首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The in vivo effects of 24,25(OH)2D3 on cellular structure and organization, matrix metachromasia and mineralization were studied in epiphyseal growth plate of normal neonatal mice. A relatively low dose of the metabolite, 40 ng/kg body weight, significantly increased the overall size of humeral growth plate and the zone of cellular proliferation. By and large, the tissue's response to the metabolite did not change with the increase in dose administered except for a decrease in the number of chondroblasts. 24,25(OH)2D3 led to significant increases in the metachromatic reaction of the cartilaginous matrix, but appeared to depress the mineralization process. Qualitative structural changes were noted in chondroblasts and hypertrophic chondrocytes. 24,25(OH)2D3 affected the osteoblastic and osteocytic populations of cells in the metaphysis and diaphysis of the humerus. High doses of 24,25(OH)2D3 brought about distinct atrophic changes in the above cells. These findings indicate that excessive doses of 24,25(OH)2D3 in an intact animal may lead to retardative effects upon bone growth.  相似文献   

2.
This study examined the influence of 24,25 (OH)2D3, an active metabolite of vitamin D, on the growth and development of cartilage cells in condylar cartilage of suckling mice. It became evident that when the hormone was administered even at high doses, it did not significantly affect the incorporation of [3H]thymidine, but led to a marked decrease in the number of both chondroblasts and hypertrophic chondrocytes. At the same time, condyle of hormone-treated mice reached an increase in the number of mesenchymelike cells within the chondroprogenitor zone. High values of correlation were noted between the overall dimensions of the condylar cartilage and those of the chondroblastic and hypertrophic zones. The hormone also significantly reduced the degree of matrix metachromasia (indicative of proteoglycan content) and concomitantly altered the mineralization pattern of the cartilaginous matrix. This study indicates that in young animals increased doses of 24,25(OH)2D3 do not affect the proliferative activity of chondroprogenitor cells yet possess an inhibitory effect upon the capacity of the latter cells to differentiate into chondroblasts. The hormone also seems to affect the already differentiated cells--chondroblasts and hypertrophic chondrocytes--both structurally as well as metabolically. In so doing, this metabolite of vitamin D affects the normal process of endochondral bone formation in one of the mandible's main growth sites. Thus, in the developing animal, elevated concentrations of 24,25(OH)2D3 may impair the growing mandible's ability to achieve its normal size and shape.  相似文献   

3.
Growth plate chondrocytes make TGF-beta1 in latent form (LTGF-beta1) and store it in the extracellular matrix via LTGF-beta1 binding protein (LTBP1). 1,25-(OH)2D3 (1,25) regulates matrix protein production in growth zone (GC) chondrocyte cultures, whereas 24,25-(OH)2D3 (24,25) does so in resting zone (RC) cell cultures. The aim of this study was to determine if 24,25 and 1,25 regulate LTBP1 expression as well as the LTBP1 -mediated storage of TGF-beta1 in the extracellular matrix of RC and GC cells. Expression of LTBP1 and TGF-beta1 in the growth plate and in cultured RC and GC cells was determined by in situ hybridization using sense and antisense oligonucleotide probes based on the published rat LTBP1 and TGF-beta1 cDNA sequences. Fourth passage male rat costochondral RC and GC chondrocytes were treated for 24 h with 10(-7)-10(-9) M 24,25 and 10(-8)-10(-10) M 1,25, respectively. LTBP1 and TGF-beta1 mRNA levels were measured by in situ hybridization; production of LTGF-beta1, LTGF-beta2, and LTBP1 protein in the conditioned media was verified by immunoassays of FPLC-purified fractions. In addition, ELISA assays were used to measure the effect of 1,25 and 24,25 on the level of TGF-beta1 in the media and matrix of the cultures. Matrix-bound LTGF-beta1 was released by digesting isolated matrices with 1 U/ml plasmin for 3 h at 37 degrees C. LTBP1 and TGF-beta1 mRNAs are co-expressed throughout the growth plate, except in the lower hypertrophic area. Cultured GC cells express more LTBP1 and TGF-beta1 mRNAs than RC cells. FPLC purification of the conditioned media confirmed that RC cells produce LTGF-beta1, LTGF-beta2, and LTBP1. GC cells also produce LTGF-beta2, but at lower concentrations. 1,25 dose-dependently increased the number of GC cells with high LTBP1 expression, as seen by in situ hybridization. 24,25 had a similar, but less pronounced, effect on RC cells. 1,25 also caused a dose-dependent increase in the amount of TGF-beta1 protein found in the matrix, significant at 10(-8) and 10(-9) M, and a corresponding decrease in TGF-beta1 in the media. 24,25 had no effect on the level of TGF-beta1 in the matrix or media produced by RC cells. This indicates that 1,25 induces the production of LTBP1 by GC cells and suggests that the TGF-beta1 content of the media is reduced through the formation of latent TGF-beta1 -LTBP1 complexes which mediates storage in the matrix. Although 24,25 induced the expression of LTBP1 by RCs, TGF-beta1 incorporation into the matrix is not regulated by this vitamin D3 metabolite. Thus, vitamin D3 metabolites may play a role in regulating the availability of TGF-beta1 by modulating LTBP1 production.  相似文献   

