首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rabbit antibodies to rat skeletal muscle glyceraldehyde-3-phosphate dehydrogenase, as well as monovalent Fab fragments of these antibodies were coupled to CNBr-activated Sepharose 4B. Rat skeletal muscle glyceraldehyde-3-phosphate dehydrogenase was then immobilized on a matrix by non-covalent binding to specific antibodies. Immobilized enzyme retains approximately 90% catalytic activity of the soluble dehydrogenase; pH optimum of activity and the Km value observed are changed as compared to the enzyme in solution. Glyceraldehyde-3-phosphate dehydrogenase immobilized on specific antibodies is shown to undergo adenine nucleotide-induced dissociation into dimers. The immobilized dimeric form of the enzyme thus obtained is catalytically active and capable of reassociating with the dimers of apoglyceraldehyde-3-phosphate dehydrogenase added in solution to the suspension of Sepharose.  相似文献   

2.
Sepharose-bound tetrameric, dimeric and monomeric forms of yeast glyceraldehyde-3-phosphate dehydrogenase were prepared, as well as immobilized hybrid species containing (by selective oxidation of an active center cysteine residue with H2O2) one inactivated subunit per tetramer or dimer. The catalytic properties of these enzyme forms were compared in the forward reaction (glyceraldehyde-3-phosphate oxidation) and reverse reaction (1,3-bisphosphoglycerate reductive dephosphorylation) under steady-state conditions. In the reaction of glyceraldehyde-3-phosphate oxidation, immobilized monomeric and tetrameric forms exhibited similar specific activities. The hybrid-modified dimer contributed on half of the total activity of a native dimer. The tetramer containing one modified subunit possessed 75% of the activity of an unmodified tetramer. In the reaction of 1,3-bisphosphoglycerate reductive dephosphorylation, the specific activity of the monomeric enzyme species was nearly twice as high as that of the tetramer, suggesting that only one-half of the active centers of the oligomer were acting simultaneously. Subunit cooperativity in catalysis persisted in an isolated dimeric species. The specific activity of a monomer associated with a peroxide-inactivated monomer in a dimer was equal to that of an isolated monomeric species and twice as high as that of a native immobilized dimer. The specific activity of subunits associated with a peroxide-inactivated subunit in a tetramer did not differ from that of a native immobilized tetramer; this indicates that interdimeric interactions are involved in catalytic subunit cooperativity. A complex was formed between the immobilized glyceraldehyde-3-phosphate dehydrogenase and soluble phosphoglycerate kinase. Three monomers of phosphoglycerate kinase were bound per tetramer of the dehydrogenase and one per dimer. Evidence is presented that if the reductive dephosphorylation of 1,3-bisphosphoglycerate proceeds in the phosphoglycerate kinase - glyceraldehyde-3-phosphate dehydrogenase complex, all active sites of the latter enzyme act independently, i.e. subunit cooperativity is abolished.  相似文献   

3.
Yeast glyceraldehyde-3-phosphate dehydrogenase (GPDH) covalently attached to CNBr-activated Sepharose 4B was shown to be capable of binding soluble yeast phosphoglycerate kinase (PGK) in the course of incubation in the presence of an excess of 1,3-diphosphoglycerate. The association of the matrix-bound and soluble enzymes also occurred if the kinase was added to a reaction mixture in which the immobilized glyceraldehyde-3-phosphate dehydrogenase, NAD, glyceraldehyde-3-phosphate and Pi had been preincubated. Three kinase molecules were bound per a tetramer of the immobilized dehydrogenase and one molecule per a dimer. An immobilized monomer of glyceraldehyde-3-phosphate dehydrogenase was incapable of binding phosphoglycerate kinase. The matrix-bound bienzyme complexes were stable enough to survive extensive washings with a buffer and could be used repeatedly for activity determinations. Experimental evidence is presented to support the conclusion that 1,3-diphosphoglycerate produced by the kinase bound in a complex can dissociate into solution and be utilized by the dehydrogenase free of phosphoglycerate kinase.  相似文献   

