulated in response to wounding and encoded a glycine-rich protein (GRP) with (Gly)2–6-Tyr-Pro and(Gly)2–6-Arg repeats. Class IV clones contained both class I and class III DNA sequences and consequently hybridized to both the 4.0 kb and the 0.6 kb wound-accumulating mRNAs; these clones encoded a portion of a GRP sequence on one DNA strand and encoded a portion of an extensin sequence on the other DNA strand. Class V clones hybridized to a 2.3 kb mRNA which decreased following wounding and encoded a GRP sequence characterized by (Gly)2–5-Arg repeats.  相似文献   

8.
Functional cDNA libraries from Drosophila embryos   总被引:88,自引:0,他引:88  
  相似文献   

9.
10.
11.
12.
13.
14.
We have devised a universal primer which can be used to sequence the 3′-ends of cloned cDNAs containing a polyA tail. The primer consists of an equimolar mixture of three primers: 20 T nucleotides followed by either an A, C, or G nucleotide (5′→3′). With this primer mixture and the dideoxynucleotide chain termination method, we determined the 3′-terminal sequence of human β-actin cDNA in an Okayama-Berg vector, in four parallel sets of reactions containing either a single primer (T20G, T20C, or T20A) or an equimolar mixture of all three primers. Priming with both T20A and the triple mixture gave clearly readable results that agree with the known sequence of the human β-actin gene, and we have applied this method successfully to several other cDNAs in the Okayama-Berg expression vector. Use of this universal primer mixture facilitates determination of sequences at the 3′-ends of cDNAs while by-passing the polyA tail region.  相似文献   

15.
Site-directed mutagenesis is an invaluable tool for functional studies and genetic engineering. However, most current protocols require the target DNA to be cloned into a plasmid vector before mutagenesis can be performed, and none of them are effective for multiple-site mutagenesis. We now describe a method that allows mutagenesis on any DNA template (eg. cDNA, genomic DNA and plasmid DNA), and is highly efficient for multiple-site mutagenesis (up to 100%). The technology takes advantage of the requirement that, in order for DNA polymerases to elongate, it is crucial that the 3′ sequences of the primers match the template perfectly. When two outer mutagenic oligos are incorporated together with the desired mutagenic oligos into the newly synthesised mutant strand, they serve as anchors for PCR primers which have 3′ sequences matching the mutated nucleotides, thus amplifying the mutant strand only. The same principle can also be used for mutant screening.  相似文献   

16.
Many bacterial pathogens, including Pseudomonas aeruginosa, have a nonhomologous end joining (NHEJ) system of DNA double strand break (DSB) repair driven by Ku and DNA ligase D (LigD). LigD is a multifunctional enzyme composed of a ligase domain fused to an autonomous polymerase module (POL) that adds ribonucleotides or deoxyribonucleotides to DSB ends and primer-templates. LigD POL and the eukaryal NHEJ polymerase λ are thought to bridge broken DNA ends via contacts with a duplex DNA segment downstream of the primer terminus, a scenario analogous to gap repair. Here, we characterized the gap repair activity of Pseudomonas LigD POL, which is more efficient than simple templated primer extension and relies on a 5′-phosphate group on the distal gap strand end to confer apparent processivity in filling gaps of 3 or 4 nucleotides. Mutations of the His-553, Arg-556, and Lys-566 side chains implicated in DNA 5′-phosphate binding eliminate the preferential filling of 5′-phosphate gaps. Mutating Phe-603, which is imputed to stack on the nucleobase of the template strand that includes the 1st bp of the downstream gap duplex segment, selectively affects incorporation of the final gap-closing nucleotide. We find that Pseudomonas Ku stimulates POL-catalyzed ribonucleotide addition to a plasmid DSB end and promotes plasmid end joining by full-length Pseudomonas LigD. A series of incremental truncations from the C terminus of the 293-amino acid Ku polypeptide identifies Ku-(1–229) as sufficient for homodimerization and LigD stimulation. The slightly longer Ku-(1–253) homodimer forms stable complexes at both ends of linear plasmid DNA that protect the DSBs from digestion by 5′- and 3′-exonucleases.  相似文献   