4.
1alpha,25(OH)(2)D(3) regulates rat growth plate chondrocytes via nuclear vitamin D receptor (1,25-nVDR) and membrane VDR (1,25-mVDR) mechanisms. To assess the relationship between the receptors, we examined the membrane response to 1alpha,25(OH)(2)D(3) in costochondral cartilage cells from wild type VDR(+/+) and VDR(-/-) mice, the latter lacking the 1,25-nVDR and exhibiting type II rickets and alopecia. Methods were developed for isolation and culture of cells from the resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) of the costochondral cartilages from wild type and homozygous knockout mice. 1alpha,25(OH)(2)D(3) had no effect on [(3)H]-thymidine incorporation in VDR(-/-) GC cells, but it increased [(3)H]-thymidine incorporation in VDR(+/+) cells. Proteoglycan production was increased in cultures of both VDR(-/-) and VDR(+/+) cells, based on [(35)S]-sulfate incorporation. These effects were partially blocked by chelerythrine, which is a specific inhibitor of protein kinase C (PKC), indicating that PKC-signaling was involved. 1alpha,25(OH)(2)D(3) caused a 10-fold increase in PKC specific activity in VDR(-/-), and VDR(+/+) GC cells as early as 1 min, supporting this hypothesis. In contrast, 1alpha,25(OH)(2)D(3) had no effect on PKC activity in RC cells isolated from VDR(-/-) or VDR(+/+) mice and neither 1beta,25(OH)(2)D(3) nor 24R,25(OH)(2)D(3) affected PKC in GC cells from these mice. Phospholipase C (PLC) activity was also increased within 1 min in GC chondrocyte cultures treated with 1alpha,25(OH)(2)D(3). As noted previously for rat growth plate chondrocytes, 1alpha,25(OH)(2)D(3) mediated its increases in PKC and PLC activities in the VDR(-/-) GC cells through activation of phospholipase A(2) (PLA(2)). These responses to 1alpha,25(OH)(2)D(3) were blocked by antibodies to 1,25-MARRS, which is a [(3)H]-1,25(OH)(2)D(3) binding protein identified in chick enterocytes. 24R,25(OH)(2)D(3) regulated PKC in VDR(-/-) and VDR(+/+) RC cells. Wild type RC cells responded to 24R,25(OH)(2)D(3) with an increase in PKC, whereas treatment of RC cells from mice lacking a functional 1,25-nVDR caused a time-dependent decrease in PKC between 6 and 9 min. 24R,25(OH)(2)D(3) dependent PKC was mediated by phospholipase D, but not by PLC, as noted previously for rat RC cells treated with 24R,25(OH)(2)D(3). These results provide definitive evidence that there are two distinct receptors to 1alpha,25(OH)(2)D(3). 1alpha,25(OH)(2)D(3)-dependent regulation of DNA synthesis in GC cells requires the 1,25-nVDR, although other physiological responses to the vitamin D metabolite, such as proteoglycan sulfation, involve regulation via the 1,25-mVDR.  相似文献   

