首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleolus: from structure to dynamics   总被引:16,自引:3,他引:13  
  相似文献   

2.
The nucleolus: a model for the organization of nuclear functions   总被引:9,自引:5,他引:4  
Nucleoli are the prominent contrasted structures of the cell nucleus. In the nucleolus, ribosomal RNAs (rRNAs) are synthesized, processed and assembled with ribosomal proteins. The size and organization of the nucleolus are directly related to ribosome production. The organization of the nucleolus reveals the functional compartmentation of the nucleolar machineries that depends on nucleolar activity. When this activity is blocked, disrupted or impossible, the nucleolar proteins have the capacity to interact independently of the processing activity. In addition, nucleoli are dynamic structures in which nucleolar proteins rapidly associate and dissociate with nucleolar components in continuous exchanges with the nucleoplasm. At the time of nucleolar assembly, the processing machineries are recruited in a regulated manner in time and space, controlled by different kinases and form intermediate structures, the prenucleolar bodies. The participation of stable pre-rRNAs in nucleolar assembly was demonstrated after mitosis and during development but this is an intriguing observation since the role of these pre-rRNAs is presently unknown. A brief report on the nucleolus and diseases is proposed as well as of nucleolar functions different from ribosome biogenesis.Robert Feulgen Lecture presented at the 48th Symposium of the Society for Histochemistry in Stresa, Lake Maggiore, Italy, 7–10 September 2006.  相似文献   

3.
4.
Structure and function of the nucleolus.   总被引:15,自引:0,他引:15  
The activity of the ribosomal RNA genes generates a distinct subnuclear structure, the nucleolus, which is the site of ribosome biogenesis. The signals that target proteins and snoRNAs (small nucleolar RNAs) to the nucleolus, the nuclear import of ribosomal proteins, the export of the completed ribosomal subunits and the molecular organization of the nucleolus have been the subject of intense research during the past year. Evidence is accumulating that nucleoli functionally interact with coiled bodies and are also involved in the maturation of non-ribosomal RNA species.  相似文献   

5.
6.
7.
8.
9.
The distribution of newly formed ribosomal proteins between cytoplasmic, nucleoplasmic, and nucleolar fractions of HeLa cells was determined. All but a few of the newly formed ribosomal proteins were concentrated 10- to 50-fold in the nucleolus and two- to fivefold in the nucleoplasm. Nevertheless, substantial amounts were found in the cytoplasm. Pretreatment of cells with actinomycin D to deplete the nucleolar pool of ribosomal precursor RNA had no effect on the concentration of newly formed ribosomal proteins in the nucleus, but did lead to an increased amount in the nucleoplasm at the expense of the nucleolus.  相似文献   

10.
11.
The nucleolus is the site of ribosomal RNA synthesis, processing and ribosome maturation. Various small ribonucleoproteins also undergo maturation in the nucleolus, involving RNA modification and RNA-protein assembly. Such steps and other activities of small ribonucleoproteins also take place in Cajal (coiled) bodies. Events of ribosome biogenesis are found solely in the nucleolus, which is the final destination of small nucleolar RNAs after their traffic through Cajal bodies. However, nucleoli are just a stopping point in the intricate cellular traffic for small nuclear RNAs and other ribonucleoproteins.  相似文献   

12.
13.
14.
The nucleolus is a nuclear domain involved in the biogenesis of ribosomes, as well as in many other important cellular regulatory activities, such as cell cycle control and mRNA processing. Many viruses, including herpesviruses, are known to exploit the nucleolar compartment during their replication cycle. In a previous study, we demonstrated the preferential targeting and accumulation of the human cytomegalovirus (HCMV) UL83 phosphoprotein (pp65) to the nucleolar compartment and, in particular, to the nucleolar matrix of lytically infected fibroblasts; such targeting was already evident at very early times after infection. Here we have investigated the possible effects of rRNA synthesis inhibition upon the development of HCMV lytic infection, by using either actinomycin D or cisplatin at low concentrations, that are known to selectively inhibit RNA polymerase I activity, whilst leaving RNA polymerase II function unaffected. Following the inhibition of rRNA synthesis by either of the agents used, we observed a significant redistribution of nucleolar proteins within the nucleoplasm and a simultaneous depletion of viral pp65 from the nucleolus; this effect was highly evident in both unextracted cells and in nuclear matrices in situ. Of particular interest, even a brief suppression of rRNA synthesis resulted in a very strong inhibition of the progression of HCMV infection, as was concluded from the absence of accumulation of HCMV major immediate‐early proteins within the nucleus of infected cells. These data suggest that a functional relationship might exist between rRNA synthesis, pp65 localization to the nucleolar matrix and the normal development of HCMV lytic infection. J. Cell. Biochem. 108: 415–423, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
16.
17.
The production of ribosomes is an energy-intensive process owing to the intricacy of these massive macromolecular machines. Each human ribosome contains 80 ribosomal proteins and four non-coding RNAs. Accurate assembly requires precise regulation of protein and RNA subunits. In response to stress, the integrated stress response (ISR) rapidly inhibits global translation. How rRNA is coordinately regulated with the rapid inhibition of ribosomal protein synthesis is not known. Here, we show that stress specifically inhibits the first step of rRNA processing. Unprocessed rRNA is stored within the nucleolus, and when stress resolves, it re-enters the ribosome biogenesis pathway. Retention of unprocessed rRNA within the nucleolus aids in the maintenance of this organelle. This response is independent of the ISR or inhibition of cellular translation but is independently regulated. Failure to coordinately control ribosomal protein translation and rRNA production results in nucleolar fragmentation. Our study unveils how the rapid translational shut-off in response to stress coordinates with rRNA synthesis production to maintain nucleolar integrity.  相似文献   

18.
19.
Cells control their metabolism through modulating the anabolic and catabolic pathways. TP53INP2/DOR (tumor protein p53 inducible nuclear protein 2), participates in cell catabolism by serving as a promoter of autophagy. Here we uncover a novel function of TP53INP2 in protein synthesis, a major biosynthetic and energy-consuming anabolic process. TP53INP2 localizes to the nucleolus through its nucleolar localization signal (NoLS) located at the C-terminal domain. Chromatin immunoprecipitation (ChIP) assays detected an association of TP53INP2 with the ribosomal DNA (rDNA), when exclusion of TP53INP2 from the nucleolus repressed rDNA promoter activity and the production of ribosomal RNA (rRNA) and proteins. The removal of TP53INP2 also impaired the association of the POLR1/RNA polymerase I preinitiation complex (PIC) with rDNA. Further, TP53INP2 interacts directly with POLR1 PIC, and is required for the assembly of the complex. These data indicate that TP53INP2 promotes ribosome biogenesis through facilitating rRNA synthesis at the nucleolus, suggesting a dual role of TP53INP2 in cell metabolism, assisting anabolism on the nucleolus, and stimulating catabolism off the nucleolus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号