17.
Two models have been proposed for triggering release of the lagging strand polymerase at the replication fork, enabling cycling to the primer for the next Okazaki fragment—either collision with the 5′-end of the preceding fragment (collision model) or synthesis of a new primer by primase (signaling model). Specific perturbation of lagging strand elongation on minicircles with a highly asymmetric G:C distribution with ddGTP or dGDPNP yielded results that confirmed the signaling model and ruled out the collision model. We demonstrated that the presence of a primer, not primase per se, provides the signal that triggers cycling. Lagging strand synthesis proceeds much faster than leading strand synthesis, explaining why gaps between Okazaki fragments are not found under physiological conditions.  相似文献   

18.
To facilitate recombination-based screening, we constructed the ColE1-based plasmid, pi G4, that confers chloramphenicol resistance, contains a polylinker with multiple unique restriction enzyme recognition sequences, and contains the genetic marker, supF. To facilitate recombination-based screening followed by rapid DNA sequencing, we inserted the selectable marker, supF, into each of 20 high-copy-number (hcn) pUC-derived NoC plasmids that were designed for multiplex DNA sequencing. To facilitate recombination-based screening of common cDNA libraries that often contain ColE1 sequences, we constructed a supF-carrying plasmid whose replication was driven from an R6K replicon that does not share sequence homology with ColE1. Furthermore, we incorporated a useful polylinker and increased the copy number of this plasmid to create the 4.4-kb hcn plasmid, pMAD1. Thus, these plasmids allow: (1) background-free transformation of cells by a supF plasmid carrying an antibiotic-resistance marker; (2) simultaneous performance of the recombination-based assay and DNA sequencing; and (3) screening bacteriophage cDNA libraries that contain ColE1 sequences by recombination with a supF plasmid that is not homologous to ColE1 derivatives.  相似文献   

19.
In this study we present an improved polymerase chain reaction (PCR)-based methodology to generate large amounts of high-quality complementary DNA (cDNA) from small amounts of initial total RNA. Global amplification of cDNA makes it possible to simultaneously clone many cDNAs and to construct directional cDNA libraries from a sequence-abundance-normalized cDNA population, and also permits rapid amplification of cDNA ends (RACE), from a limited amount of starting material. The priming of cDNAs with an adapter oligo-deoxythymidine (oligo-dT) primer and the ligation of a modified oligonucleotide to the 3′ end of single-stranded cDNAs, through the use of T4 RNA ligase, generates known sequences on either end of the cDNA population. This helps in the global amplification of cDNAs and in the sequence-abundance normalization of the cDNA population through the use of PCR. Utilization of a long-range PCR enzyme mix to amplify the cDNA population helps to reduce bias toward the preferential amplification of shorter molecules. Incorporation of restriction sites in the PCR primers allows the amplified cDNAs to be directionally cloned into appropriate cloning vectors to generate cDNA libraries. RACE-PCR done with biotinylated primers and streptavidin-coated para-magnetic particles are used for the efficient isolation of either full-length coding or noncoding strands.  相似文献   

20.
Telomerase is a ribonucleoprotein enzyme that adds telomeric sequence repeats to the ends of linear chromosomes. In vitro, telomerase has been observed to add repeats to a DNA oligonucleotide primer in a processive manner, leading to the postulation of a DNA anchor site separate from the catalytic site of the enzyme. We have substituted photoreactive 5-iododeoxypyrimidines into the DNA oligonucleotide primer d(T4G4T4G4T4G2) and, upon irradiation, obtained cross-links with the anchor site of telomerase from Euplotes aediculatus nuclear extract. No cross-linking occurred with a primer having the same 5' end and a nontelomeric 3' end. These cross-links were shown to be between the DNA primer and (i) a protein moiety of approximately 130 kDa and (ii) U51-U52 of the telomerase RNA. The cross-linked primer could be extended by telomerase in the presence of [alpha-32P]dGTP, thus indicating that the 3' end was bound in the enzyme active site. The locations of the cross-links within the single-stranded primers were 20 to 22 nucleotides upstream of the 3' end, providing a measure of the length of DNA required to span the telomerase active and anchor sites. When the single-stranded primers are aligned with the G-rich strand of a Euplotes telomere, the cross-linked nucleotides correspond to the duplex region. Consistent with this finding, a cross-link to telomerase was obtained by substitution of 5-iododeoxycytidine into the CA strand of the duplex region of telomere analogs. We conclude that the anchor site in the approximately 130-kDa protein can bind duplex as well as single-stranded DNA, which may be critical for its function at chromosome ends. Quantitation of the processivity with single-stranded DNA primers and double-stranded primers with 3' tails showed that only 60% of the primer remains bound after each repeat addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号