5.
The vitamin D endocrine system is crucial in calcium homeostasis in mammalian species. Central to this role 1,25-dihydroxyvitamin D-3 (1,25-(OH)2D3) receptors have been detected in freshly isolated osteoblast-like bone cells and it has been shown that the active metabolite of vitamin D-3 1,25-(OH)2D3, increases bone resorption in vitro and in vivo. The requirement of 1,25-(OH)2D3 for the normal development of growth plate cartilage can be seen in vitamin D deficient rickets. However, there is still considerable controversy regarding the presence of 1,25-(OH)2D3 receptors in chondrocytes. In this paper, we report the presence of a 3.5-S 1,25-(OH)2D3-binding macromolecule in freshly isolated human costal but not articular chondrocytes. After subculture, both articular and costal chondrocytes have receptors. Saturation binding analysis revealed a single class of binding sites with an apparent Kd of 0.09 nM and approx. 2700 receptor molecules per cell for articular chondrocytes and a Kd of 0.1 nM and approx. 2000 receptor molecules per cell for costal chondrocytes. The presence of 1,25-(OH)2D3 receptors did not correlate with the switch from synthesis of cartilage-specific type II collagen to types I and III collagens. The acquisition of 1,25-(OH)2D3 receptors by articular chondrocytes may, therefore, be another phenotypic characteristic of cultured cells or may appear in vivo when chondrocytes are exposed to vascular or inflammatory cell products.  相似文献   

6.
During endochondral development, growth plate chondrocytes must remodel their matrix in a number of ways as they differentiate and mature. In previous studies, we have shown that matrix metalloproteinases (MMPs) extracted from matrix vesicles can extensively degrade aggrecan and that this is modulated by vitamin D metabolites in a manner involving protein kinase C (PKC). Matrix vesicles represent only a small component of the extracellular matrix, however, and it is unknown if the total metalloproteinase complement, including the MMPs and aggrecanases in the culture, is also regulated in a similar way. This study tested the hypothesis that vitamin D metabolites regulate the level of metalloproteinase activity in growth plate chondrocytes via a PKC-dependent mechanism and play a role in partitioning this proteinase activity between the media and cell layer (cells+matrix) in these cultures. To do this, resting zone cells (RC) were treated with 10(-9)-10(-7) M 24R,25-(OH)(2)D(3), while growth zone cells (GC) were treated with 10(-10)-10(-8) M 1alpha,25-(OH)(2)D(3). Cultures of both cell types were also treated with the PKC inhibitor chelerythrine in the presence and absence of vitamin D metabolites. At harvest, the media were either left untreated or treated to destroy metalloproteinase inhibitors, while enzyme activity in the cell layers was extracted with buffered guanidine and then treated like the media to destroy metalloproteinase inhibitors. Neutral metalloproteinase (aggrecan-degrading activity) activity was assayed on aggrecan-containing polyacrylamide gel beads and collagenase activity was measured on telopeptide-free type I collagen. Neutral metalloproteinase activity was found primarily in the cell layer of both cell types; however, activity was greater in extracts of GC cell layers. No collagenase activity could be detected in RC extracts until the metalloproteinase inhibitors were destroyed. In contrast, extracts of GC cell layers contained measurable activity without removing the inhibitors, and destroying the inhibitors resulted in a greater than two-fold increase in activity. No collagenase activity was found in the media of either cell type. 24,25-(OH)(2)D(3) caused a dose-dependent increase in neutral metalloproteinase activity in extracts of RC cells, but had no effect on collagenase activity. In contrast, 1,25-(OH)(2)D(3) caused a dose-dependent decrease in collagenase activity in extracts of GC cells, but had no effect on neutral metalloproteinase activity. In both cases, the effect of the vitamin D metabolite was mediated through the activation of PKC. These results support the hypothesis that metalloproteinases are involved in regulating the bulk turnover of collagen and aggrecan in growth plate chondrocytes and that the amount of metalloproteinase activity found is a function of the cell maturation state. Furthermore, 83-93% of neutral metalloproteinase activity and 100% of collagenase activity is localized to the cell layer. Moreover, the regulation of metalloproteinase activity by 1,25-(OH)(2)D(3) and 24,25-(OH)(2)D(3) involves a PKC-dependent pathway that is controlled by the target cell-specific vitamin D metabolite.  相似文献   