4.
The DNA-binding protein P8 from transformed hamster fibroblasts (line NIL-1-hamster sarcoma virus) has been purified to homogeneity by DNA-cellulose and phosphocellulose chromatography. The molecular weight of dissociated P8 is 36000, the same as that reported for the subunits of glyceraldehyde-3-phosphate dehydrogenase, and the mobility of these proteins in polyacrylamide gels is identical. The amino acid composition of P8 is very similar to that of glyceraldehyde-3-phosphate dehydrogenase. When assayed for glyceraldehyde-3-phosphate dehydrogenase activity the P8 preparation had a specific activity of 54.6 units/mg, a value comparable to that of the crystalline enzyme from several sources. Furthermore, serum prepared against P8 crossreacts with glyceraldehyde-3-phosphate dehydrogenase from hamster muscle. These results show that P8 is glyceraldehyde-3-phosphate dehydrogenase. The interaction of P8 from transformed fibroblasts and glyceraldehyde-3-phosphate dehydrogenase from hamster and rabbit muscle with DNA has been studied using a Millipore filtration technique. These proteins have affinity for single-stranded DNA but not for double-stranded DNA.  相似文献   

5.
A yeast glyceraldehyde-3-phosphate dehydrogenase gene has been isolated from a collection of Escherichia coli transformants containing randomly sheared segments of yeast genomic DNA. Complementary DNA, synthesized from partially purified glyceraldehyde-3-phosphate dehydrogenase messenger RNA, was used as a hybridization probe for cloning this gene. The isolated hybrid plasmid DNA has been mapped with restriction endonucleases and the location of the glyceraldehyde-3-phosphate dehydrogenase gene within the cloned segment of yeast DNA has been established. There are approximately 4.5 kilobase pairs of DNA sequence flanking either side of the glyceraldehyde-3-phosphate dehydrogenase gene in the cloned segment of yeast DNA. The isolated hybrid plasmid DNA has been used to selectively hybridize glyceraldehyde-3-phosphate dehydrogenase messenger RNA from unfractionated yeast poly(adenylic acid)-containing messenger RNA. The nucleotide sequence of a portion of the isolated hybrid plasmid DNA has been determined. This nucleotide sequence encodes 29 amino acids which are at the COOH terminus of the known amino acid sequence of yeast glyceraldehyde-3-phosphate dehydrogenase.  相似文献   

6.
The stabilizing effect of the coenzyme (NAD) on the structure of glyceraldehyde-3-phosphate dehydrogenase from lamprey and porcine muscles with respect to proteolysis and heat denaturation was studied. The process of heat denaturation was followed by the changes in specific activity of the enzymes; that of proteolysis--by the changes in specific activity and circular dichroism. It was shown that in both cases NAD at saturating concentration exerts a far weaker stabilizing effect on the structure of glyceraldehyde-3-phosphate dehydrogenase from lamprey muscle than on that of the porcine muscle enzyme. The coensyme-dependent stabilization of lamprey muscle glyceraldehyde-3-phosphate dehydrogenase does not differ from that of mammalian muscle enzyme. Possible interrelationship between the phenomenon observed and the molecular mechanism of thermal adaptation in the cold-blooded animals is discussed.  相似文献   

7.
The NADP-dependent glycerol-3-phosphate dehydrogenase activity in liver, heart and skeletal muscle of rat was studied. The activity is found when glyceraldehyde-3-phosphate or ribose-5-phosphate in the presence of ATP are taken as substrates. The data obtained confirm that NADP-dependent glycerol-3-phosphate dehydrogenase exists in skeletal muscle and demonstrate that it is found in heart muscle as well.  相似文献   

8.
A rapid and convenient procedure for isolating human glyceraldehyde-3-phosphate dehydrogenase from erythrocytes has been developed and yields enzyme with a specific activity of 33–52. The physical and catalytic properties of the enzyme are similar to those of rabbit muscle enzyme. Reassociation of freshly isolated human glyceraldehyde-3-phosphate dehydrogenase with washed erythrocyte membranes increases the specific activity and stability of the enzyme suggesting that enzyme-membrane interactions may have an important effect on the conformation and catalytic activity. That the human enzyme behaves as a dimer of dimers, similar to the behavior or rabbit muscle glyceraldehyde-3-phosphate dehydrogenase, is suggested by its half-of-the-sites reactivity toward 4-iodoacetamido-1-naphthol. The human enzyme binds nicotinamide hypoxanthine dinucleotide, a structural analog of NAD+, with negative cooperativity, further indicating its similarity to rabbit muscle enzyme.  相似文献   