7.
1,25-(OH)2D3 (1,25) exerts its effects on growth plate chondrocytes through classical vitamin D (VDR) receptor-dependent mechanisms, resulting in mineralization of the extracellular matrix. Recent studies have shown that membrane-mediated mechanisms are involved as well. 1,25 targets cells in the prehypertrophic and upper hypertrophic zones of the costochondral cartilage growth plate (GC cells), resulting in increased specific activity of alkaline phosphatase (ALP), phospholipase A2 (PLA2), and matrix metalloproteinases (MMPs). At the cellular level, 1,25 action results in rapid changes in arachidonic acid (AA) release and re-incorporation, alterations in membrane fluidity and Ca ion flux, and increased prostaglandin E1 and E2 (PGE2) production. Protein kinase C (PKC) is activated in a phospholipase C (PLC) dependent-mechanism, due in part to the increased production of diacylglycerol (DAG). In addition, AA acts directly on the cell to increase PKC specific activity. AA also provides a substrate for cyclooxygenase (COX), resulting in PGE2 production. 1,25 mediates its effects through COX-1, the constitutive enzyme, but not COX-2, the inducible enzyme. Time course studies using specific inhibitors of COX-1 show that AA stimulates PKC activity and PKC then stimulates PGE2 production. PGE2 acts as a mediator of 1,25 action on the cells, also stimulating PKC activity. The rapid effects of 1,25 on PKC are nongenomic, occurring within 3 min and reaching maximal activation by 9 min. It promotes translocation of PKC to the plasma membrane. When 1,25 is incubated directly with isolated plasma membranes, PKCalpha is stimulated although PKCzeta is also present. In contrast, when isolated matrix vesicles (MVs) are incubated with 1,25, PKCzeta is inhibited and PKCalpha is unaffected. These membrane-mediated effects are due to the presence of a specific membrane vitamin D receptor (mVDR) that is distinct from the classical cytosolic VDR. Studies using 1,25 analogs with reduced binding affinity for the classical VDR, confirm that rapid activation of PKC by 1,25 is not VDR dependent. The membrane-mediated effects of 1,25 are critical to the regulation of events in the extracellular matrix produced by the chondrocytes. MVs are extracellular organelles associated with maturation of the matrix, preparing it for mineralization. MV composition is under genomic control, involving VDR-mechanisms. In the matrix, no new gene expression or protein synthesis can occur, however. Differential distribution of PKC isoforms and their nongenomic regulation by 1,25 is one way for the chondrocyte to control events at sites distant from the cell. GC cells contain 1a-hydroxylase and produce 1,25; this production is regulated by 1,25, 24,25, and dexamethasone. 1,25 stimulates MMPs in the MVs, resulting in increased proteoglycan degradation in mineralization gels, and increased activation of latent transforming growth factor-beta 1 (TGF-beta1).  相似文献   

8.
The effect of vitamin D metabolites on the growth of chick embryo chondrocytes in soft agar was examined. 1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] at 10(-8)-10(-7) M induced colony formation by chick embryo chondrocytes in soft agar in the presence of 10% fetal bovine serum. Furthermore, 1,25(OH)2D3 increased the number of colonies in the presence of a maximal dose of basic fibroblast growth factor, a potent mitogen for chondrocytes in soft agar. However, 24R,25 (OH)2D3 and other metabolites had little effect on the soft agar growth of chondrocytes in the presence or absence of basic fibroblast growth factor. These results suggest that 1,25(OH)2D3 is an active metabolite which may be involved in supporting cartilage growth.  相似文献   

9.
Whereas detrimental effects of vitamin D deficiency are known over century, the effects of vitamin D receptor activation by 1,25(OH)(2)D(3), the principal hormonal form of vitamin D, on the growing bone and its growth plate are less clear. Currently, 1,25(OH)(2)D(3) is used in pediatric patients with chronic kidney disease and mineral and bone disorder (CKD-MBD) and is strongly associated with growth retardation. Here, we investigate the effect of 1,25(OH)(2)D(3) treatment on bone development in normal young rats, unrelated to renal insufficiency. Young rats received daily i.p. injections of 1 μg/kg 1,25(OH)(2)D(3) for one week, or intermittent 3 μg/kg 1,25(OH)(2)D(3) for one month. Histological analysis revealed narrower tibial growth plates, predominantly in the hypertrophic zone of 1,25(OH)(2)D(3)-treated animals in both experimental protocols. This phenotype was supported by narrower distribution of aggrecan, collagens II and X mRNA, shown by in situ hybridization. Concomitant with altered chondrocyte maturation, 1,25(OH)(2)D(3) increased chondrocyte proliferation and apoptosis in terminal hypertrophic cells. In vitro treatment of the chondrocytic cell line ATDC5 with 1,25(OH)(2)D(3) lowered differentiation and increased proliferation dose and time-dependently. Micro-CT analysis of femurs from 1-week 1,25(OH)(2)D(3)-treated group revealed reduced cortical thickness, elevated cortical porosity, and higher trabecular number and thickness. 1-month administration resulted in a similar cortical phenotype but without effect on trabecular bone. Evaluation of fluorochrome binding with confocal microscopy revealed inhibiting effects of 1,25(OH)(2)D(3) on intracortical bone formation. This study shows negative effects of 1,25(OH)(2)D(3) on growth plate and bone which may contribute to the exacerbation of MBD in the CKD pediatric patients.  相似文献   

10.
Previous studies have shown 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3)-responsive alkaline phosphatase in cultured growth zone cartilage chondrocytes is localized in extracellular matrix vesicles (MV). Since osteoblast-like cells also have 1,25-(OH)2D3-responsive alkaline phosphatase, this study determined whether the 1,25-(OH)2D3-responsive enzyme activity is localized to MV produced by these cells as well. Osteoblast-like cells from rat (ROS 17/2.8), mouse (MC 3T3), human (MG 63), and rat growth zone cartilage were cultured in Dulbecco's modified Eagle's medium containing 10(-7)-10(-12) M 1,25-(OH)2D3. Alkaline phosphatase total activity and specific activity were measured in the cell layer, MV, and plasma membrane (PM) fractions. MV and PM purity were verified by electron microscopy and MV alkaline phosphatase specific activity compared to PM (MV versus PM: ROS 17/2.8 6 x; MG 63, 5.5 x; MC 3T3, 33 x; GC, 2 x). There was a dose-dependent stimulation of MV alkaline phosphatase (5- to 15-fold increase at 10(-7)-10(-9) M) in all cell types in response to the 1,25-(OH)2D3. The PM enzyme was stimulated in a parallel fashion in the osteoblast cultures. No effect of 1,25-(OH)2D3 was observed in growth cartilage PM. Although MV accounted for less than 20% of the total activity they contributed 50% of the increase in alkaline phosphatase activity in the cell layer in response to 1,25-(OH)2D3 and MV specific activity was enriched 10 times over that of the cell layer. These are common features of MV produced by cells which calcify their matrix and suggest that hormonal regulation of MV enzymes may be important in primary calcification.  相似文献   

11.
Boyan BD  Wang L  Wong KL  Jo H  Schwartz Z 《Steroids》2006,71(4):286-290
1,25-Dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] acts on chondrocytes and osteoblasts through traditional nuclear Vitamin D receptor (VDR) mechanisms as well as through rapid actions on plasma membranes that initiate intracellular signaling pathways. We have investigated the mechanisms involved in activation of protein kinase C (PKC) and downstream biological responses that depend on the latter pathway. These studies show that PKC activation depends on presence of a membrane receptor ERp60 and rapid increases in phospholipase A(2) (PLA(2)) activity. Cells that are responsive to 1alpha,25(OH)(2)D(3) express PLA(2) activating protein (PLAA), suggesting a link between ERp60 and PLA(2). Increased PLA(2) results in increased arachidonic acid release and formation of lysophospholipid, which then activates phospholipase C beta (PLCbeta), leading to rapid formation of inositol-trisphosphate (IP3) and diacylglycerol (DAG). PLA(2), PLC, and DAG are all associated with lipid rafts including caveolae in many cells, suggesting that the caveolar environment may be an important mediator of PKC activation by 1alpha,25(OH)(2)D(3). Here, we use the VDR(-/-) mouse costochondral cartilage growth plate to examine the expression of ERp60 and PLAA in vivo in 1alpha,25(OH)(2)D(3)-responsive hypertrophic chondrocytes (growth zone cells) and in resting zone cells that do not respond to this Vitamin D metabolite in vitro. In addition, we determined if intact lipid rafts are required for the response of rat costochondral cartilage growth zone cells to 1alpha,25(OH)(2)D(3). The results show that ERp60 and PLAA are localized to 1alpha,25(OH)(2)D(3)-responsive growth zone cells and metaphyseal osteoblasts, even in VDR(-/-) mice. Disruption of lipid rafts using beta-cyclodextrin blocks the activation of PKC by 1alpha,25(OH)(2)D(3) and reduces the ability of 1alpha,25(OH)(2)D(3) to regulate [(35)S]-sulfate incorporation.  相似文献   