9.
Mild oxidation of glyceraldehyde-3-phosphate dehydrogenase in the presence of hydrogen peroxide leads to oxidation of some of the active site cysteine residues to sulfenic acid derivatives, resulting in the induction of acylphosphatase activity. The reduced active sites of the enzyme retain the ability to oxidize glyceraldehyde-3-phosphate yielding 1,3-diphosphoglycerate, while the oxidized active sites catalyze irreversible cleavage of 1,3-diphosphoglycerate. It was assumed that the oxidation of glyceraldehyde-3-phosphate dehydrogenase by different physiological oxidants must accelerate glycolysis due to uncoupling of the reactions of oxidation and phosphorylation. It was shown that the addition of hydrogen peroxide to the mixture of glycolytic enzymes or to the muscle extract increased production of lactate, decreasing the yield of ATP. A similar effect was observed in the presence of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase catalyzing irreversible oxidation of glyceraldehyde-3-phosphate into 3-phosphoglycerate. A role of glyceraldehyde-3-phosphate dehydrogenase in regulation of glycolysis is discussed.  相似文献   

10.
Abstract— Cat sciatic nerves were exposed to iodoacetate for a period of 5–10 min and after washing out the iodoacetate, the enzymes, glyceraldehyde-3-phosphate dehydrogenase ( d -glyceraldehyde-3-phosphate: NAD oxidoreductase (phosphorylating); EC 1.2.1.12) and lactate dehydrogenase ( l -lactate: NAD oxidoreductase; EC 1.1.1.27) were extracted from the high-speed supernatant fraction of nerve homogenates. Concentrations of iodoacetate as low as 2.5 m m could completely block activity of glyceraldehyde-3-phosphate dehydrogenase but had no effect on lactate dehydrogenase. These findings are in accord with the classical concept shown earlier for muscle that iodoacetate blocks glycolysis by its action on glyceraldehyde-3-phosphate dehydrogenase. A complete block of activity of the enzyme was found after treatment with 2 to 5 m m -iodoacetate for a period of 10 min and such blocks were irreversible for at least 3 h. Glyceraldehyde-3-phosphate dehydrogenase activity was NAD specific, with NADP unable to substitute for NAD. The results are discussed in relation to the effect of iodoacetate in blocking glycolysis and in turn the fast axoplasmic transport of materials in mammalian nerve.  相似文献   

11.
Pyrene maleimide is shown to be a 'half of the sites' reagent for glutamate dehydrogenase and for glyceraldehyde-3-phosphate dehydrogenase. The modified residues are identified as cysteine-115 for glutamate dehydrogenase and cysteine-149 for glyceraldehyde-3-phosphate dehydrogenase. The two enzymes react differently with pyrene maleimide. Whereas the hydrophobic environment of cysteine-115 directs the modification of glutamate dehydrogenase, the high reactivity of cysteine-149 determines the specific modification of glyceraldehyde-3-phosphate dehydrogenase. Glutamate dehydrogenase activity is unaltered by the modification: glyceraldehyde-3-phosphate dehydrogenase activity in inhibited.  相似文献   

12.
Influence of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) on glycolysis was investigated. The addition of GAPN-which oxidizes glyceraldehyde-3-phosphate directly to the 3-phosphoglyceric acid-led to the strong increase in the rate of lactate accumulation in the rat muscle extract with low ADP content. The lactate accumulation was also observed in the presence of GAPN in rat muscle extract, which contained only ATP and no ADP. This can be the evidence of the "futile cycle" stimulated by GAPN. Here ADP can be regenerated from ATP by the phosphoglycerate kinase reaction. The high resistance of GAPN from Streptococcus mutans towards inactivation by natural oxidant-H(2)O(2) was showed. This feature distinguishes GAPN from phosphorylating glyceraldehyde-3-phosphate dehydrogenase, which is very sensitive to modification by hydrogen peroxide. A possible role of the oxidants and non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase in the regulation of glycolysis is discussed.  相似文献   