12.
13.
Long standing disturbances of Vitamin D-metabolism as well as null-mutant animals for 25-hydroxy-1alpha-hydroxylase results in disorganised growth plates. Cultured chondrocytes were shown to be target for the hydroxylated Vitamin D-metabolites 1alpha,25(OH)(2)D(3) and 24,25(OH)(2)D(3). Because studies on production of these metabolites were inconclusive in in vitro systems, the expression of the Vitamin D-system was examined in rat growth plate chondrocytes in vitro as well as ex vivo. Gene expression for 25-hydroxy-1alpha-hydroxylase, 25-hydroxy-24-hydroxylase as well as Vitamin D-receptor and collagen II and X were analysed on mRNA level by RT-PCR and quantitative real-time PCR, on protein level by western blotting and by immunohistochemistry in isolated growth plate chondrocytes or intact growth plates. Compared to UMR or CaCo(2) cells and renal homogenates cultured growth plate chondrocytes expressed low levels of 25-hydroxy-1alpha-hydroxylase mRNA and 25-hydroxy-24-hydroxylase mRNA. The expression of both was modulated by 25(OH)D(3), but 1alpha,25(OH)(2)D(3) affected only 25-hydroxy-24-hydroxylase. These data were confirmed by Western blotting. Immunohistochemistry demonstrated predominant staining for 25-hydroxy-1alpha-hydroxylase in chondrocyte nodules and cells embedded in matrix in vitro. Ex vivo, 25-hydroxy-1alpha-hydroxylase was detected predominantly in late proliferative and hypertrophic zone of the growth plate. In conclusion, growth plate chondrocytes express the key components for a paracrine/autocrine Vitamin D-system.  相似文献   

14.
Alkaline phosphatase activity appears to be altered when chondrocyte cultures are incubated with 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). This study examined whether the hormone-responsive enzyme activity is associated with alkaline phosphatase-enriched extracellular membrane organelles called matrix vesicles. Confluent, third passage cultures of rat costochondral growth cartilage (GC) or resting zone chondrocytes (RC) were incubated with 1,25-(OH)2D3 or 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3) and enzyme specific activity was assayed in the cell layer or in isolated matrix vesicle and plasma membrane fractions. Alkaline phosphatase-specific activity in the matrix vesicles was enriched at least 2-fold over that of the plasma membrane and 10-fold over that of the cell layer. Matrix vesicle alkaline phosphatase was stimulated by 1,25-(OH)2D3 in GC cultures and by 24,25-(OH)2D3 in RC cultures. The cell layer failed to reveal these subtle differences. 1,25-(OH)2D3 increased GC enzyme activity but the effect was one-half that observed in the matrix vesicles alone. No effect of 1,25-(OH)2D3 on enzyme activity of the RC cell layer or of 24,25-(OH)2D3 on either GC or RC cell layers was detected. Thus, response to the metabolites is dependent on chondrocytic differentiation and is site specific: the matrix vesicle fraction is targeted and not the cells per se.  相似文献   

15.
We have shown that when chondrocytes are isolated by collagenase digestion of hyaline cartilage from growth plate, nasal, and epiphyseal cartilages of bovine fetuses they rapidly elaborate an extracellular matrix in culture. Only growth plate chondrocytes can calcify this matrix as ascertained by incorporation of 45Ca2+, detection of mineral with von Kossa's stain and electron microscopy. There is an extremely close direct correlation between 45Ca2+ incorporation in the first 24 h of culture and the content of the C-propeptide of type II collagen, measured by radioimmunoassay, at the time of isolation and during culture. Moreover, growth plate cells have an increased intracellular content of the C-propeptide per deoxyribonucleic acid and, during culture, per hydroxyproline (as a measure of helical collagen) compared with nasal and epiphyseal chondrocytes. In growth plate chondrocytes 24,25-dihydroxycholecalciferol (24,25-[OH]2D3), but not 1,25-dihydroxycholecalciferol alone, stimulates the net synthesis of the C-propeptide and calcification; proteoglycan net synthesis is unaffected. Together, these metabolites of vitamin D further stimulate C-propeptide net synthesis but do not further increase calcification stimulated by 24,25-(OH)2D3. These observations further demonstrate the close correlation between the C-propeptide of type II collagen and the calcification of cartilage matrix.  相似文献   

16.
Time- and dosage-dependent effects of 1,25(OH)(2)D(3) and 24,25(OH)(2)D(3) on primary cultures of pre- and post-confluent avian growth plate (GP) chondrocytes were examined. Cultures were grown in either a serum-containing culture medium designed to closely mimic normal GP extracellular fluid (DATP5) or a commercially available serum-free media (HL-1) frequently used for studying skeletal cells. Hoechst DNA, Lowry protein, proteoglycan (PG), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) activity and calcium and phosphate mineral deposition in the extracellular matrix were measured. In preconfluent cultures grown in DATP5, physiological levels of 24,25(OH)(2)D(3) (0.10-10 nM) increased DNA, protein, and LDH activity significantly more than did 1,25(OH)(2)D(3) (0.01-1.0 nM). However, in HL-1, the reverse was true. Determining ratios of LDH and PG to DNA, protein, and each other, revealed that 1,25(OH)(2)D(3) specifically increased PG, whereas 24,25(OH)(2)D(3) increased LDH. Post-confluent cells were generally less responsive, especially to 24,25(OH)(2)D(3). The positive anabolic effects of 24,25(OH)(2)D(3) required serum-containing GP-fluid-like culture medium. In contrast, effects of 1,25(OH)(2)D(3) were most apparent in serum-free medium, but were still significant in serum-containing media. Administered to preconfluent cells in DATP5, 1,25(OH)(2)D(3) caused rapid, powerful, dosage-dependent inhibition of Ca(2+) and Pi deposition. The lowest level tested (0.01 nM) caused >70% inhibition during the initial stages of mineral deposition; higher levels of 1,25(OH)(2)D(3) caused progressively more profound and persistent reductions. In contrast, 24,25(OH)(2)D(3) increased mineral deposition 20-50%; it required >1 week, but the effects were specific, persistent, and largely dosage-independent. From a physiological perspective, these effects can be explained as follows: 1,25(OH)(2)D(3) levels rise in hypocalcemia; it stimulates gut absorption and releases Ca(2+) from bone to correct this deficiency. We now show that 1,25(OH)(2)D(3) also conserves Ca(2+) by inhibiting mineralization. The slow anabolic effects of 24,25(OH)(2)D(3)are consistent with its production under eucalcemic conditions which enable bone formation. These findings, which implicate serum-binding proteins and accumulation of PG in modulating accessibility of the metabolites to GP chondrocytes, also help explain some discrepancies previously reported in the literature.  相似文献   

17.
Boyan BD  Sylvia VL  Dean DD  Schwartz Z 《Steroids》2002,67(6):421-427
1 alpha,25(OH)(2)D(3) and 24R,25(OH)(2)D(3) mediate their effects on chondrocytes and osteoblasts in part through increased activity of protein kinase C (PKC). For both cell types, 1 alpha,25(OH)(2)D(3) exerts its effects primarily on more mature cells within the lineage, whereas 24R,25(OH)(2)D(3) exerts its effects primarily on relatively immature cells. Studies using the rat costochondral cartilage growth plate as a model indicate that the two metabolites increase PKC activity by different mechanisms. In growth zone cells (prehypertrophic/upper hypertrophic cell zones), 1 alpha,25(OH)(2)D(3) causes a rapid increase in PKC that does not involve new gene expression. 1 alpha,25(OH)(2)D(3) binds its membrane receptor (1,25-mVDR), resulting in activation of phospholipase A(2) and the rapid release of arachidonic acid, as well as activation of phosphatidylinositol-specific phospholipase C, resulting in formation of diacylglycerol and inositol-1,4,5-tris phosphate (IP(3)). IP(3) leads to release of intracellular Ca(2+) from the rough endoplasmic reticulum, and together with diacylglycerol, the increased Ca(2+) activates PKC. PKC is then translocated to the plasma membrane, where it initiates a phosphorylation cascade, ultimately phosphorylating the extracellular signal-regulated kinase-1 and -2 (ERK1/2) family of MAP kinases (MAPK). PKC increases are maximal at 9 min, and MAPK increases are maximal at 90 min in these cells. By contrast, 24R,25(OH)(2)D(3) increases PKC through activation of phospholipase D in resting zone cells. Peak production of diacylglycerol via phospholipase D2 is at 90 min, as are peak increases in PKC. Some of the effect is direct on existing plasma membrane PKC, but most is due to new PKC expression; translocation is not involved. Arachidonic acid and its metabolites also play differential roles in the mechanisms, stimulating PKC in growth zone cells and inhibiting PKC in resting zone cells. 24R,25(OH)(2)D(3) decreases phospholipase A(2) activity and prostaglandin production, thereby overcoming this potential inhibitory component, which may account for the delay in the PKC response. Ultimately, ERK1/2 is phosphorylated. PKC-dependent MAPK activity transduces some, but not all, of the physiological responses of each cell type to its respective vitamin D metabolite, suggesting that the membrane receptor(s) and nuclear receptor(s) may function interdependently to regulate proliferation and differentiation of musculoskeletal cells, but different pathways are involved at different stages of phenotypic maturation.  相似文献   