13.
Physical interaction between rabbit muscle glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase was detected by means of matrix immobilization technique. Glyceraldehyde-3-phosphate dehydrogenase covalently bound to CNBr-activated Sepharose 4B was capable of forming a complex with soluble lactate dehydrogenase with a stoichiometry of 0.8 mole of lactate dehydrogenase per mole of glyceraldehyde-3-phosphate dehydrogenase and KD of 0.385 microM at pH 6.5. The bienzyme association weakened when pH changed to 7.0 (the KD increased to 1.25 microM).  相似文献   

14.
A homogeneous multimeric protein isolated from the green alga, Scenedesmus obliquus, has both latent phosphoribulokinase activity and glyceraldehyde-3-phosphate dehydrogenase activity. The glyceraldehyde-3-phosphate dehydrogenase was active with both NADPH and NADH, but predominantly with NADH. Incubation with 20 mM dithiothreitol and 1 mM NADPH promoted the coactivation of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, accompanied by a decrease in the glyceraldehyde-3-phosphate dehydrogenase activity linked to NADH. The multimeric enzyme had a Mr of 560,000 and was of apparent subunit composition 8G6R. R represents a subunit of Mr 42,000 conferring phosphoribulokinase activity and G a subunit of 39,000 responsible for the glyceraldehyde-3-phosphate dehydrogenase activity. On SDS-PAGE the Mr-42,000 subunit comigrates with the subunit of the active form of phosphoribulokinase whereas that of Mr-39,000 corresponds to that of NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase. The multimeric enzyme had a S20,W of 14.2 S. Following activation with dithiothreitol and NADPH, sedimenting boundaries of 7.4 S and 4.4 S were formed due to the depolymerization of the multimeric protein to NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (4G) and active phosphoribulokinase (2R). It has been possible to isolate these two enzymes from the activated preparation by DEAE-cellulose chromatography. Prolonged activation of the multimeric protein by dithiothreitol in the absence of nucleotide produced a single sedimenting boundary of 4.6 S, representing a mixture of the active form of phosphoribulokinase and an inactive dimeric form of glyceraldehyde-3-phosphate dehydrogenase. Algal thioredoxin, in the presence of 1 mM dithiothreitol and 1 mM NADPH, stimulated the depolymerization of the multimeric protein with resulting coactivation of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase. Light-induced depolymerization of the multimeric protein, mediated by reduced thioredoxin, is postulated as the mechanism of light activation in vivo. Consistent with such a postulate is the presence of high concentrations of the active forms of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase in extracts from photoheterotrophically grown algae. By contrast, in extracts from the dark-grown algae the multimeric enzyme predominates.  相似文献   

15.
The effect of borate on glyceraldehyde-3-phosphate dehydrogenase from human, pig and rabbit muscle was studied. At lower concentration of borate only the dehydrogenase activity is inhibited, reversibly and competitively against NAD. At concentration of borate above 6 mM the plots of 1/v versus borate concentration become nonlinear and the inhibition is extended to the esterase and acetylphosphatase activities. In certain conditions a time-dependent inactivation and reactivation was observed. The direct interaction between borate (if present at concentration of at least 6 mM) and glyceraldehyde-3-phosphate dehydrogenase is postulated, the possible site of the reaction being the histidine residue(s). The esterase activity of the human muscle enzyme and the effect of borate on it are different from the other mammalian enzymes.  相似文献   

16.
Summary Hypotonic human erythrocyte ghosts, devoid of the original glyceraldehyde-3-phosphate dehydrogenase content of the red cell, bind added glyceraldehyde-3-phosphate dehydrogenases, isolated from human erythrocytes, rabbit and pig muscle, as well as rabbit muscle aldolase. There are only slight differences in the affinities towards the various glyceraldehyde-3-phosphate dehydrogenases. On the other hand, glyceraldehyde-3-phosphate dehydrogenases are bound much stronger than aldolase; in an equimolar mixture the former can prevent the binding of the latter, or replace previously bound aldolase at the membrane surface. Binding is always accompanied by the partial inactivation of enzymes, which can be reverted by desorption. Unwashed ghosts rich in hemoglobin seem to have a more pronounced inactivating effect on bound glyceraldehyde-3-phosphate dehydrogenase. In isotonic media ghosts, whether white or unwashed, reseal and do not interact with the enzymes.  相似文献   