18.
Phospholipase A2 (PLA2) is pivotal in the rapid membrane-mediated actions of 1,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3]. Microarray analysis indicated that PLA2 activating protein (PLAA) mRNA is upregulated 6-fold before rat growth plate cells exhibit 1alpha,25(OH)2D3-dependent protein kinase C (PKC) increases, suggesting that it plays an important role in 1alpha,25(OH)2D3's mechanism of action. PLAA mRNA was confirmed in 1alpha,25(OH)2D3-responsive growth zone (prehypertrophic and upper hypertrophic cell zones) chondrocytes by RT-PCR and Northern blot in vitro and by in situ hybridization in vivo. PLAA protein was shown by Western blot and immunohistochemistry. PLAAs role in 1alpha,25(OH)2D3 signaling was evaluated in growth zone cell cultures using PLAA peptide. Arachidonic acid release was increased as was PLA2-specific activity in plasma membranes and matrix vesicles. PKCalpha, but not PKCbeta, PKCepsilon, or PKCzeta, was increased. PLAAs effect was comparable to that of 1alpha,25(OH)2D3 and was additive with 1alpha,25(OH)2D3. PLA2 inhibitors quinacrine and AACOCF3, and cyclooxygenase inhibitor indomethacin blocked the effect of PLAA peptide on PKC, indicating arachidonic acid and its metabolites were involved. This was confirmed using exogenous arachidonic acid. Prostaglandin acted via EP1 based on inhibition by SC19220 and not via EP2 since AH6809 had no effect. Like 1alpha,25(OH)2D3, PLAA peptide also increased activity of phospholipase C-specific activity via beta-1 and beta-3 isoforms, but not delta-1 or gamma-1; the effect of PLAA was via lysophospholipid but not via arachidonic acid. PLAA peptide decreased [3H]-thymidine incorporation to 50% of the decrease caused by 1alpha,25(OH)2D3. In contrast, PLAA peptide increased alkaline phosphatase-specific activity and proteoglycan production in a manner similar to 1alpha,25(OH)2D3. This indicates that PLAA is a specific activator of PLA2 in growth plate chondrocytes, and suggests that it mediates the membrane effect of 1alpha,25(OH)2D3, thereby modulating physiological response.  相似文献   

19.
20.
The effects of 1,25-dihydroxycholecalciferol (1,25-(OH)2D3) (10(-13)M-10(-8) M) and 24R ,25-dihydroxycholecalciferol ( 24R ,25-(OH)2D3) (10(-12)M-10(-7) M) on cell proliferation and proteoglycan deposition were examined in our newly developed multilayer culture system for rabbit and human articular chondrocytes. The cells are embedded in an extracellular matrix similar to that seen in vivo and maintain their in vivo phenotype. We extracted and purified native proteoglycans and degraded material from three culture compartments: the medium, intercellular matrix, and cells. Proteoglycan synthesis and deposition were analyzed by measuring 35SO4 incorporation, hexuronic acid, and galactose contents. In both rabbit and human chondrocyte cultures, chronic 1,25-(OH)2D3 treatment inhibited chondrocyte proliferation and stimulated proteoglycan synthesis and accumulation in the three compartments at 10(-12)-10(-8) M; maximal effect was at 10(-10)M. Cell proliferation was reduced by 55% and the content of hexuronic acid (or galactose) was increased to about three times that of controls in all compartments. 1,25-(OH)2D3 did not alter the proteoglycan composition. Chronic 24R ,25-(OH)2D3 treatment induced comparable effects with a maximum at 10(-8)M. When human dermal fibroblasts were treated as above both vitamin D metabolites increase mitosis. 1,25-(OH)2D3 mainly reduced the pericellular deposition of proteoglycans, while 24R ,25-(OH)2D3 appeared to reduce their synthesis and deposition in both medium and pericellular compartments. These results suggest that both 1,25-(OH)2D3 and 24R ,25-(OH)2D3 act specifically on articular chondrocytes to promote phenotype expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号