17.
The possibility of interaction between purified rabbit muscle aldolase and D-glyceraldehyde-3-phosphate dehydrogenase was studied by rapid kinetic methods, by analyzing the kinetics of the consecutive reaction catalyzed by the coupled enzyme system. The Km of the intermediary product, glyceraldehyde 3-phosphate, produced by aldolase was determined in the coupled reaction for glyceraldehyde-3-phosphate dehydrogenase. Its value corresponds to that of the aldehyde (active) form of glyceraldehyde 3-phosphate, although in the given conditions the aldehyde leads to diol interconversion is faster than the enzymic reaction catalyzed by glyceraldehyde-3-phosphate dehydrogenase. We suggest that above a certain concentration of the enzymes the glyceraldehyde 3-phosphate produced by aldolase gets direct access to glyceraldehyde-3-phosphate dehydrogenase without participating in the aldehyde leads to diol interconversion which otherwise would occur if the substrate were to mix with the bulk medium.  相似文献   

18.
In the course of studying mammalian erythrocytes we noted prominent differences in the red cells of the rat. Analysis of ghosts by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis showed that membranes of rat red cells were devoid of band 6 or the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12). Direct measurements of this enzyme showed that glyceraldehyde-3-phosphate dehydrogenase activity in rat erythrocytes was about 25% of that in human cells; all of the glyceraldehyde-3-phosphate dehydrogenase activity in rat erythrocytes was within the cytoplasm and none was membrane bound; and in the human red cell, about 1/3 of the enzyme activity was within the cytoplasm and 2/3 membrane bound. The release of glyceraldehyde-3-phosphate dehydrogenase from fresh rat erythrocytes immediately following saponin lysis was also determined using the rapid filtration technique recently described. The extrapolated zero-time intercepts of these reactions confirmed that, in the rat erythrocyte, none of the cellular glyceraldehyde-3-phosphate dehydrogenase was membrane bound. Failure of rat glyceraldehyde-3-phosphate dehydrogenase to bind to the membranes of the intact rat erythrocyte seems to be due to cytoplasmic metabolites which interact with the enzyme and render it incapable of binding to the membrane.  相似文献   

19.
The possibility of a functional complex formation between glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) and 3-phosphoglycerate kinase (EC. 2.7.2.3), enzymes catalysing two consecutive reactions in glycolysis has been investigated. Kinetic analysis of the coupled enzymatic reaction did not reveal any kinetic sign of the assumed interaction up to 4 X 10(-6) M kinase and 10(-4) M dehydrogenase. Fluorescence anisotrophy of 10(-7) M or 2 X 10(-5) M glyceraldehyde-3-phosphate dehydrogenase labeled with fluorescein isothiocynate did not change in the presence of non-labeled 3-phosphoglycerate kinase (up to 4 X 10(-5) M). The frontal gel chromatographic analysis of a mixture of the two enzymes (10(-4) M dehydrogenase) could not reveal any molecular species with the kinase activity having a molecular weight higher than that of 3-phosphoglycerate kinase. Both types of physicochemical measurements were also performed in the presence of substrates of the kinase and gave the same results. The data seem to invalidate the hypothesis that there is a complex between purified pig muscle glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase.  相似文献   

20.
1. The temperature dependence of the kinetics of glyceraldehyde-3-phosphate dehydrogenase from white muscle of carp and skeletal muscle of pig was examined. 2. The Km values of carp muscle enzyme were stable over the temperature range 5-35 degrees C, but increased for pig muscle enzyme with increasing temperature. 3. The Arrhenius plot for pig muscle enzyme is linear but non-linear for carp muscle enzyme. 4. The differences indicate that glyceraldehyde-3-phosphate dehydrogenase from white carp muscle may contribute to the adaptive mechanism of carp to varied temperature conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号